Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 23;70(Pt 8):o872. doi: 10.1107/S1600536814016365

4-(2-Fluoro­phen­yl)-2-meth­oxy-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile

R Vishnupriya a, J Suresh a, S Maharani b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC4158480  PMID: 25249918

Abstract

In the title compound, C19H19FN2O, the cyclo­octene ring adopts a twisted boat–chair conformation. The dihedral angle between the plane of the fluorophenyl substituent and that of the pyridine ring is 76.39 (8)°. The F and ortho-H atoms of the fluoro­benzene ring are disordered, with occupancy factors of 0.226 (5) and 0.774 (5). In the crystal, no significant inter­actions are observed between the mol­ecules beyond van der Waals contacts.

Keywords: crystal structure, cyclo­octa­[b]pyridine, carbo­nitrile compounds

Related literature  

For the biological activities of substituted pyridine derivatives, see: Bossert & Vater (1989); Bossert et al. (1981); Wang et al. (1989); Alajarin et al. (1995). For similar structures, see: Ramesh et al. (2009a ,b ).graphic file with name e-70-0o872-scheme1.jpg

Experimental  

Crystal data  

  • C19H19FN2O

  • M r = 310.36

  • Monoclinic, Inline graphic

  • a = 9.5219 (3) Å

  • b = 13.8808 (4) Å

  • c = 12.1140 (3) Å

  • β = 97.829 (1)°

  • V = 1586.20 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.23 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.977, T max = 0.981

  • 37690 measured reflections

  • 3475 independent reflections

  • 2812 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.155

  • S = 1.08

  • 3475 reflections

  • 220 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016365/zq2223sup1.cif

e-70-0o872-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016365/zq2223Isup2.hkl

e-70-0o872-Isup2.hkl (167KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016365/zq2223Isup3.cml

CCDC reference: 1013943

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RV thank the management of Madura College for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR)

supplementary crystallographic information

S1. Comment

The synthesis of hydrogenated compounds has been extensively studied due to their interesting biological properties. For example, derivatives of 1,4-dihydropyridine exhibit high biological activities as calcium channel blockers (Bossert et al., 1981) and as calcium agonists or antagonists (Bossert & Vater, 1989; Wang et al.,1989; Alajarin et al., 1995). Our interest in preparing pharmacologically active pyridine-related compounds led us to the title compound, derived from a 1,4-dihydropyridine and we have undertaken X-ray crystal structure determination of substituted pyridine scaffolds in order to establish its molecular conformation.

The molecular structure of the title compound is shown in Fig 1. The cyclooctane ring (C1–C8) adopts twisted boat chair conformation. The central pyridine component is planar, with a maximum deviation from the mean plane that of 0.0207 (1) Å for atom C1. The phenyl substituent at C9 of the pyridine ring has a (+) synclinal conformation, which is evidenced by the C15–C14–C9–C10 torsion angle 77.10 (18)°. The shortening of the C–N distances [1.347 (2) and 1.312 (2) Å] and the opening of the N1–C11–C10 angle [122.98 (16)°] may be attributed to the size of the substituent at C1. There is a long Csp2—Csp1 bond (C10–C12 ═1.433 (3) Å), due to conjugation as found in similar related structures (Ramesh et al., 2009a, 2009b). The dihedral angle between the pseudo-axial phenyl substituent and the plane of the pyridine ring is 76.39 (8)°. Due to conjugation, the bond length C11—O1 (1.342 (2) Å) is shorter than the bond length C13—O1 (1.434 (2) Å).

No significant intermolecular hydrogen bonds, π—π stacking interactions between neighboring aromatic rings or C—H···π interactions towards them are observed.

S2. Experimental

A mixture of cyclooctanone (1 mmol), 2-fluorobenzaldehyde (1 mmol) and malononitrile (1 mmol) were taken in methanol (10 ml) to which lithium ethoxide (1 equiv) was added. The reaction mixture was heated under reflux for 2–3 h. After completion of the reaction (TLC), the reaction mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (95:5 v/v) as eluent to obtain pure product. Melting point: 161–162 °C, yield: 67%.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) and 0.97 Å (methylene CH2). Isotropic displacement parameters for H atoms were calculated as Uiso = 1.5Ueq(C) for CH3 groups and Uiso = 1.2Ueq(carrier atom) for all other H atoms. The F and H atoms of the fluorobenzene rings are disordered over two sets of sites in the ratio 0.226(): 0.774 (5).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C19H19FN2O F(000) = 656
Mr = 310.36 Dx = 1.300 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2000 reflections
a = 9.5219 (3) Å θ = 2–27°
b = 13.8808 (4) Å µ = 0.09 mm1
c = 12.1140 (3) Å T = 293 K
β = 97.829 (1)° Block, colourless
V = 1586.20 (8) Å3 0.28 × 0.25 × 0.23 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 3475 independent reflections
Radiation source: fine-focus sealed tube 2812 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 0 pixels mm-1 θmax = 27.0°, θmin = 2.2°
ω and φ scans h = −12→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −17→17
Tmin = 0.977, Tmax = 0.981 l = −15→15
37690 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.7644P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3475 reflections Δρmax = 0.65 e Å3
220 parameters Δρmin = −0.61 e Å3
10 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.48826 (19) 0.14942 (13) 0.47836 (14) 0.0386 (4)
C2 0.5667 (2) 0.18410 (14) 0.38693 (15) 0.0454 (4)
H2A 0.5635 0.1344 0.3303 0.054*
H2B 0.6653 0.1942 0.4170 0.054*
C3 0.5073 (2) 0.27694 (16) 0.33279 (17) 0.0537 (5)
H3A 0.5695 0.2983 0.2806 0.064*
H3B 0.4156 0.2631 0.2903 0.064*
C4 0.4896 (2) 0.35887 (16) 0.41229 (19) 0.0575 (5)
H4A 0.4163 0.3413 0.4569 0.069*
H4B 0.4566 0.4152 0.3689 0.069*
C5 0.6229 (3) 0.38643 (15) 0.49078 (18) 0.0566 (5)
H5A 0.7047 0.3636 0.4588 0.068*
H5B 0.6286 0.4562 0.4943 0.068*
C6 0.6324 (3) 0.34781 (16) 0.60938 (18) 0.0593 (6)
H6A 0.5458 0.3651 0.6384 0.071*
H6B 0.7098 0.3807 0.6546 0.071*
C7 0.6549 (2) 0.23933 (16) 0.62511 (16) 0.0496 (5)
H7A 0.7308 0.2200 0.5839 0.059*
H7B 0.6871 0.2274 0.7034 0.059*
C8 0.52873 (18) 0.17526 (13) 0.58972 (14) 0.0384 (4)
C9 0.45081 (18) 0.13641 (12) 0.66895 (14) 0.0370 (4)
C10 0.33770 (18) 0.07500 (12) 0.63392 (14) 0.0380 (4)
C11 0.30274 (19) 0.05759 (13) 0.51926 (14) 0.0396 (4)
C12 0.2597 (2) 0.02745 (14) 0.71119 (15) 0.0438 (4)
C13 0.1466 (3) −0.01094 (17) 0.37142 (17) 0.0565 (5)
H13A 0.0670 −0.0539 0.3596 0.085*
H13B 0.2237 −0.0373 0.3376 0.085*
H13C 0.1203 0.0505 0.3385 0.085*
C14 0.48547 (16) 0.15856 (14) 0.79050 (14) 0.0421 (4)
C15 0.55536 (16) 0.09561 (12) 0.86460 (16) 0.0557 (5)
H15 0.5783 0.0356 0.8380 0.067* 0.226 (5)
F1B 0.3841 (3) 0.3087 (4) 0.7588 (5) 0.115 (4) 0.226 (5)
C16 0.5944 (2) 0.1143 (2) 0.97544 (19) 0.0741 (8)
H16 0.6419 0.0686 1.0227 0.089*
C17 0.5606 (3) 0.2033 (3) 1.0142 (2) 0.0807 (9)
H17 0.5861 0.2185 1.0891 0.097*
C18 0.4901 (3) 0.2696 (2) 0.9439 (2) 0.0737 (8)
H18 0.4672 0.3296 0.9708 0.088*
C19 0.4532 (2) 0.24716 (17) 0.83331 (18) 0.0571 (5)
H19 0.4054 0.2926 0.7859 0.069* 0.774 (5)
F1A 0.5857 (2) 0.00848 (12) 0.82521 (14) 0.0769 (8) 0.774 (5)
N1 0.37525 (17) 0.09332 (11) 0.44417 (12) 0.0417 (4)
N2 0.1995 (2) −0.01308 (16) 0.77174 (16) 0.0628 (5)
O1 0.18988 (15) 0.00092 (11) 0.48868 (11) 0.0518 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0420 (9) 0.0375 (9) 0.0364 (9) 0.0037 (7) 0.0055 (7) 0.0002 (7)
C2 0.0526 (11) 0.0467 (10) 0.0383 (9) −0.0006 (8) 0.0116 (8) −0.0020 (8)
C3 0.0626 (12) 0.0571 (12) 0.0401 (10) −0.0043 (10) 0.0021 (9) 0.0066 (9)
C4 0.0647 (13) 0.0491 (11) 0.0588 (13) 0.0085 (10) 0.0090 (10) 0.0078 (10)
C5 0.0719 (14) 0.0432 (10) 0.0570 (12) −0.0088 (10) 0.0170 (10) −0.0035 (9)
C6 0.0699 (14) 0.0607 (13) 0.0486 (11) −0.0243 (11) 0.0127 (10) −0.0139 (10)
C7 0.0431 (10) 0.0664 (13) 0.0378 (9) −0.0106 (9) 0.0002 (7) 0.0045 (9)
C8 0.0380 (9) 0.0400 (9) 0.0366 (8) 0.0014 (7) 0.0025 (7) 0.0022 (7)
C9 0.0380 (9) 0.0381 (8) 0.0340 (8) 0.0039 (7) 0.0019 (6) 0.0003 (7)
C10 0.0405 (9) 0.0383 (9) 0.0349 (8) 0.0019 (7) 0.0043 (7) 0.0005 (7)
C11 0.0427 (9) 0.0374 (9) 0.0374 (9) −0.0001 (7) 0.0010 (7) −0.0009 (7)
C12 0.0447 (10) 0.0489 (10) 0.0377 (9) −0.0029 (8) 0.0058 (7) −0.0039 (8)
C13 0.0626 (13) 0.0613 (13) 0.0414 (10) −0.0116 (10) −0.0081 (9) −0.0042 (9)
C14 0.0396 (9) 0.0516 (10) 0.0350 (9) −0.0050 (8) 0.0046 (7) −0.0034 (7)
C15 0.0576 (12) 0.0679 (14) 0.0404 (10) 0.0027 (10) 0.0024 (9) 0.0012 (9)
F1B 0.133 (8) 0.091 (6) 0.122 (7) 0.054 (5) 0.026 (6) −0.025 (5)
C16 0.0668 (15) 0.113 (2) 0.0402 (11) −0.0049 (15) −0.0012 (10) 0.0109 (13)
C17 0.0796 (17) 0.123 (3) 0.0404 (12) −0.0294 (17) 0.0112 (11) −0.0250 (15)
C18 0.0838 (17) 0.0808 (17) 0.0614 (15) −0.0219 (14) 0.0281 (13) −0.0317 (14)
C19 0.0610 (13) 0.0617 (13) 0.0516 (11) −0.0084 (10) 0.0183 (10) −0.0141 (10)
F1A 0.1046 (16) 0.0693 (12) 0.0548 (11) 0.0386 (10) 0.0034 (9) 0.0068 (8)
N1 0.0484 (9) 0.0409 (8) 0.0350 (7) −0.0002 (6) 0.0034 (6) −0.0010 (6)
N2 0.0648 (12) 0.0756 (13) 0.0504 (10) −0.0147 (10) 0.0164 (9) 0.0009 (9)
O1 0.0554 (8) 0.0587 (8) 0.0388 (7) −0.0169 (6) −0.0025 (6) −0.0006 (6)

Geometric parameters (Å, º)

C1—N1 1.347 (2) C9—C14 1.496 (2)
C1—C8 1.398 (2) C10—C11 1.404 (2)
C1—C2 1.497 (2) C10—C12 1.433 (3)
C2—C3 1.520 (3) C11—N1 1.312 (2)
C2—H2A 0.9700 C11—O1 1.342 (2)
C2—H2B 0.9700 C12—N2 1.139 (3)
C3—C4 1.514 (3) C13—O1 1.434 (2)
C3—H3A 0.9700 C13—H13A 0.9600
C3—H3B 0.9700 C13—H13B 0.9600
C4—C5 1.527 (3) C13—H13C 0.9600
C4—H4A 0.9700 C14—C15 1.360 (3)
C4—H4B 0.9700 C14—C19 1.385 (3)
C5—C6 1.524 (3) C15—F1A 1.3459 (10)
C5—H5A 0.9700 C15—C16 1.368 (3)
C5—H5B 0.9700 C15—H15 0.9300
C6—C7 1.529 (3) F1B—C19 1.3477 (10)
C6—H6A 0.9700 C16—C17 1.375 (4)
C6—H6B 0.9700 C16—H16 0.9300
C7—C8 1.509 (3) C17—C18 1.367 (4)
C7—H7A 0.9700 C17—H17 0.9300
C7—H7B 0.9700 C18—C19 1.374 (3)
C8—C9 1.399 (2) C18—H18 0.9300
C9—C10 1.394 (2) C19—H19 0.9300
N1—C1—C8 123.26 (16) C9—C8—C7 120.56 (15)
N1—C1—C2 114.61 (15) C10—C9—C8 119.14 (15)
C8—C1—C2 122.11 (16) C10—C9—C14 118.89 (15)
C1—C2—C3 113.46 (16) C8—C9—C14 121.97 (15)
C1—C2—H2A 108.9 C9—C10—C11 118.40 (16)
C3—C2—H2A 108.9 C9—C10—C12 122.05 (16)
C1—C2—H2B 108.9 C11—C10—C12 119.52 (16)
C3—C2—H2B 108.9 N1—C11—O1 120.49 (16)
H2A—C2—H2B 107.7 N1—C11—C10 122.98 (16)
C4—C3—C2 115.43 (16) O1—C11—C10 116.53 (16)
C4—C3—H3A 108.4 N2—C12—C10 177.8 (2)
C2—C3—H3A 108.4 O1—C13—H13A 109.5
C4—C3—H3B 108.4 O1—C13—H13B 109.5
C2—C3—H3B 108.4 H13A—C13—H13B 109.5
H3A—C3—H3B 107.5 O1—C13—H13C 109.5
C3—C4—C5 115.42 (19) H13A—C13—H13C 109.5
C3—C4—H4A 108.4 H13B—C13—H13C 109.5
C5—C4—H4A 108.4 C15—C14—C19 115.90 (18)
C3—C4—H4B 108.4 C15—C14—C9 122.68 (17)
C5—C4—H4B 108.4 C19—C14—C9 121.36 (18)
H4A—C4—H4B 107.5 F1A—C15—C14 116.92 (17)
C6—C5—C4 115.89 (18) F1A—C15—C16 118.4 (2)
C6—C5—H5A 108.3 C14—C15—C16 124.7 (2)
C4—C5—H5A 108.3 C14—C15—H15 117.7
C6—C5—H5B 108.3 C16—C15—H15 117.7
C4—C5—H5B 108.3 C15—C16—C17 117.5 (3)
H5A—C5—H5B 107.4 C15—C16—H16 121.3
C5—C6—C7 116.94 (17) C17—C16—H16 121.3
C5—C6—H6A 108.1 C18—C17—C16 120.7 (2)
C7—C6—H6A 108.1 C18—C17—H17 119.7
C5—C6—H6B 108.1 C16—C17—H17 119.7
C7—C6—H6B 108.1 C17—C18—C19 119.5 (3)
H6A—C6—H6B 107.3 C17—C18—H18 120.2
C8—C7—C6 116.88 (17) C19—C18—H18 120.2
C8—C7—H7A 108.1 F1B—C19—C18 123.1 (4)
C6—C7—H7A 108.1 F1B—C19—C14 115.2 (4)
C8—C7—H7B 108.1 C18—C19—C14 121.8 (2)
C6—C7—H7B 108.1 C18—C19—H19 119.1
H7A—C7—H7B 107.3 C14—C19—H19 119.1
C1—C8—C9 117.45 (16) C11—N1—C1 118.64 (15)
C1—C8—C7 121.95 (16) C11—O1—C13 116.85 (15)
N1—C1—C2—C3 87.0 (2) C10—C9—C14—C15 77.10 (18)
C8—C1—C2—C3 −91.8 (2) C8—C9—C14—C15 −102.71 (18)
C1—C2—C3—C4 52.0 (2) C10—C9—C14—C19 −105.84 (18)
C2—C3—C4—C5 54.9 (3) C8—C9—C14—C19 74.3 (2)
C3—C4—C5—C6 −100.7 (2) C19—C14—C15—F1A 178.92 (13)
C4—C5—C6—C7 69.8 (3) C9—C14—C15—F1A −3.88 (17)
C5—C6—C7—C8 −74.8 (3) C19—C14—C15—C16 −0.02 (14)
N1—C1—C8—C9 3.2 (3) C9—C14—C15—C16 177.18 (17)
C2—C1—C8—C9 −178.04 (16) F1A—C15—C16—C17 −179.13 (17)
N1—C1—C8—C7 −179.21 (17) C14—C15—C16—C17 −0.2 (2)
C2—C1—C8—C7 −0.4 (3) C15—C16—C17—C18 0.4 (3)
C6—C7—C8—C1 80.7 (2) C16—C17—C18—C19 −0.3 (3)
C6—C7—C8—C9 −101.8 (2) C17—C18—C19—F1B −179.75 (17)
C1—C8—C9—C10 −0.3 (2) C17—C18—C19—C14 0.1 (3)
C7—C8—C9—C10 −177.92 (17) C15—C14—C19—F1B 179.93 (8)
C1—C8—C9—C14 179.53 (16) C9—C14—C19—F1B 2.7 (2)
C7—C8—C9—C14 1.9 (3) C15—C14—C19—C18 0.08 (18)
C8—C9—C10—C11 −2.5 (3) C9—C14—C19—C18 −177.16 (17)
C14—C9—C10—C11 177.63 (16) O1—C11—N1—C1 −179.64 (16)
C8—C9—C10—C12 175.57 (17) C10—C11—N1—C1 −0.1 (3)
C14—C9—C10—C12 −4.2 (3) C8—C1—N1—C11 −3.0 (3)
C9—C10—C11—N1 2.9 (3) C2—C1—N1—C11 178.14 (16)
C12—C10—C11—N1 −175.29 (17) N1—C11—O1—C13 −5.3 (3)
C9—C10—C11—O1 −177.58 (16) C10—C11—O1—C13 175.14 (17)
C12—C10—C11—O1 4.2 (3)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZQ2223).

References

  1. Alajarin, R., Vaquero, J. J., Alvarez-Builla, J., Pastor, M., Sunkel, C., de Casa- Juana, M. F., Priego, J., Statkow, P. R., Sanz-Aparicio, J. & Fonseca, I. (1995). J. Med. Chem. 38, 2830–2841. [DOI] [PubMed]
  2. Bossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–764.
  3. Bossert, F. & Vater, W. (1989). Med. Res. Rev, 9, 291–324. [DOI] [PubMed]
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009a). Acta Cryst. E65, o450. [DOI] [PMC free article] [PubMed]
  6. Ramesh, P., Sundaresan, S. S., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2009b). Acta Cryst. E65, o996–o997. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Wang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748–1751. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016365/zq2223sup1.cif

e-70-0o872-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016365/zq2223Isup2.hkl

e-70-0o872-Isup2.hkl (167KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016365/zq2223Isup3.cml

CCDC reference: 1013943

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES