Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jul 3;92(14):6645–6649. doi: 10.1073/pnas.92.14.6645

Differentiation between homoeologous chromosomes 1A of wheat and 1Am of Triticum monococcum and its recognition by the wheat Ph1 locus.

J Dubcovsky 1, M Luo 1, J Dvorak 1
PMCID: PMC41575  PMID: 11607556

Abstract

In most allopolyploid plants, only homogenetic chromosome pairing occurs in meiosis, as a result of the recognition of genome differentiation by the genetic system regulating meiotic chromosome pairing. The nature of differentiation between chromosomes of closely related genomes is examined here by investigating recombination between wheat chromosome 1A and the closely related homoeologous chromosome 1Am of Triticum monococcum. The recognition of the differentiation between these chromosomes by the Ph1 locus, which prevents heterogenetic chromosome pairing in wheat, is also investigated. Chromosomes 1A and 1Am are shown to be colinear, and it is concluded that they are differentiated "substructurally." This substructural differentiation is argued to be recognized by the Ph1 locus. In the absence of Ph1, the distribution and frequencies of crossing over between the 1A and 1Am homoeologues were similar to the distribution and frequencies of crossing over between 1A homologues. The cytogenetic and evolutionary significance of these findings is discussed.

Full text

PDF
6645

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson O. D., Greene F. C., Yip R. E., Halford N. G., Shewry P. R., Malpica-Romero J. M. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyenne. Nucleic Acids Res. 1989 Jan 11;17(1):461–462. doi: 10.1093/nar/17.1.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crossway A., Dvorák J. Distribution of Nonstructural Variation along Three Chromosome Arms between Wheat Cultivars Chinese Spring and Cheyenne. Genetics. 1984 Feb;106(2):309–324. doi: 10.1093/genetics/106.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dvorák J., Appels R. Investigation of Homologous Crossing over and Sister Chromatid Exchange in the Wheat Nor-B2 Locus Coding for Rrna and Gli-B2 Locus Coding for Gliadins. Genetics. 1986 Aug;113(4):1037–1056. doi: 10.1093/genetics/113.4.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dvorák J., Chen K. C. Distribution of Nonstructural Variation between Wheat Cultivars along Chromosome Arm 6Bp: Evidence from the Linkage Map and Physical Map of the Arm. Genetics. 1984 Feb;106(2):325–333. doi: 10.1093/genetics/106.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dvorák J., McGuire P. E. Nonstructural Chromosome Differentiation among Wheat Cultivars, with Special Reference to Differentiation of Chromosomes in Related Species. Genetics. 1981 Feb;97(2):391–414. doi: 10.1093/genetics/97.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dvorák J., Zhang H. B. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9640–9644. doi: 10.1073/pnas.87.24.9640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans G. M., Macefield A. J. Suppression of homoeologous pairing by B chromosomes in a Lolium species hybrid. Nat New Biol. 1972 Mar 29;236(65):110–111. doi: 10.1038/newbio236110a0. [DOI] [PubMed] [Google Scholar]
  8. Feldman M., Mello-Sampayo T., Sears E. R. Somatic association in Triticum aestivum. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1192–1199. doi: 10.1073/pnas.56.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forde B. G., Kreis M., Williamson M. S., Fry R. P., Pywell J., Shewry P. R., Bunce N., Miflin B. J. Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J. 1985 Jan;4(1):9–15. doi: 10.1002/j.1460-2075.1985.tb02310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geng S., Dvorak J., Schneeman P. A Probability Model for Evaluating the Randomness of the Assortment of Chromosomes during Somatic Reduction. Genetics. 1979 Mar;91(3):565–573. doi: 10.1093/genetics/91.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerlach W. L., Dyer T. A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 1980 Nov 11;8(21):4851–4865. doi: 10.1093/nar/8.21.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gulick P. J., Dvorák J. Selective enrichment of cDNAs from salt-stress-induced genes in the wheatgrass, Lophopyrum elongatum, by the formamide-phenol emulsion reassociation technique. Gene. 1990 Nov 15;95(2):173–177. doi: 10.1016/0378-1119(90)90359-y. [DOI] [PubMed] [Google Scholar]
  13. Kota R. S., McGuire P. E., Dvorák J. Latent Nonstructural Differentiation among Homologous Chromosomes at the Diploid Level: Chromosome 6B of AEGILOPS LONGISSIMA. Genetics. 1986 Oct;114(2):579–592. doi: 10.1093/genetics/114.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  15. Litts J. C., Simmons C. R., Karrer E. E., Huang N., Rodriguez R. L. The isolation and characterization of a barley 1,3-1,4-beta-glucanase gene. Eur J Biochem. 1990 Dec 27;194(3):831–838. doi: 10.1111/j.1432-1033.1990.tb19476.x. [DOI] [PubMed] [Google Scholar]
  16. Liu Y. G., Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet. 1991 Oct;66(5):617–633. doi: 10.1266/jjg.66.617. [DOI] [PubMed] [Google Scholar]
  17. Longstaff M., Raines C. A., McMorrow E. M., Bradbeer J. W., Dyer T. A. Wheat phosphoglycerate kinase: evidence for recombination between the genes for the chloroplastic and cytosolic enzymes. Nucleic Acids Res. 1989 Aug 25;17(16):6569–6580. doi: 10.1093/nar/17.16.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitchell L. E., Dennis E. S., Peacock W. J. Molecular analysis of an alcohol dehydrogenase (Adh) gene from chromosome 1 of wheat. Genome. 1989 Jun;32(3):349–358. doi: 10.1139/g89-454. [DOI] [PubMed] [Google Scholar]
  19. Morris C. F., Anderberg R. J., Goldmark P. J., Walker-Simmons M. K. Molecular cloning and expression of abscisic Acid-responsive genes in embryos of dormant wheat seeds. Plant Physiol. 1991 Mar;95(3):814–821. doi: 10.1104/pp.95.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Raikhel N. V., Wilkins T. A. Isolation and characterization of a cDNA clone encoding wheat germ agglutinin. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6745–6749. doi: 10.1073/pnas.84.19.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rohde W., Dörr S., Salamini F., Becker D. Structure of a chalcone synthase gene from Hordeum vulgare. Plant Mol Biol. 1991 Jun;16(6):1103–1106. doi: 10.1007/BF00016087. [DOI] [PubMed] [Google Scholar]
  22. Sears E. R. Genetic control of chromosome pairing in wheat. Annu Rev Genet. 1976;10:31–51. doi: 10.1146/annurev.ge.10.120176.000335. [DOI] [PubMed] [Google Scholar]
  23. Singh N. K., Donovan G. R., Carpenter H. C., Skerritt J. H., Langridge P. Isolation and characterization of wheat triticin cDNA revealing a unique lysine-rich repetitive domain. Plant Mol Biol. 1993 May;22(2):227–237. doi: 10.1007/BF00014931. [DOI] [PubMed] [Google Scholar]
  24. Williamson J. D., Quatrano R. S., Cuming A. C. Em polypeptide and its messenger RNA levels are modulated by abscisic acid during embryogenesis in wheat. Eur J Biochem. 1985 Oct 15;152(2):501–507. doi: 10.1111/j.1432-1033.1985.tb09224.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES