Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1976 Dec;14(6):1302–1308. doi: 10.1128/iai.14.6.1302-1308.1976

Alkaline-extracted influenza subunit vaccine.

E A Eckert
PMCID: PMC415532  PMID: 826484

Abstract

Treatment of influenza virus concentrates with alkaline solvents releases a major fraction of the viral structural protein content. As determined by polyacrylamide gel electrophoresis, the surface glycoprotein substructures, hemagglutinin and neuraminidase, are the primary solubilized products. Two forms of hemagglutinin antigen are recovered, a 39S active hemagglutinin and a 23S blocking antigen. Dose-response assays in mice demonstrate that hemagglutination-inhibiting and neuraminidase antibodies are induced. Antibody responses are comparable to those resulting from immunization with inactivated whole virus. On the basis of demonstrated purity, high yields of protective antigens, immunogenic potency, and absence of deleterious reagents, alkaline-extracted influenza protein preparations merit consideration as subunit vaccines for human use.

Full text

PDF
1302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMINOFF D. Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J. 1961 Nov;81:384–392. doi: 10.1042/bj0810384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  3. Brand C. M., Skehel J. J. Crystalline antigen from the influenza virus envelope. Nat New Biol. 1972 Aug 2;238(83):145–147. doi: 10.1038/newbio238145a0. [DOI] [PubMed] [Google Scholar]
  4. Eckert E. A. Properties of an antigenic glycoprotein isolated from influenza virus hemagglutinin. J Virol. 1973 Feb;11(2):183–192. doi: 10.1128/jvi.11.2.183-192.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GORIN G., FUCHS E., BUTLER L. G., CHOPRA S. L., HERSH R. T. Some properties of urease. Biochemistry. 1962 Sep;1:911–916. doi: 10.1021/bi00911a026. [DOI] [PubMed] [Google Scholar]
  6. Kendal A. P., Eckert E. A. The preparation and properties of 14 C-carboxamidomethylated subunits from A 2 -1957 influenza neuraminidase. Biochim Biophys Acta. 1972 Feb 28;258(2):484–495. doi: 10.1016/0005-2744(72)90240-9. [DOI] [PubMed] [Google Scholar]
  7. Kendal A. P., Minuse E., Davenport F. M. An imporved procedure for measuring neuraminidase antibodies by hemagglutination-inhibition. Z Naturforsch B. 1972 Mar;27(3):241–245. doi: 10.1515/znb-1972-0305. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Reynolds J. A. Red cell membranes: fact and fancy. Fed Proc. 1973 Oct;32(10):2034–2038. [PubMed] [Google Scholar]
  10. Reynolds J. A., Trayer H. Solubility of membrane proteins in aqueous media. J Biol Chem. 1971 Dec 10;246(23):7337–7342. [PubMed] [Google Scholar]
  11. Webster R. G., Darlington R. W. Disruption of myxoviruses with Tween 20 and isolation of biologically active hemagglutinin and neuraminidase subunits. J Virol. 1969 Aug;4(2):182–187. doi: 10.1128/jvi.4.2.182-187.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES