Abstract
We have previously shown that the transitional cells lining the urinary bladder are capable of producing glycosaminoglycan (GAG). By use of a quantitative in vivo method of measuring bacterial adherence, we demonstrated that bacterial adherence to the mucosal cells is diminished in the presence of this GAG, rises when it is removed (by acid), and returns to normal when the GAG is resynthesized (in less than 24 h). We also found that this much layer could be removed (with a corresponding rise in bacterial adherence) and that addition of exogenous GAG (heparin) to the bladder prevented the expected rise in bacterial adherence. This study analyzed in depth the manner by which heparin prevents the rise in adherence seen when the mucin is removed. Pretreatment of bacteria with heparin had no effect on adherence, whereas pretreatment of the bladder with heparin inhibited adherence. To corroborate our impression that the heparin was coating the transitional cells, [3H]heparin was added to bladders after removal of mucin. Autoradiography revealed the heparin to be adherent to the surface of the transitional cells.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buonassisi V., Root M. Enzymatic degradation of heparin-related mucopolysaccharides from the surface of endothelial cell cultures. Biochim Biophys Acta. 1975 Mar 14;385(1):1–10. doi: 10.1016/0304-4165(75)90067-7. [DOI] [PubMed] [Google Scholar]
- Buonassisi V. Sulfated mucopolysaccharide synthesis and secretion in endothelial cell cultures. Exp Cell Res. 1973 Feb;76(2):363–368. doi: 10.1016/0014-4827(73)90388-1. [DOI] [PubMed] [Google Scholar]
- COX C. E., HINMAN F., Jr Experiments with induced bacteriuria, vesical emptying and bacterial growth on the mechanism of bladder defense to infection. J Urol. 1961 Dec;86:739–748. doi: 10.1016/S0022-5347(17)65257-1. [DOI] [PubMed] [Google Scholar]
- Cobbs C. G., Kaye D. Antibacterial mechanisms in the urinary bladder. Yale J Biol Med. 1967 Oct;40(2):93–108. [PMC free article] [PubMed] [Google Scholar]
- Eden C. S., Eriksson B., Hanson L. A. Adhesion of Escherichia coli to human uroepithelial cells in vitro. Infect Immun. 1977 Dec;18(3):767–774. doi: 10.1128/iai.18.3.767-774.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellen R. P., Gibbons R. J. M protein-associated adherence of Streptococcus pyogenes to epithelial surfaces: prerequisite for virulence. Infect Immun. 1972 May;5(5):826–830. doi: 10.1128/iai.5.5.826-830.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons R. J., van Houte J. Selective bacterial adherence to oral epithelial surfaces and its role as an ecological determinant. Infect Immun. 1971 Apr;3(4):567–573. doi: 10.1128/iai.3.4.567-573.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanno P. M., Parsons C. L., Shrom S. H., Fritz R., Mulholland S. G. The protective effect of heparin in experimental bladder infection. J Surg Res. 1978 Oct;25(4):324–329. doi: 10.1016/0022-4804(78)90126-9. [DOI] [PubMed] [Google Scholar]
- Mulholland S. G., Foster E. A., Paquin A. J., Jr, Gillenwater J. Y. The effect of rabbit vesical mucosa on bacterial growth. Invest Urol. 1969 May;6(6):593–604. [PubMed] [Google Scholar]
- Norden C. W., Green G. M., Kass E. H. Antibacterial mechanisms of the urinary bladder. J Clin Invest. 1968 Dec;47(12):2689–2700. doi: 10.1172/JCI105952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsons C. L., Greenspan C., Moore S. W., Mulholland S. G. Role of surface mucin in primary antibacterial defense of bladder. Urology. 1977 Jan;9(1):48–52. doi: 10.1016/0090-4295(77)90284-9. [DOI] [PubMed] [Google Scholar]
- Parsons C. L., Greenspan C., Mulholland S. G. The primary antibacterial defense mechanism of the bladder. Invest Urol. 1975 Jul;13(1):72–78. [PubMed] [Google Scholar]
- Parsons C. L., Mulholland S. G. Bladder surface mucin. Its antibacterial effect against various bacterial species. Am J Pathol. 1978 Nov;93(2):423–432. [PMC free article] [PubMed] [Google Scholar]
- Parsons C. L., Shrom S. H., Hanno P. M., Mulholland S. G. Bladder surface mucin. Examination of possible mechanisms for its antibacterial effect. Invest Urol. 1978 Nov;16(3):196–200. [PubMed] [Google Scholar]
- Punsalang A. P., Jr, Sawyer W. D. Role of pili in the virulence of Neisseria gonorrhoeae. Infect Immun. 1973 Aug;8(2):255–263. doi: 10.1128/iai.8.2.255-263.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shrom S. H., Parsons C. L., Alavi A., Mulholland S. G. Vesical defense: assessment of adsorption potential with live, dead, and metabolically inhibited Escherichia coli and 99mTC-labeled sulfur colloid particles. Surg Forum. 1977;28:565–567. [PubMed] [Google Scholar]
- Shrom S. H., Parsons C. L., Mulholland S. G. Role of urothelial surface mucoprotein in intrinsic bladder defense. Urology. 1977 May;9(5):526–533. doi: 10.1016/0090-4295(77)90245-x. [DOI] [PubMed] [Google Scholar]
- Sobeslavsky O., Prescott B., Chanock R. M. Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J Bacteriol. 1968 Sep;96(3):695–705. doi: 10.1128/jb.96.3.695-705.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson J., King G., Zeligs B. Studies on gonococcus infection. VIII. 125Iodine labeling of gonococci and studies on their in vitro interactions with eukaryotic cells. Infect Immun. 1975 Mar;11(3):453–459. doi: 10.1128/iai.11.3.453-459.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson J. Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J Exp Med. 1973 Mar 1;137(3):571–589. doi: 10.1084/jem.137.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward M. E., Watt P. J. Adherence of Neisseria gonorrhoeae to urethral mucosal cells: an electron-microscopic study of human gonorrhea. J Infect Dis. 1972 Dec;126(6):601–605. doi: 10.1093/infdis/126.6.601. [DOI] [PubMed] [Google Scholar]
- Ward M. E., Watt P. J., Robertson J. N. The human fallopian tube: a laboratory model for gonococcal infection. J Infect Dis. 1974 Jun;129(6):650–659. doi: 10.1093/infdis/129.6.650. [DOI] [PubMed] [Google Scholar]

