Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1979 Aug;25(2):664–671. doi: 10.1128/iai.25.2.664-671.1979

Action of bacterial endotoxin and lipid A on mitochondrial enzyme activities of cells in culture and subcellular fractions.

A McGivney, S G Bradley
PMCID: PMC414496  PMID: 114491

Abstract

Escherichia coli O127:B8 lipopolysaccharide (LPS), prepared by the Westphal procedure, caused a marked decrease in the activities of mitochondrial malate dehydrogenase, succinate dehydrogenase, and adenylate kinase in African green monkey kidney (Vero) cells and primary cultures of mouse liver cells within 2 h after exposure to 10 micrograms of LPS/ml of culture medium. These three enzyme activities leaked into the supernatant fraction, and cytochrome oxidase activity was lost from the mouse liver mitochondrial particulate fraction within 45 min after exposure to 10 micrograms of LPS/mg of protein. Loss malate dehydrogenase activity from isolated mitochondria was also accelerated by LPS from E. coli O26:B6 (Boivin preparation) or Salmonella typhosa O901 (Westphal preparation), and by lipid A from Salmonella minnesota or Shigella sonnei. In addition, LPS and lipid A inhibited state 3 respiration by isolated mitochondria with attendant loss of respiratory control, but adenosine 5'-diphosphate/O ratios were relatively unchanged. Impaired mitochondrial function is an early event after exposure to biologically relevant amounts of LPS or lipid A.

Full text

PDF
664

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry L. J. Bacterial toxins. CRC Crit Rev Toxicol. 1977 Nov;5(3):239–318. doi: 10.3109/10408447709082601. [DOI] [PubMed] [Google Scholar]
  2. Berry L. J., Smythe D. S., Colwell L. S. Inhibition of inducible liver enzymes by endotoxin and actinomycin D. J Bacteriol. 1966 Jul;92(1):107–115. doi: 10.1128/jb.92.1.107-115.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradley S. G., Adams A. C., Smith M. C. Potentiation of the toxicity of mithramycin by bacterial lipopolysaccharide. Antimicrob Agents Chemother. 1975 Mar;7(3):322–327. doi: 10.1128/aac.7.3.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHANCE B., HESS B. Metabolic control mechanisms. I. Electron transfer in the mammalian cell. J Biol Chem. 1959 Sep;234:2404–2412. [PubMed] [Google Scholar]
  5. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DePalma R. G., Harano Y., Robinson A. V., Holden W. D. Structure and function of hepatic mitochondria in hemorrhage and endotoxemia. Surg Forum. 1970;21:3–6. [PubMed] [Google Scholar]
  7. FONNESU A., SEVERI C. Oxidative phosphorylation in mitochondria from livers showing cloudy swelling. J Biophys Biochem Cytol. 1956 May 25;2(3):293–300. doi: 10.1083/jcb.2.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greer G. G., Epps N. A., Vail W. J. Interaction of lipopolysaccharides with mitochondria. II. Effects of magnesium ions on toxicity of a rough lipopolysaccharide. J Infect Dis. 1973 Dec;128(6):724–729. doi: 10.1093/infdis/128.6.724. [DOI] [PubMed] [Google Scholar]
  9. Greer G. G., Milazzo F. H. Pseudomonas aeruginosa lipopolysaccharide: an uncoupler of mitochondrial oxidative phosphorylation. Can J Microbiol. 1975 Jun;21(6):877–883. doi: 10.1139/m75-130. [DOI] [PubMed] [Google Scholar]
  10. Harris R. A., Harris D. L., Green D. E. Effect of Bordetella endotoxin upon mitochondrial respiration and energized processes. Arch Biochem Biophys. 1968 Oct;128(1):219–230. doi: 10.1016/0003-9861(68)90025-8. [DOI] [PubMed] [Google Scholar]
  11. Higgins E. S., Seibel H., Friend W., Rogers K. S. Heterogeneity of renal mitochondria of the rat. Proc Soc Exp Biol Med. 1978 Sep;158(4):595–598. doi: 10.3181/00379727-158-40254. [DOI] [PubMed] [Google Scholar]
  12. Kato M. Site of action of lipid A on mitochondria. J Bacteriol. 1972 Oct;112(1):268–275. doi: 10.1128/jb.112.1.268-275.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MAGER J., THEODOR E. Inhibition of mitochondrial respiration and uncoupling of oxidative phosphorylation by fractions of the Shigella paradysenteriae type III-somatic antigen. Arch Biochem Biophys. 1957 Mar;67(1):169–177. doi: 10.1016/0003-9861(57)90256-4. [DOI] [PubMed] [Google Scholar]
  15. Marecki N. M., Bradley S. G., Munson A. E., Drummond D. C. Effect of bacterial lipopolysaccharide, lipid A, and concanavalin A on lethality of 5-fluorouracil for mice. Toxicol Appl Pharmacol. 1975 Jan;31(1):83–89. doi: 10.1016/0041-008x(75)90054-x. [DOI] [PubMed] [Google Scholar]
  16. Mela L., Bacalzo L. V., Jr, Miller L. D. Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol. 1971 Feb;220(2):571–577. doi: 10.1152/ajplegacy.1971.220.2.571. [DOI] [PubMed] [Google Scholar]
  17. Moss G. S., Erve P. P., Schumer W. Effect of endotoxin on mitochondrial respiration. Surg Forum. 1969;20:24–25. [PubMed] [Google Scholar]
  18. SIEGEL A., BING R. J. Plasma enzyme activity in myocardial infarction in dog and man. Proc Soc Exp Biol Med. 1956 Apr;91(4):604–607. doi: 10.3181/00379727-91-22344. [DOI] [PubMed] [Google Scholar]
  19. SLATER E. C., BORNER W. D., Jr The effect of fluoride on the succinic oxidase system. Biochem J. 1952 Oct;52(2):185–196. doi: 10.1042/bj0520185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SMITH L. Spectrophotometric assay of cytochrome c oxidase. Methods Biochem Anal. 1955;2:427–434. doi: 10.1002/9780470110188.ch13. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES