Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 2;70(Pt 8):o833–o834. doi: 10.1107/S1600536814014949

1-[3-(Morpholin-4-yl)prop­yl]-3-[(naph­tha­len-2-yl)oxy]-4-(3-nitro­phen­yl)azeti­din-2-one

Zeliha Atioğlu a, Mehmet Akkurt b,*, Aliasghar Jarrahpour c, Roghayeh Heiran c, Namık Özdemir d
PMCID: PMC4158481  PMID: 25249888

Abstract

In the title compound, C26H27N3O5, the β-lactam (azetidin-2-one) ring is nearly planar [maximum deviation = 0.011 (3) Å]. The mean plane formed by the four C atoms of the morpholine ring, which adopts a chair conformation, the benzene ring and the naphthalene ring system form dihedral angles of 72.85 (17), 87.46 (15) and 65.96 (11)°, respectively, with the β-lactam ring. In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming inversion dimers with R 2 2(8).

Keywords: crystal structure

Related literature  

For general background to β-lactams, see: Mehta et al. (2010); Arumugam et al. (2011); Myangar & Raval (2012); Singh & Sudheesh (2014); Abdellaoui & Xu (2014); Cheng & Cheng (2007); Xiang (2013). For ring-puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o833-scheme1.jpg

Experimental  

Crystal data  

  • C26H27N3O5

  • M r = 461.51

  • Triclinic, Inline graphic

  • a = 9.7068 (8) Å

  • b = 10.3836 (9) Å

  • c = 14.2041 (11) Å

  • α = 73.739 (6)°

  • β = 75.922 (6)°

  • γ = 63.107 (6)°

  • V = 1214.33 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.51 × 0.39 × 0.25 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.967, T max = 0.985

  • 10059 measured reflections

  • 4486 independent reflections

  • 2123 reflections with I > 2σ(I)

  • R int = 0.088

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.176

  • S = 0.95

  • 4486 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014949/hg5396sup1.cif

e-70-0o833-sup1.cif (32.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014949/hg5396Isup2.hkl

e-70-0o833-Isup2.hkl (246KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014949/hg5396Isup3.cml

CCDC reference: 1010107

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.46 3.229 (4) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

S1. Comment

The β-lactam ring is part of the core structure of most widely used antibiotics such as penicillins, cephalosporins, carbapenems, nocardicins and monobactam. Almost all of these antibiotics work by inhibiting bacterial cell wall biosynthesis (Mehta et al., 2010; Arumugam et al., 2011; Xiang, 2013; Myangar & Raval, 2012; Singh & Sudheesh, 2014). Functionalized β-lactams have attracted continued interests not only for their diverse and antibiotic activity, but also for their utility as versatile synthetic intermediates in organic synthesis as well as many other interesting biological properties (Cheng & Cheng, 2007; Abdellaoui & Xu, 2014). Therefore, there has been renewed interest in the synthesis of such interesting β-lactam based heterocycles with potential applications.

In the title compound (I, Fig. 1), the β-lactam ring (N1/C1–C3) is nearly planar, with the maximum deviations of -0.011 (2) Å for N1 and 0.011 (3) Å for C1 from the mean plane. The β-lactam ring makes dihedral angles of 72.85 (17), 87.46 (15) and 65.96 (11)°, respectively, with the least-squares plane formed by the four C atoms of the morpholine ring (N3/O5/C23–C26), the benzene ring (C14–C19), and the naphthalene ring system (C4–C13).

The morpholine ring adopts a chair conformation with puckering parameters: QT = 0.552 (4) Å, θ = 176.9 (4)° and φ = 44 (11)° (Cremer & Pople, 1975).

In the crystal structure, molecules are linked by pairs of weak C—H···O hydrogen bonds, forming inversion dimers, forming R22(8) motifs (Bernstein et al., 1995) along the [001] direction (Table 1, Fig. 2).

S2. Experimental

A mixture of N-(3-nitrobenzylidene)-3-morpholinopropan-1-amine (1.38 g, 5.00 mmol) and triethylamine (2.53 g, 25.00 mmol), 2-naphthoxyacetic acid (1.54 g, 7.50 mmol) and tosyl chloride (1.43 g, 7.50 mmol) in CH2Cl2 (25 ml) was stirred at room temperature overnight. Then it was washed with HCl 1 M (20 ml), saturated NaHCO3 (20 ml) and brine (20 ml), dried over anhydrous Na2SO4 and the solvent was evaporated to give the crude product which was purified by column chromatography (eluent 10:1 EtOAc/EtOH) as off white crystals (yield 63%). mp: 399 - 401 K. IR (KBr, cm-1): 1759 (CO, β-lactam), 1350, 1527 (NO2). 1H-NMR (CDCl3) δ (p.p.m.): 1.72 (CH2—CH2—CH2–, m, 2H), 2.44 (CH2—CH2—CH2– and CH2—N morpholine ring, m, 6H), 3.02 (CH2—CH2—CH2–, m, 1H), 3.56 (CH2—CH2—CH2– and CH2—O morpholine ring, m, 5H), 5.18 (H-4, d, J = 4.4 Hz, 1H), 5.64 (H-3, d, J = 4.4 Hz, 1H), 8.84 (ArH, d, J = 8.9 Hz, 1H), 7.07 (ArH, s, 1H), 7.31–7.70 (ArH, m, 7H), 8.09 (ArH, d, J = 8.2 Hz, 1H), 8.24 (ArH, s, 1H). 13C-NMR (CDCl3) δ (p.p.m.): 24.4 (CH2—CH2—CH2–), 39.2 (CH2—CH2—CH2–), 53.5 (CH2—N morpholine ring), 56.0 (CH2—CH2—CH2–), 61.4 (C-4), 66.7 (CH2—O morpholine ring), 81.7 (C-3), 108.8, 117.9, 123.4, 123.8, 124.4, 126.6, 126.8, 127.6, 129.3, 129.5, 129.7, 133.8, 134.4, 135.8, 148.1, 154.2 (aromatic carbons), 165.5 (CO, β-lactam). MS m/z = 461 [M+]. Anal. Calcd. for C26H27N3O5: C 67.66, H 5.90, N 9.10%. Found: C 67.74, H 6.02, N 9.13%.

S3. Refinement

H atoms were positioned geometrically and were refined using a riding model, with C—H = 0.93 - 0.98 Å, and Uiso(H) = 1.2 Ueq(C). Reflections (2 2 0), (2 0 2), (3 2 1) and (1 0 3) were omitted due to the large disagreement between Fobs and Fcalc. Due to weak diffracting ability of the crystal the ratio observed/unique reflections is low (47%). The unit cell contains a pair of voids of 44 Å3 about an inversion centre but the residual electron density (highest peak = 0.28 e Å-3 and deepest hole = -0.17 e Å-3) in the difference Fourier map suggests that no solvent molecule occupies this void.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing and hydrogen bonding of (I) viewed along the a axis. Only H atoms involved in H bonding are shown.

Crystal data

C26H27N3O5 Z = 2
Mr = 461.51 F(000) = 488
Triclinic, P1 Dx = 1.262 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.7068 (8) Å Cell parameters from 9755 reflections
b = 10.3836 (9) Å θ = 1.5–28.8°
c = 14.2041 (11) Å µ = 0.09 mm1
α = 73.739 (6)° T = 296 K
β = 75.922 (6)° Block, light yellow
γ = 63.107 (6)° 0.51 × 0.39 × 0.25 mm
V = 1214.33 (19) Å3

Data collection

Stoe IPDS 2 diffractometer 4486 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2123 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.088
Detector resolution: 6.67 pixels mm-1 θmax = 25.5°, θmin = 2.2°
ω scans h = −11→11
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −12→12
Tmin = 0.967, Tmax = 0.985 l = −17→16
10059 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max < 0.001
4486 reflections Δρmax = 0.28 e Å3
307 parameters Δρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9297 (3) 1.1424 (3) 0.07366 (17) 0.0961 (10)
O2 0.7976 (2) 0.9168 (2) 0.21877 (14) 0.0753 (8)
O3 0.8014 (5) 1.0509 (4) 0.4976 (2) 0.1465 (14)
O4 0.8408 (5) 0.8838 (4) 0.6243 (2) 0.172 (2)
O5 1.7676 (3) 0.5318 (3) −0.1356 (2) 0.1070 (11)
N1 1.1173 (3) 0.9410 (3) 0.16271 (17) 0.0677 (10)
N2 0.8603 (5) 0.9237 (5) 0.5366 (2) 0.1089 (15)
N3 1.5567 (3) 0.7649 (3) −0.03474 (17) 0.0658 (9)
C1 0.9845 (4) 1.0180 (4) 0.1211 (2) 0.0716 (11)
C2 0.9402 (4) 0.8877 (4) 0.1546 (2) 0.0711 (11)
C3 1.0932 (4) 0.8057 (3) 0.2041 (2) 0.0657 (11)
C4 0.7483 (4) 0.8039 (4) 0.2538 (2) 0.0679 (11)
C5 0.6102 (4) 0.8383 (4) 0.3220 (2) 0.0810 (11)
C6 0.5486 (4) 0.7382 (5) 0.3597 (2) 0.0852 (14)
C7 0.6183 (4) 0.5988 (4) 0.3316 (2) 0.0779 (13)
C8 0.5543 (5) 0.4935 (6) 0.3687 (3) 0.0995 (18)
C9 0.6232 (6) 0.3623 (6) 0.3379 (4) 0.114 (2)
C10 0.7574 (6) 0.3308 (5) 0.2710 (3) 0.1057 (19)
C11 0.8243 (5) 0.4271 (4) 0.2350 (3) 0.0871 (16)
C12 0.7571 (4) 0.5656 (4) 0.2643 (2) 0.0723 (11)
C13 0.8214 (4) 0.6705 (4) 0.2268 (2) 0.0715 (11)
C14 1.0772 (3) 0.7610 (3) 0.3149 (2) 0.0618 (10)
C15 0.9834 (4) 0.8625 (3) 0.3742 (2) 0.0703 (11)
C16 0.9656 (4) 0.8152 (4) 0.4753 (2) 0.0739 (11)
C17 1.0402 (5) 0.6725 (4) 0.5206 (3) 0.0847 (15)
C18 1.1351 (4) 0.5718 (4) 0.4615 (3) 0.0848 (14)
C19 1.1519 (4) 0.6162 (4) 0.3600 (2) 0.0763 (12)
C20 1.2491 (4) 0.9733 (4) 0.1582 (2) 0.0791 (14)
C21 1.4021 (4) 0.8613 (4) 0.1168 (2) 0.0746 (11)
C22 1.4024 (4) 0.8513 (4) 0.0131 (2) 0.0718 (11)
C23 1.6225 (4) 0.6141 (4) 0.0167 (3) 0.0847 (14)
C24 1.7765 (5) 0.5274 (4) −0.0364 (3) 0.1093 (17)
C25 1.7052 (5) 0.6771 (4) −0.1862 (3) 0.1020 (16)
C26 1.5468 (4) 0.7661 (4) −0.1358 (2) 0.0847 (13)
H2 0.94510 0.84580 0.09940 0.0850*
H3 1.17070 0.72420 0.17220 0.0790*
H5 0.56200 0.92930 0.34080 0.0970*
H6 0.45820 0.76100 0.40520 0.1030*
H8 0.46420 0.51380 0.41450 0.1190*
H9 0.57950 0.29410 0.36210 0.1370*
H10 0.80300 0.24130 0.25030 0.1270*
H11 0.91550 0.40250 0.19030 0.1040*
H13 0.91410 0.64830 0.18340 0.0860*
H15 0.93290 0.96150 0.34630 0.0850*
H17 1.02720 0.64410 0.58910 0.1010*
H18 1.18800 0.47360 0.49010 0.1020*
H19 1.21530 0.54660 0.32100 0.0910*
H20A 1.25690 0.97640 0.22430 0.0950*
H20B 1.23130 1.07000 0.11720 0.0950*
H21A 1.48590 0.88780 0.11710 0.0890*
H21B 1.42240 0.76530 0.15940 0.0890*
H22A 1.33220 0.80730 0.01490 0.0860*
H22B 1.36270 0.95000 −0.02650 0.0860*
H23A 1.55120 0.56930 0.02280 0.1020*
H23B 1.63540 0.61160 0.08290 0.1020*
H24A 1.85050 0.56620 −0.03630 0.1310*
H24B 1.81480 0.42580 −0.00120 0.1310*
H25A 1.69630 0.67850 −0.25300 0.1220*
H25B 1.77550 0.72220 −0.19050 0.1220*
H26A 1.50790 0.86680 −0.17250 0.1010*
H26B 1.47430 0.72500 −0.13480 0.1010*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.112 (2) 0.0782 (16) 0.0649 (14) −0.0169 (14) −0.0123 (13) −0.0032 (12)
O2 0.0629 (14) 0.0846 (15) 0.0576 (12) −0.0106 (12) −0.0013 (10) −0.0233 (11)
O3 0.178 (3) 0.114 (2) 0.082 (2) −0.006 (2) 0.015 (2) −0.0443 (18)
O4 0.246 (5) 0.162 (3) 0.0539 (17) −0.057 (3) 0.026 (2) −0.0303 (17)
O5 0.124 (2) 0.0752 (17) 0.0928 (19) −0.0129 (15) 0.0003 (16) −0.0356 (14)
N1 0.0710 (19) 0.0701 (16) 0.0528 (14) −0.0232 (15) 0.0043 (13) −0.0197 (12)
N2 0.136 (3) 0.110 (3) 0.0547 (19) −0.033 (2) 0.0065 (18) −0.0251 (17)
N3 0.0670 (17) 0.0656 (16) 0.0528 (13) −0.0176 (12) −0.0016 (12) −0.0164 (11)
C1 0.084 (2) 0.074 (2) 0.0428 (15) −0.0215 (19) −0.0004 (16) −0.0171 (15)
C2 0.071 (2) 0.086 (2) 0.0449 (15) −0.0215 (17) 0.0014 (15) −0.0230 (15)
C3 0.065 (2) 0.0658 (19) 0.0536 (16) −0.0155 (15) 0.0038 (14) −0.0231 (14)
C4 0.058 (2) 0.084 (2) 0.0472 (15) −0.0167 (18) −0.0084 (14) −0.0122 (15)
C5 0.062 (2) 0.092 (2) 0.0609 (19) −0.0081 (19) 0.0021 (16) −0.0233 (17)
C6 0.059 (2) 0.115 (3) 0.0569 (19) −0.020 (2) 0.0055 (16) −0.0194 (19)
C7 0.060 (2) 0.105 (3) 0.0532 (18) −0.022 (2) −0.0069 (16) −0.0142 (18)
C8 0.080 (3) 0.129 (4) 0.080 (2) −0.040 (3) −0.005 (2) −0.017 (3)
C9 0.123 (4) 0.126 (4) 0.099 (3) −0.059 (3) −0.021 (3) −0.012 (3)
C10 0.118 (4) 0.099 (3) 0.093 (3) −0.039 (3) −0.017 (3) −0.016 (2)
C11 0.085 (3) 0.090 (3) 0.068 (2) −0.019 (2) −0.0080 (18) −0.0204 (19)
C12 0.060 (2) 0.091 (2) 0.0507 (16) −0.0171 (18) −0.0105 (15) −0.0134 (16)
C13 0.0550 (19) 0.087 (2) 0.0537 (17) −0.0114 (18) −0.0009 (14) −0.0228 (16)
C14 0.0565 (18) 0.0656 (19) 0.0569 (16) −0.0184 (15) −0.0073 (14) −0.0149 (14)
C15 0.082 (2) 0.0648 (19) 0.0496 (16) −0.0171 (16) −0.0044 (15) −0.0167 (13)
C16 0.088 (2) 0.081 (2) 0.0501 (17) −0.0328 (19) −0.0065 (16) −0.0150 (16)
C17 0.100 (3) 0.096 (3) 0.0556 (18) −0.043 (2) −0.0189 (19) 0.0003 (19)
C18 0.090 (3) 0.072 (2) 0.082 (2) −0.029 (2) −0.029 (2) 0.0073 (19)
C19 0.073 (2) 0.069 (2) 0.075 (2) −0.0176 (17) −0.0127 (17) −0.0144 (16)
C20 0.092 (3) 0.086 (2) 0.0628 (19) −0.036 (2) 0.0025 (17) −0.0324 (16)
C21 0.074 (2) 0.097 (2) 0.0592 (18) −0.0372 (19) −0.0003 (16) −0.0291 (16)
C22 0.065 (2) 0.086 (2) 0.0564 (17) −0.0224 (17) −0.0041 (15) −0.0211 (15)
C23 0.094 (3) 0.076 (2) 0.070 (2) −0.022 (2) −0.0124 (19) −0.0149 (17)
C24 0.108 (3) 0.080 (3) 0.103 (3) −0.003 (2) −0.017 (2) −0.023 (2)
C25 0.123 (3) 0.085 (3) 0.071 (2) −0.024 (2) 0.013 (2) −0.0307 (19)
C26 0.095 (3) 0.082 (2) 0.0551 (18) −0.0142 (19) −0.0082 (17) −0.0212 (15)

Geometric parameters (Å, º)

O1—C1 1.213 (4) C18—C19 1.378 (5)
O2—C2 1.414 (4) C20—C21 1.516 (5)
O2—C4 1.384 (4) C21—C22 1.505 (4)
O3—N2 1.200 (6) C23—C24 1.493 (6)
O4—N2 1.194 (4) C25—C26 1.510 (6)
O5—C24 1.419 (5) C2—H2 0.9800
O5—C25 1.392 (5) C3—H3 0.9800
N1—C1 1.351 (5) C5—H5 0.9300
N1—C3 1.464 (4) C6—H6 0.9300
N1—C20 1.446 (5) C8—H8 0.9300
N2—C16 1.465 (5) C9—H9 0.9300
N3—C22 1.463 (5) C10—H10 0.9300
N3—C23 1.441 (5) C11—H11 0.9300
N3—C26 1.458 (4) C13—H13 0.9300
C1—C2 1.519 (6) C15—H15 0.9300
C2—C3 1.566 (6) C17—H17 0.9300
C3—C14 1.501 (4) C18—H18 0.9300
C4—C5 1.411 (5) C19—H19 0.9300
C4—C13 1.358 (5) C20—H20A 0.9700
C5—C6 1.349 (6) C20—H20B 0.9700
C6—C7 1.421 (6) C21—H21A 0.9700
C7—C8 1.411 (7) C21—H21B 0.9700
C7—C12 1.409 (5) C22—H22A 0.9700
C8—C9 1.365 (8) C22—H22B 0.9700
C9—C10 1.376 (8) C23—H23A 0.9700
C10—C11 1.350 (7) C23—H23B 0.9700
C11—C12 1.422 (5) C24—H24A 0.9700
C12—C13 1.410 (6) C24—H24B 0.9700
C14—C15 1.380 (4) C25—H25A 0.9700
C14—C19 1.377 (5) C25—H25B 0.9700
C15—C16 1.376 (4) C26—H26A 0.9700
C16—C17 1.362 (5) C26—H26B 0.9700
C17—C18 1.375 (6)
C2—O2—C4 117.4 (3) C14—C3—H3 112.00
C24—O5—C25 110.2 (3) C4—C5—H5 120.00
C1—N1—C3 96.4 (3) C6—C5—H5 120.00
C1—N1—C20 132.1 (3) C5—C6—H6 119.00
C3—N1—C20 131.1 (3) C7—C6—H6 119.00
O3—N2—O4 121.9 (4) C7—C8—H8 120.00
O3—N2—C16 119.0 (3) C9—C8—H8 120.00
O4—N2—C16 119.0 (4) C8—C9—H9 120.00
C22—N3—C23 112.9 (3) C10—C9—H9 120.00
C22—N3—C26 109.7 (3) C9—C10—H10 119.00
C23—N3—C26 108.5 (3) C11—C10—H10 119.00
O1—C1—N1 131.9 (4) C10—C11—H11 119.00
O1—C1—C2 136.2 (4) C12—C11—H11 120.00
N1—C1—C2 91.9 (3) C4—C13—H13 120.00
O2—C2—C1 113.2 (3) C12—C13—H13 120.00
O2—C2—C3 116.9 (2) C14—C15—H15 121.00
C1—C2—C3 85.7 (3) C16—C15—H15 120.00
N1—C3—C2 85.9 (2) C16—C17—H17 121.00
N1—C3—C14 115.7 (3) C18—C17—H17 121.00
C2—C3—C14 117.7 (3) C17—C18—H18 120.00
O2—C4—C5 114.0 (3) C19—C18—H18 120.00
O2—C4—C13 125.1 (3) C14—C19—H19 119.00
C5—C4—C13 120.9 (4) C18—C19—H19 119.00
C4—C5—C6 119.6 (4) N1—C20—H20A 109.00
C5—C6—C7 121.6 (4) N1—C20—H20B 109.00
C6—C7—C8 122.6 (4) C21—C20—H20A 109.00
C6—C7—C12 118.1 (4) C21—C20—H20B 109.00
C8—C7—C12 119.3 (4) H20A—C20—H20B 108.00
C7—C8—C9 120.6 (5) C20—C21—H21A 109.00
C8—C9—C10 120.1 (5) C20—C21—H21B 109.00
C9—C10—C11 121.4 (5) C22—C21—H21A 109.00
C10—C11—C12 120.9 (4) C22—C21—H21B 109.00
C7—C12—C11 117.7 (4) H21A—C21—H21B 108.00
C7—C12—C13 119.6 (3) N3—C22—H22A 109.00
C11—C12—C13 122.7 (4) N3—C22—H22B 109.00
C4—C13—C12 120.2 (3) C21—C22—H22A 109.00
C3—C14—C15 121.1 (3) C21—C22—H22B 109.00
C3—C14—C19 120.7 (3) H22A—C22—H22B 108.00
C15—C14—C19 118.2 (3) N3—C23—H23A 109.00
C14—C15—C16 119.1 (3) N3—C23—H23B 109.00
N2—C16—C15 118.2 (3) C24—C23—H23A 109.00
N2—C16—C17 118.8 (3) C24—C23—H23B 109.00
C15—C16—C17 123.1 (3) H23A—C23—H23B 108.00
C16—C17—C18 117.8 (4) O5—C24—H24A 109.00
C17—C18—C19 120.1 (4) O5—C24—H24B 109.00
C14—C19—C18 121.7 (3) C23—C24—H24A 109.00
N1—C20—C21 113.1 (3) C23—C24—H24B 109.00
C20—C21—C22 112.8 (3) H24A—C24—H24B 108.00
N3—C22—C21 113.6 (3) O5—C25—H25A 109.00
N3—C23—C24 111.5 (3) O5—C25—H25B 109.00
O5—C24—C23 112.4 (4) C26—C25—H25A 109.00
O5—C25—C26 112.0 (3) C26—C25—H25B 109.00
N3—C26—C25 110.4 (3) H25A—C25—H25B 108.00
O2—C2—H2 113.00 N3—C26—H26A 109.00
C1—C2—H2 113.00 N3—C26—H26B 110.00
C3—C2—H2 113.00 C25—C26—H26A 110.00
N1—C3—H3 112.00 C25—C26—H26B 110.00
C2—C3—H3 112.00 H26A—C26—H26B 108.00
C2—O2—C4—C5 176.4 (3) C2—C3—C14—C15 −54.0 (5)
C4—O2—C2—C1 −179.5 (3) N1—C3—C14—C19 −136.8 (4)
C4—O2—C2—C3 −82.2 (4) O2—C4—C13—C12 −177.4 (3)
C2—O2—C4—C13 −4.1 (5) C5—C4—C13—C12 2.1 (5)
C25—O5—C24—C23 55.7 (5) C13—C4—C5—C6 −1.1 (5)
C24—O5—C25—C26 −56.8 (5) O2—C4—C5—C6 178.5 (3)
C20—N1—C1—C2 171.6 (3) C4—C5—C6—C7 −0.8 (5)
C3—N1—C1—O1 179.9 (4) C5—C6—C7—C12 1.5 (5)
C20—N1—C1—O1 −6.8 (6) C5—C6—C7—C8 −178.8 (4)
C3—N1—C20—C21 50.6 (4) C12—C7—C8—C9 −1.8 (7)
C20—N1—C3—C14 69.3 (4) C8—C7—C12—C13 179.9 (4)
C1—N1—C3—C2 1.7 (2) C6—C7—C8—C9 178.5 (4)
C1—N1—C20—C21 −120.6 (4) C6—C7—C12—C11 −178.7 (3)
C3—N1—C1—C2 −1.7 (2) C6—C7—C12—C13 −0.4 (5)
C1—N1—C3—C14 −117.2 (3) C8—C7—C12—C11 1.5 (5)
C20—N1—C3—C2 −171.8 (3) C7—C8—C9—C10 0.8 (8)
O3—N2—C16—C17 175.7 (5) C8—C9—C10—C11 0.5 (8)
O4—N2—C16—C17 −1.2 (8) C9—C10—C11—C12 −0.7 (7)
O3—N2—C16—C15 −4.8 (7) C10—C11—C12—C7 −0.3 (6)
O4—N2—C16—C15 178.3 (5) C10—C11—C12—C13 −178.6 (4)
C26—N3—C22—C21 −177.8 (3) C7—C12—C13—C4 −1.4 (5)
C23—N3—C26—C25 −56.2 (4) C11—C12—C13—C4 176.9 (4)
C22—N3—C26—C25 −179.9 (3) C3—C14—C19—C18 −178.0 (4)
C22—N3—C23—C24 177.4 (3) C19—C14—C15—C16 −1.3 (6)
C26—N3—C23—C24 55.6 (4) C3—C14—C15—C16 176.5 (4)
C23—N3—C22—C21 61.1 (4) C15—C14—C19—C18 −0.1 (6)
O1—C1—C2—O2 −62.7 (5) C14—C15—C16—C17 2.0 (7)
N1—C1—C2—O2 119.1 (3) C14—C15—C16—N2 −177.4 (4)
N1—C1—C2—C3 1.6 (2) N2—C16—C17—C18 178.2 (4)
O1—C1—C2—C3 179.8 (4) C15—C16—C17—C18 −1.2 (7)
O2—C2—C3—C14 1.6 (4) C16—C17—C18—C19 −0.3 (7)
C1—C2—C3—C14 115.5 (3) C17—C18—C19—C14 0.9 (7)
O2—C2—C3—N1 −115.4 (3) N1—C20—C21—C22 60.0 (4)
C1—C2—C3—N1 −1.5 (2) C20—C21—C22—N3 169.3 (3)
C2—C3—C14—C19 123.8 (4) N3—C23—C24—O5 −56.3 (5)
N1—C3—C14—C15 45.4 (5) O5—C25—C26—N3 58.4 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.98 2.46 3.229 (4) 135

Symmetry code: (i) −x+2, −y+2, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5396).

References

  1. Abdellaoui, H. & Xu, J. (2014). Tetrahedron, 70, 4323–4330.
  2. Arumugam, N., Periyasami, G., Raghunathan, R., Kamalraj, S. & Muthumary, J. (2011). Eur. J. Med. Chem. 46, 600–607. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Cheng, L.-Q. & Cheng, Y. (2007). Tetrahedron, 63, 9359–9364.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560. [DOI] [PubMed]
  8. Myangar, K. N. & Raval, J. P. (2012). Med. Chem. Res. 21, 2762–2771.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Singh, G. S. & Sudheesh, S. (2014). Arkivoc, i, 337–385.
  11. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  12. Xiang, Z. (2013). Comput. Theor. Chem, 1008, 83–89.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014949/hg5396sup1.cif

e-70-0o833-sup1.cif (32.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014949/hg5396Isup2.hkl

e-70-0o833-Isup2.hkl (246KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014949/hg5396Isup3.cml

CCDC reference: 1010107

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES