Abstract
Axial filaments were isolated and purified from Reiter treponemes after detergent solubilization of the cells" outer envelope. The axial filaments were separated from the spirochetal cells by shearing, purified by density gradient centrifugation, and fragmented by ultrasonication. Acrylamide gel electrophoresis of dissociated filaments revealed two major protein bands. Gel diffusion precipitin tests and immunoelectrophoresis between a purified axial filament suspension and anti-Reiter treponeme serum gave a single precipitin line. Checkerboard complement fixation tests also gave results consistent with a single antigen-antibody system. Tests with immune sera to other cultivable spirochetes were positive with some and negative with others. In addition, strongly positive reactions were obtained in complement fixation and precipitin tests with sera from rabbits and humans with syphilis and other treponematoses. However, both serological tests gave reactions of partial identity between the antigen(s) of Reiter treponeme axial filaments and those of the pathogenic treponemes. It was concluded from these studies that the axial filaments were probably the cellular locus of the so-called "Reiter protein" antigen of syphilis serology.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADA G. L., NOSSAL G. J., PYE J., ABBOT A. ANTIGENS IN IMMUNITY. I. PREPARATION AND PROPERTIES OF FLAGELLAR ANTIGENS FROM SALMONELLA ADELAIDE. Aust J Exp Biol Med Sci. 1964 Jun;42:267–282. [PubMed] [Google Scholar]
- Abramson I. J., Smibert R. M. Inhibition of growth of treponemes by antimicrobial agents. Br J Vener Dis. 1971 Dec;47(6):407–412. doi: 10.1136/sti.47.6.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bharier M. A., Eiserling F. A., Rittenberg S. C. Eletron microscopic observations on the structure of Treponema zuelzerae and its axial filaments. J Bacteriol. 1971 Jan;105(1):413–421. doi: 10.1128/jb.105.1.413-421.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bharier M. A., Rittenberg S. C. Chemistry of axial filaments of Treponema zuezerae. J Bacteriol. 1971 Jan;105(1):422–429. doi: 10.1128/jb.105.1.422-429.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CANNEFAX G. R. Reiter protein antigen. I. Relationship of some physical and chemical characteristics to serological activity. Br J Vener Dis. 1963 Jun;39:121–127. doi: 10.1136/sti.39.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy P. H., Jr, Nell E. E. A study of the properties of sorbent, the reagent employed in the fluorescent treponemal antibody-absorption test. Am J Epidemiol. 1972 Aug;96(2):141–152. doi: 10.1093/oxfordjournals.aje.a121440. [DOI] [PubMed] [Google Scholar]
- Hougen K. H., Birch-Andersen A. Electron microscopy of endoflagella and microtubules in Treponema reiter. Acta Pathol Microbiol Scand B Microbiol Immunol. 1971;79(1):37–50. doi: 10.1111/j.1699-0463.1971.tb00031.x. [DOI] [PubMed] [Google Scholar]
- Hougen K. H. Further observations on the ultrastructure of Treponema pallidum nichols. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(2):297–304. doi: 10.1111/j.1699-0463.1972.tb00163.x. [DOI] [PubMed] [Google Scholar]
- Hougen K. H. The ultrastructure of cultivable treponemes. 1. Treponema phagedenis, Treponema vincentii and Treponema refringens. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Jun;82(3):329–344. [PubMed] [Google Scholar]
- Hougen K. H. The ultrastructure of cultivable treponemes. 2. Treponema calligyrum, Treponema minutum and Treponema microdentium. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Aug;82(4):495–507. [PubMed] [Google Scholar]
- Jackson S., Black S. H. Ultrastructure of Treponema pallidum Nichols following lysis by physical and chemical methods. II. Axial filaments. Arch Mikrobiol. 1971;76(4):325–340. doi: 10.1007/BF00408529. [DOI] [PubMed] [Google Scholar]
- Johnson R. C., Wachter M. S., Ritzi D. M. Treponeme outer cell envelope: solubilization and reaggregation. Infect Immun. 1973 Feb;7(2):249–258. doi: 10.1128/iai.7.2.249-258.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph R., Canale-Parola E. Axial fibrils of anaerobic spirochetes: ultrastructure and chemical characteristics. Arch Mikrobiol. 1972;81(2):146–168. doi: 10.1007/BF00412325. [DOI] [PubMed] [Google Scholar]
- Joys T. M. The structure of flagella and the genetic control of flagellation in Eubacteriales. A review. Antonie Van Leeuwenhoek. 1968;34(2):205–225. doi: 10.1007/BF02046432. [DOI] [PubMed] [Google Scholar]
- MOUREAU M. Recherches biochimiques sur les tréponèmes anaérobies. I. T. comandoni, T. phagedenis, T. refringens et T. ambigua. Ann Inst Pasteur (Paris) 1955 Feb;88(2):231–233. [PubMed] [Google Scholar]
- Martinez R. J., Brown D. M., Glazer A. N. The formation of bacterial flagella. 3. Characterization of the subunits of the flagella of Bacillus subtilis and Spirillum serpens. J Mol Biol. 1967 Aug 28;28(1):45–51. doi: 10.1016/s0022-2836(67)80076-7. [DOI] [PubMed] [Google Scholar]
- Nauman R. K., Holt S. C., Cox C. D. Purification, ultrastructure, and composition of axial filaments from Leptospira. J Bacteriol. 1969 Apr;98(1):264–280. doi: 10.1128/jb.98.1.264-280.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nell E. E., Hardy P. H. Studies on the chemical composition and immunologic properties of a polysaccharide from the Reiter treponeme. Immunochemistry. 1966 May;3(3):233–245. doi: 10.1016/0019-2791(66)90187-x. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]




