Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1975 Apr;11(4):640–648. doi: 10.1128/iai.11.4.640-648.1975

Determination of toxin-induced leakage of different-size nucleotides through the plasma membrane of human diploid fibroblasts.

M Thelestam, R Möllby
PMCID: PMC415116  PMID: 164404

Abstract

Human diploid lung fibroblasts were treated with cytolytic bacterial toxins and the nature of the membrane damage was investigated. [3H] uridine was used for differential labeling of cytoplasmic components of small or large molecular size. Two principal size categories were achieved by labeling the fibroblasts in either early growth phase or stationary phase, a high-molecular weight ribonucleic acid label and a low-molecular-weight nucleotide label. The size of the labeled molecules was determined by perchloric acid precipitation and gel chromatography. Leakage of labeled molecules of different size indicated the size of the "functional pores" in the plasma membrane caused by the test substance. The nonionic detergent Triton X-100 produced large functional pores in the fibroblast membrane as evidenced by rapid leakage of both large and small labeled molecules. Theta-toxin from Clostridium perfringens and the polyene antibiotic filipin both gave rise to considerably small functional pores in the plasma membrane. Although small molecules easily passed the treated membrane, large molecules could not escape from the cells even after prolonged treatment with these substances or by increasing their concentration. By the contrast, the leakage profiles obtained with melittin from bee venom or with delta-toxin from Staphylococcus aureus in each case suggested the formation initially of pores of intermediate size that increased upon prolonged incubation or when higher concentrations were used.

Full text

PDF
640

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUNTING W. L., KIELY J. M., OWEN C. A., Jr Radiochromiumlabeled lymphocytes in the rat. Proc Soc Exp Biol Med. 1963 Jun;113:370–374. [PubMed] [Google Scholar]
  2. Darnell J. E., Jr Ribonucleic acids from animal cells. Bacteriol Rev. 1968 Sep;32(3):262–290. doi: 10.1128/br.32.3.262-290.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Duncan J. L. Characteristics of streptolysin O hemolysis: kinetics of hemoglobin and 86rubidium release. Infect Immun. 1974 Jun;9(6):1022–1027. doi: 10.1128/iai.9.6.1022-1027.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  5. GOLDBERG B., GREEN H. Immune cytolysis. 1. The release of ribonucleoprotein particles. 2. Membrane-bounded structures arising during cell fragmentation. J Biophys Biochem Cytol. 1960 Jul;7:645–650. doi: 10.1083/jcb.7.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOODMAN H. S. A general method for the quantitation of immune cyotysis. Nature. 1961 Apr 15;190:269–270. doi: 10.1038/190269a0. [DOI] [PubMed] [Google Scholar]
  7. GREEN H., FLEISCHER R. A., BARROW P., GOLDBERG B. The cytotoxic action of immune gamma globulin and complement on Krebs ascites tumor cells. II. Chemical studies. J Exp Med. 1959 May 1;109(5):511–521. doi: 10.1084/jem.109.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gale E. F. The release of potassium ions from Candida albicans in the presence of polyene antibiotics. J Gen Microbiol. 1974 Feb;80(2):451–465. doi: 10.1099/00221287-80-2-451. [DOI] [PubMed] [Google Scholar]
  9. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  10. Habermann E., Jentsch J. Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):37–50. [PubMed] [Google Scholar]
  11. Hegner D., Schummer U., Schnepel G. H. The interaction of a lytic peptide, melittin, with spin-labeled membranes. Biochim Biophys Acta. 1973 Jan 2;291(1):15–22. doi: 10.1016/0005-2736(73)90056-4. [DOI] [PubMed] [Google Scholar]
  12. Humphrey J. H., Dourmashkin R. R. The lesions in cell membranes caused by complement. Adv Immunol. 1969;11:75–115. doi: 10.1016/s0065-2776(08)60478-2. [DOI] [PubMed] [Google Scholar]
  13. Iles G. H., Seeman P., Naylor D., Cinader B. Membrane lesions in immune lysis: surface rings, globule aggregates and transient openings. J Cell Biol. 1973 Feb;56(2):528–539. doi: 10.1083/jcb.56.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kantor H. S., Temples B., Shaw W. V. Staphylococcal delta hemolysin: purification and characterization. Arch Biochem Biophys. 1972 Jul;151(1):142–156. doi: 10.1016/0003-9861(72)90483-3. [DOI] [PubMed] [Google Scholar]
  15. Kinsky S. C. Antibiotic interaction with model membranes. Annu Rev Pharmacol. 1970;10:119–142. doi: 10.1146/annurev.pa.10.040170.001003. [DOI] [PubMed] [Google Scholar]
  16. Kreger A. S., Kim K. S., Zaboretzky F., Bernheimer A. W. Purification and properties of staphylococcal delta hemolysin. Infect Immun. 1971 Mar;3(3):449–465. doi: 10.1128/iai.3.3.449-465.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Litwin J. Standardization of human diploid cell cultivation. Appl Microbiol. 1970 Dec;20(6):899–906. doi: 10.1128/am.20.6.899-906.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Litwin J., Thelestam M. The lysis of human diploid fibroblasts with borate buffer. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(1):115–116. doi: 10.1111/j.1699-0463.1972.tb00136.x. [DOI] [PubMed] [Google Scholar]
  19. Martz E., Burakoff S. J., Benacerraf B. Interruption of the sequential release of small and large molecules from tumor cells by low temperature during cytolysis mediated by immune T-cells or complement. Proc Natl Acad Sci U S A. 1974 Jan;71(1):177–181. doi: 10.1073/pnas.71.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Möllby R., Nord C. E., Wadström T. Biological activities contaminating preparations of phospholipase C ( -toxin) from Clostridium perfringens. Toxicon. 1973 Feb;11(2):139–147. doi: 10.1016/0041-0101(73)90075-5. [DOI] [PubMed] [Google Scholar]
  21. Möllby R., Thelestam M., Wadström T. Effect of Clostridium perfringens phospholipase C(alpha-toxin) on the human diploid fibroblast membrane. J Membr Biol. 1974;16(4):313–330. doi: 10.1007/BF01872421. [DOI] [PubMed] [Google Scholar]
  22. Möllby R., Wadström T. Purification of phospholipase C (alpha-toxin) from Clostridium perfringens. Biochim Biophys Acta. 1973 Oct 10;321(2):569–584. doi: 10.1016/0005-2744(73)90200-3. [DOI] [PubMed] [Google Scholar]
  23. Norman A. W., Demel R. A., de Kruyff B., Geurts van Kessel W. S., van Deenen L. L. Studies on the biological properties of polyene antibiotics: comparison of other polyenes with filipin in their ability to interact specifically with sterol. Biochim Biophys Acta. 1972 Dec 1;290(1):1–14. doi: 10.1016/0005-2736(72)90046-6. [DOI] [PubMed] [Google Scholar]
  24. Norman A. W., Demel R. A., de Kruyff B., van Deenen L. L. Studies on the biological properties of polyene antibiotics. Evidence for the direct interaction of filipin with cholesterol. J Biol Chem. 1972 Mar 25;247(6):1918–1929. [PubMed] [Google Scholar]
  25. Perlmann P., Holm G. Cytotoxic effects of lymphoid cells in vitro. Adv Immunol. 1969;11:117–193. doi: 10.1016/s0065-2776(08)60479-4. [DOI] [PubMed] [Google Scholar]
  26. RAKE A. V., GRAHAM A. F. KINETICS OF INCORPORATION OF URIDINE-C14 INTO L CELL RNA. Biophys J. 1964 Jul;4:267–284. doi: 10.1016/s0006-3495(64)86782-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sessa G., Freer J. H., Colacicco G., Weissmann G. Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem. 1969 Jul 10;244(13):3575–3582. [PubMed] [Google Scholar]
  28. Shany S., Bernheimer A. W., Grushoff P. S., Kim K. S. Evidence for membrane cholesterol as the common binding site for cereolysin, streptolysin O and saponin. Mol Cell Biochem. 1974 May 30;3(3):179–186. doi: 10.1007/BF01686643. [DOI] [PubMed] [Google Scholar]
  29. Simons K., Helenius A., Garoff H. Solubilization of the membrane proteins from Semliki Forest virus with Triton X100. J Mol Biol. 1973 Oct 15;80(1):119–133. doi: 10.1016/0022-2836(73)90236-2. [DOI] [PubMed] [Google Scholar]
  30. Strandberg K., Möllby R., Wadström T. Histamine release from mast cells by highly purified phospholipase C (alpha-toxin) and theta-toxin from Clostridium perfringens. Toxicon. 1974 Mar;12(2):199–208. doi: 10.1016/0041-0101(74)90246-3. [DOI] [PubMed] [Google Scholar]
  31. Thelestam M., Möllby R., Wadström T. Effects of staphylococcal alpha-, beta-, delta-, and gamma-hemolysins on human diploid fibroblasts and HeLa cells: evaluation of a new quantitative as say for measuring cell damage. Infect Immun. 1973 Dec;8(6):938–946. doi: 10.1128/iai.8.6.938-946.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tillack T. W., Kinsky S. C. A freeze-etch study of the effects of filipin on liposomes and human erythrocyte membranes. Biochim Biophys Acta. 1973 Sep 27;323(1):43–54. doi: 10.1016/0005-2736(73)90430-6. [DOI] [PubMed] [Google Scholar]
  33. Verkleij A. J., de Kruijff B., Gerritsen W. F., Demel R. A., van Deenen L. L., Ververgaert P. H. Freeze-etch electron microscopy of erythrocytes, Acholeplasma laidlawii cells and liposomal membranes after the action of filipin and amphotericin B. Biochim Biophys Acta. 1973 Jan 26;291(2):577–581. doi: 10.1016/0005-2736(73)90509-9. [DOI] [PubMed] [Google Scholar]
  34. WIGZELL H. QUANTITATIVE TITRATIONS OF MOUSE H-2 ANTIBODIES USING CR-51-LABELLED TARGET CELLS. Transplantation. 1965 May;3:423–431. doi: 10.1097/00007890-196505000-00011. [DOI] [PubMed] [Google Scholar]
  35. Weber M. J., Rubin H. Uridine transport and RNA synthesis in growing and in density-inhibited animal cells. J Cell Physiol. 1971 Apr;77(2):157–168. doi: 10.1002/jcp.1040770205. [DOI] [PubMed] [Google Scholar]
  36. Williams J. C., Bell R. M. Membrane matrix disruption by melittin. Biochim Biophys Acta. 1972 Nov 2;288(2):255–262. doi: 10.1016/0005-2736(72)90246-5. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES