Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1975 Aug;12(2):252–256. doi: 10.1128/iai.12.2.252-256.1975

Ascorbate and phagocyte function.

L Stankova, N B Gerhardt, L Nagel, R H Bigley
PMCID: PMC415276  PMID: 1150324

Abstract

Scorbutic guinea pig neutrophils (PMN) were found to produce H2O2 and kill Staphylococcus aureus as well as control PMN, suggesting that ascorbate does not contribute significantly to phagocyte H2O2 production or bacterial killing. Total and reduced ascorbate contents of human PMN was observed to fall upon phagocytosis, whereas dehydroascorbate increased to a lesser extent. These observations are consistent with the view that ascorbate constitutes a functional part of the PMN's redox-active components and may thus function to protect cell constituents from denaturation by the oxidants produced during phagocytosis.

Full text

PDF
252

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AEBI H. E. Detection and fixation of radiation-produced peroxide by enzymes. Radiat Res. 1963;Suppl 3:130–152. [PubMed] [Google Scholar]
  2. Allen R. C., Stjernholm R. L., Steele R. H. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun. 1972 May 26;47(4):679–684. doi: 10.1016/0006-291x(72)90545-1. [DOI] [PubMed] [Google Scholar]
  3. Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baehner R. L., Gilman N., Karnovsky M. L. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J Clin Invest. 1970 Apr;49(4):692–700. doi: 10.1172/JCI106281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bigley R. H., Stankova L. Uptake and reduction of oxidized and reduced ascorbate by human leukocytes. J Exp Med. 1974 May 1;139(5):1084–1092. doi: 10.1084/jem.139.5.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curnutte J. T., Whitten D. M., Babior B. M. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N Engl J Med. 1974 Mar 14;290(11):593–597. doi: 10.1056/NEJM197403142901104. [DOI] [PubMed] [Google Scholar]
  7. Davidson W. D., Tanaka K. R. Continuous measurement of pentose phosphate pathway activity in erythrocytes. An ionization chamber method. J Lab Clin Med. 1969 Jan;73(1):173–180. [PubMed] [Google Scholar]
  8. Demopoulos H. B. Control of free radicals in biologic systems. Fed Proc. 1973 Aug;32(8):1903–1908. [PubMed] [Google Scholar]
  9. Di Luzio N. R. Antioxidants, lipid peroxidation and chemical-induced liver injury. Fed Proc. 1973 Aug;32(8):1875–1881. [PubMed] [Google Scholar]
  10. Drath D. B., Karnovsky M. L. Bactericidal activity of metal-mediated peroxide-ascorbate systems. Infect Immun. 1974 Nov;10(5):1077–1083. doi: 10.1128/iai.10.5.1077-1083.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HARDIN B., VALENTINE W. N., FOLLETTE J. H., LAWRENCE J. S. Studies on the sulfhydryl content of hyman leukocytes and erythrocytes. Am J Med Sci. 1954 Jul;228(1):73–82. doi: 10.1097/00000441-195407000-00009. [DOI] [PubMed] [Google Scholar]
  12. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Homan-Müller J. W., Weening R. S., Roos D. Production of hydrogen peroxide by phagocytizing human granulocytes. J Lab Clin Med. 1975 Feb;85(2):198–207. [PubMed] [Google Scholar]
  14. Klebanoff S. J., Hamon C. B. Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc. 1972 Aug;12(2):170–196. [PubMed] [Google Scholar]
  15. Little C., O'Brien P. J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun. 1968 Apr 19;31(2):145–150. doi: 10.1016/0006-291x(68)90721-3. [DOI] [PubMed] [Google Scholar]
  16. Mason R. J., Stossel T. P., Vaughan M. Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles. J Clin Invest. 1972 Sep;51(9):2399–2407. doi: 10.1172/JCI107052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller T. E. Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid, and lysozyme. J Bacteriol. 1969 Jun;98(3):949–955. doi: 10.1128/jb.98.3.949-955.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pincus S. H., Klebanoff S. J. Quantitative leukocyte iodination. N Engl J Med. 1971 Apr 8;284(14):744–750. doi: 10.1056/NEJM197104082841402. [DOI] [PubMed] [Google Scholar]
  19. Rosner F., Valmont I., Kozinn P. J., Caroline L. Leukocyte function in patients with leukemia. Cancer. 1970 Apr;25(4):835–842. doi: 10.1002/1097-0142(197004)25:4<835::aid-cncr2820250412>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  20. SILBER R., GABRIO B. W., HUENNEKENS F. M. Studies on normal and leukemic leukocytes. III. Pyridine nucleotides. J Clin Invest. 1962 Feb;41:230–234. doi: 10.1172/JCI104474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stossel T. P., Root R. K., Vaughan M. Phagocytosis in chronic granulomatous disease and the Chediak-Higashi syndrome. N Engl J Med. 1972 Jan 20;286(3):120–123. doi: 10.1056/NEJM197201202860302. [DOI] [PubMed] [Google Scholar]
  22. Tappel A. L. Lipid peroxidation damage to cell components. Fed Proc. 1973 Aug;32(8):1870–1874. [PubMed] [Google Scholar]
  23. Zatti M., Rossi F. Early changes of hexose monophosphate pathway activity and of NADPH oxidation in phagocytizing leucocytes. Biochim Biophys Acta. 1965 Jun 22;99(3):557–561. doi: 10.1016/s0926-6593(65)80213-2. [DOI] [PubMed] [Google Scholar]
  24. Zatti M., Rossi F., Patriarca P. The H2O2-production by polymorphonuclear leukocytes during phagocytosis. Experientia. 1968 Jul 15;24(7):669–670. doi: 10.1007/BF02138302. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES