Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jul 3;92(14):6607–6611. doi: 10.1073/pnas.92.14.6607

Identification of human brain regions underlying responses to resistive inspiratory loading with functional magnetic resonance imaging.

D Gozal 1, O Omidvar 1, K A Kirlew 1, G M Hathout 1, R Hamilton 1, R B Lufkin 1, R M Harper 1
PMCID: PMC41567  PMID: 7604040

Abstract

Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena.

Full text

PDF
6607

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. M., Hickie I., Gandevia S. C., McKenzie D. K. Impaired voluntary drive to breathe: a possible link between depression and unexplained ventilatory failure in asthmatic patients. Thorax. 1994 Sep;49(9):881–884. doi: 10.1136/thx.49.9.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen G. M., McKenzie D. K., Gandevia S. C., Bass S. Reduced voluntary drive to breathe in asthmatic subjects. Respir Physiol. 1993 Jul;93(1):29–40. doi: 10.1016/0034-5687(93)90065-i. [DOI] [PubMed] [Google Scholar]
  3. Altose M. D., Kelsen S. G., Cherniack N. S. Respiratory responses to changes in airflow resistance in conscious man. Respir Physiol. 1979 Feb;36(2):249–260. doi: 10.1016/0034-5687(79)90028-8. [DOI] [PubMed] [Google Scholar]
  4. Axen K., Haas S. S. Range of first-breath ventilatory responses to added mechanical loads in naive men. J Appl Physiol Respir Environ Exerc Physiol. 1979 Apr;46(4):743–751. doi: 10.1152/jappl.1979.46.4.743. [DOI] [PubMed] [Google Scholar]
  5. Beal M. F., Richardson E. P., Jr, Brandstetter R., Hedley-Whyte E. T., Hochberg F. H. Localized brainstem ischemic damage and Ondine's curse after near-drowning. Neurology. 1983 Jun;33(6):717–721. doi: 10.1212/wnl.33.6.717. [DOI] [PubMed] [Google Scholar]
  6. Cohen M. I., Feldman J. L. Discharge properties of dorsal medullary inspiratory neurons: relation to pulmonary afferent and phrenic efferent discharge. J Neurophysiol. 1984 Apr;51(4):753–776. doi: 10.1152/jn.1984.51.4.753. [DOI] [PubMed] [Google Scholar]
  7. Connelly A., Jackson G. D., Frackowiak R. S., Belliveau J. W., Vargha-Khadem F., Gadian D. G. Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology. 1993 Jul;188(1):125–130. doi: 10.1148/radiology.188.1.8511285. [DOI] [PubMed] [Google Scholar]
  8. Daubenspeck J. A., Bennett F. M. Immediate human breathing pattern responses to loads near the perceptual threshold. J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1160–1166. doi: 10.1152/jappl.1983.55.4.1160. [DOI] [PubMed] [Google Scholar]
  9. DeYoe E. A., Bandettini P., Neitz J., Miller D., Winans P. Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods. 1994 Oct;54(2):171–187. doi: 10.1016/0165-0270(94)90191-0. [DOI] [PubMed] [Google Scholar]
  10. Fewell J. E., Kondo C. S., Dascalu V., Filyk S. C. Influence of carotid denervation on the arousal and cardiopulmonary response to rapidly developing hypoxemia in lambs. Pediatr Res. 1989 May;25(5):473–477. doi: 10.1203/00006450-198905000-00009. [DOI] [PubMed] [Google Scholar]
  11. Fox P. T., Mintun M. A., Raichle M. E., Miezin F. M., Allman J. M., Van Essen D. C. Mapping human visual cortex with positron emission tomography. 1986 Oct 30-Nov 5Nature. 323(6091):806–809. doi: 10.1038/323806a0. [DOI] [PubMed] [Google Scholar]
  12. Fox P. T., Raichle M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140–1144. doi: 10.1073/pnas.83.4.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fox P. T., Raichle M. E., Mintun M. A., Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988 Jul 22;241(4864):462–464. doi: 10.1126/science.3260686. [DOI] [PubMed] [Google Scholar]
  14. Frahm J., Bruhn H., Merboldt K. D., Hänicke W. Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging. 1992 Sep-Oct;2(5):501–505. doi: 10.1002/jmri.1880020505. [DOI] [PubMed] [Google Scholar]
  15. Fried I., Gozal D., Kirlew K. A., Hathout G. M., Tang H., Zhang J., Harper R. M. Dynamic magnetic resonance imaging of human Rolandic cortex. Neuroreport. 1994 Aug 15;5(13):1593–1596. doi: 10.1097/00001756-199408150-00013. [DOI] [PubMed] [Google Scholar]
  16. Gozal D., Hathout G. M., Kirlew K. A., Tang H., Woo M. S., Zhang J., Lufkin R. B., Harper R. M. Localization of putative neural respiratory regions in the human by functional magnetic resonance imaging. J Appl Physiol (1985) 1994 May;76(5):2076–2083. doi: 10.1152/jappl.1994.76.5.2076. [DOI] [PubMed] [Google Scholar]
  17. Greenberg H. E., Scharf S. M. Depressed ventilatory load compensation in sleep apnea. Reversal by nasal CPAP. Am Rev Respir Dis. 1993 Dec;148(6 Pt 1):1610–1615. doi: 10.1164/ajrccm/148.6_Pt_1.1610. [DOI] [PubMed] [Google Scholar]
  18. Hathout G. M., Kirlew K. A., So G. J., Hamilton D. R., Zhang J. X., Sinha U., Sinha S., Sayre J., Gozal D., Harper R. M. MR imaging signal response to sustained stimulation in human visual cortex. J Magn Reson Imaging. 1994 Jul-Aug;4(4):537–543. doi: 10.1002/jmri.1880040405. [DOI] [PubMed] [Google Scholar]
  19. Hoshi Y., Tamura M. Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol (1985) 1993 Oct;75(4):1842–1846. doi: 10.1152/jappl.1993.75.4.1842. [DOI] [PubMed] [Google Scholar]
  20. Jenkins I. H., Brooks D. J., Nixon P. D., Frackowiak R. S., Passingham R. E. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994 Jun;14(6):3775–3790. doi: 10.1523/JNEUROSCI.14-06-03775.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kikuchi Y., Okabe S., Tamura G., Hida W., Homma M., Shirato K., Takishima T. Chemosensitivity and perception of dyspnea in patients with a history of near-fatal asthma. N Engl J Med. 1994 May 12;330(19):1329–1334. doi: 10.1056/NEJM199405123301901. [DOI] [PubMed] [Google Scholar]
  22. Kinney H. C., Filiano J. J., Brazy J. E., Burger P. C., Sidman R. L. Congenital apnea with medullary and olivary hypoplasia: a pathologic study with computer reconstructions. Clin Neuropathol. 1989 Jul-Aug;8(4):163–173. [PubMed] [Google Scholar]
  23. Kwong K. K., Belliveau J. W., Chesler D. A., Goldberg I. E., Weisskoff R. M., Poncelet B. P., Kennedy D. N., Hoppel B. E., Cohen M. S., Turner R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675–5679. doi: 10.1073/pnas.89.12.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leevers A. M., Simon P. M., Xi L., Dempsey J. A. Apnoea following normocapnic mechanical ventilation in awake mammals: a demonstration of control system inertia. J Physiol. 1993 Dec;472:749–768. doi: 10.1113/jphysiol.1993.sp019971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lucier G. E., Sessle B. J. Presynaptic excitability changes induced in the solitary tract endings of laryngeal primary afferents by stimulation of nucleus raphe magnus and locus coeruleus. Neurosci Lett. 1981 Nov 4;26(3):221–226. doi: 10.1016/0304-3940(81)90136-1. [DOI] [PubMed] [Google Scholar]
  26. McCarthy G., Blamire A. M., Rothman D. L., Gruetter R., Shulman R. G. Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4952–4956. doi: 10.1073/pnas.90.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ogawa S., Lee T. M., Nayak A. S., Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990 Apr;14(1):68–78. doi: 10.1002/mrm.1910140108. [DOI] [PubMed] [Google Scholar]
  28. Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951–5955. doi: 10.1073/pnas.89.13.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Phelps M. E., Kuhl D. E., Mazziota J. C. Metabolic mapping of the brain's response to visual stimulation: studies in humans. Science. 1981 Mar 27;211(4489):1445–1448. doi: 10.1126/science.6970412. [DOI] [PubMed] [Google Scholar]
  30. Prichard J., Rothman D., Novotny E., Petroff O., Kuwabara T., Avison M., Howseman A., Hanstock C., Shulman R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5829–5831. doi: 10.1073/pnas.88.13.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramsay S. C., Adams L., Murphy K., Corfield D. R., Grootoonk S., Bailey D. L., Frackowiak R. S., Guz A. Regional cerebral blood flow during volitional expiration in man: a comparison with volitional inspiration. J Physiol. 1993 Feb;461:85–101. doi: 10.1113/jphysiol.1993.sp019503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sappey-Marinier D., Calabrese G., Fein G., Hugg J. W., Biggins C., Weiner M. W. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 1992 Jul;12(4):584–592. doi: 10.1038/jcbfm.1992.82. [DOI] [PubMed] [Google Scholar]
  33. Schad L. R., Trost U., Knopp M. V., Müller E., Lorenz W. J. Motor cortex stimulation measured by magnetic resonance imaging on a standard 1.5 T clinical scanner. Magn Reson Imaging. 1993;11(4):461–464. doi: 10.1016/0730-725x(93)90464-o. [DOI] [PubMed] [Google Scholar]
  34. Turner R., Le Bihan D., Moonen C. T., Despres D., Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med. 1991 Nov;22(1):159–166. doi: 10.1002/mrm.1910220117. [DOI] [PubMed] [Google Scholar]
  35. Xu F., Taylor R. F., Lee L. Y., Frazier D. T. Respiratory load compensation. II. Role of the cerebellum. J Appl Physiol (1985) 1993 Aug;75(2):675–681. doi: 10.1152/jappl.1993.75.2.675. [DOI] [PubMed] [Google Scholar]
  36. Xu F., Taylor R. F., McLarney T., Lee L. Y., Frazier D. T. Respiratory load compensation. I. Role of the cerebrum. J Appl Physiol (1985) 1993 Feb;74(2):853–858. doi: 10.1152/jappl.1993.74.2.853. [DOI] [PubMed] [Google Scholar]
  37. Younes M., Baker J., Remmers J. E. Temporal changes in effectiveness of an inspiratory inhibitory electrical pontine stimulus. J Appl Physiol (1985) 1987 Apr;62(4):1502–1512. doi: 10.1152/jappl.1987.62.4.1502. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES