Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 26;70(Pt 8):o881–o882. doi: 10.1107/S1600536814016833

4-[(5-Bromo-2-hy­droxy­benzyl­idene)amino]-3-ethyl-1H-1,2,4-triazole-5(4H)-thione

Cai-Xia Yuan a, Shu-Fen Lan a, Xin-Yu Liu a, Miao-Li Zhu a,*
PMCID: PMC4158482  PMID: 25249924

Abstract

The title compound, C11H11BrN4OS, crystallized as a racemic twin with two symmetry-independent mol­ecules in the asymmetric unit. The dihedral angles between the benzene and triazole rings of the two independent mol­ecules are 56.41 (18) and 54.48 (18)°. An intra­molecular O—H⋯N hydrogen bond occurs in each mol­ecule. In the crystal, pairs of symmetry-independent mol­ecules are linked by pairs of almost linear N—H⋯S hydrogen bonds, forming cyclic dimers characterized by an R 2 2(8) motif. There are weak π–π inter­actions between the benzene rings of symmetry-independent mol­ecules, with a centroid–centroid distance of 3.874 (3) Å.

Keywords: crystal structure

Related literature  

For background to the biological activity of related compounds, see: Demirbas (2004); Demirbas et al. (2009); Todoulou et al. (1994); Kumar et al. (2008); Kochikyan et al. (2011); Singhal et al. (2011); Popiołek et al. (2013); Sraa (2012). For similar structures, see: Wu et al. (2012); Pannu & Hundal (2011). For standard bond lengths, see: Allen et al. (1987). For graph-sets of hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o881-scheme1.jpg

Experimental  

Crystal data  

  • C11H11BrN4OS

  • M r = 327.21

  • Monoclinic, Inline graphic

  • a = 6.323 (4) Å

  • b = 16.459 (11) Å

  • c = 12.461 (8) Å

  • β = 90.330 (9)°

  • V = 1296.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.30 mm

Data collection  

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.350, T max = 0.435

  • 14802 measured reflections

  • 5222 independent reflections

  • 4285 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.065

  • S = 1.01

  • 5222 reflections

  • 328 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983), 2514 Friedel pairs

  • Absolute structure parameter: 0.581 (7)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814016833/fy2115sup1.cif

e-70-0o881-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016833/fy2115Isup2.hkl

e-70-0o881-Isup2.hkl (255.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016833/fy2115Isup3.cml

CCDC reference: 1015277

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.86 2.45 3.309 (3) 176
N5—H5A⋯S1ii 0.86 2.44 3.302 (3) 177
O1—H1A⋯N4 0.82 2.02 2.712 (4) 141
O2—H2⋯N8 0.82 1.99 2.695 (4) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (grant Nos. 21001070 and 21271121) and the Province Natural Science Foundation of Shanxi Province of China (grant No. 2011021006–2).

supplementary crystallographic information

S1. Comment

Recently, 1,2,4-triazoles and their derivatives have been the focus of a great deal of attention owing to their effective biological activities such as antimicrobial, antiviral, analgesic, anti-inflammatory, anticancer and antioxidant properties (Demirbas et al., 2004 and 2009; Kochikyan et al., 2011; Kumar et al., 2008; Singhal et al., 2011; Todoulou et al., 1994). As a result, a number of attempts were made to improve the activity of these compounds by varying the substituents on the 1,2,4-triazole nucleus (Popiołek et al., 2013; Sraa et al., 2012). Among these, the amino- and mercapto-group substituted 1,2,4-triazole ring systems represent an important group of compounds that are promising for practical application. Therefore, the title compound (I), has been synthesized and its crystal structure has been determinined.

The crystal structure is illustrated in Fig. 1. The title compound (I) crystallizes in the monoclinic space group P21 with two symmetry-independent molecules in the unit cell. The bond lengths of N4–C5 [1.274 (5) Å] and N8–C16 [1.272 (5) Å] confirm them as double bonds, which is similar to those reported in other Schiff bases (Pannu et al., 2011; Wu et al., 2012;). The molecule of (I) exists in the thione tautometic form, with C═S distances of 1.673 (4) and 1.672 (4) Å, which indicates a substantial double-bond character (Allen et al., 1987).

The packing arrangement in the crystal structure of (I) is shown in Fig. 2. As a common feature of o-hydroxysalicylidene systems, the azomethine group in title compound forms intramolecular O–H···N hydrogen bonds with the neighbouring hydroxyl groups. Moreover, the crystal structure also contains intermolecular N–H···S hydrogen bonds between both independent molecules with cyclic motifs [graph set R22(8)] (Bernstein et al., 1995). The molecules are further linked via weak π-π interactions between benzene rings (Cg1 and Cg2). The hydrogen bonds and π-π interactions link the molecules into ribbon structures.

S2. Experimental

The title compound was synthesized by condensation of 4-amino-3-ethyl- 1H-1,2,4-triazole-5(4H)-thione and 5-Br-salicylaldehyde. 0.5 mmol of 4-amino-3-ethyl-1,2,4-triazole-5-thione was thoroughly dissolved in 20 ml of ethanol with a constant stirring at 353 K. Then 0.5 mmol of 5-bromosalicylaldehyde in 10 ml ethanol was added dropwise to a solution of the above. The mixture was further refluxed for 2 h. The resulting yellow solution was filtered and the filtrate was left to stand at room temperature. The yellow crystals of compound (I) were received from the filtrate with slowly evaporating the solvent for a few days. Yield: 78%. Anal. Calcd. for C11H11BrN4OS: C 40.38, H 3.39, N 17.12%. Found: C 40.31, H 3.45, N 17.07%. IR (ν/cm-1): 3109, 3055, 2958, 1603, 1588, 1513, 1416, 1352, 1288, 1165, 1174, 967, 817, 627. UV/vis in DMSO, λmax/nm (ε 103/M-1 cm-1): 265(13.9), 343(7.77).

S3. Refinement

The H atoms bonded to C atoms were placed in calculated positions (C—H=0.96, 0.97 and 0.93 Å for Csp3, Csp2 and Csp atoms, respectively), assigned fixed Uiso values [Uiso(H) = 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) for all others] and treated as riding atoms. The H atoms attached to O and N atoms were found in difference electron-density maps and were refined isotropically, with Uiso(H) = 1.5 Ueq(O) or Uiso(H) = 1.2 Ueq(N) and fixed O—H (0.82 Å) and N—H (0.86 Å) bond lengths.

Figures

Fig. 1.

Fig. 1.

View of the structure with displacement ellipsoids drawn at the 30% probability level. Dotted lines represent hydrogen bonds and π–π interactions.

Fig. 2.

Fig. 2.

A part of the crystal structure, showing the formation of a chain of R22(8) hydrogen-bonded rings and π-π stacking between the benzene rings rings; Cg1: C6/C7/C8/C9/C10/C11, Cg2: C17/C18/C19/C20/C21/C22. Symmetry codes: i) x - 1, y. z + 1; ii) x + 1, y, z - 1. H atoms without H-bonds have been omitted for clarity.

Crystal data

C11H11BrN4OS F(000) = 656
Mr = 327.21 Dx = 1.676 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4187 reflections
a = 6.323 (4) Å θ = 2.5–25.3°
b = 16.459 (11) Å µ = 3.32 mm1
c = 12.461 (8) Å T = 298 K
β = 90.330 (9)° Block, yellow
V = 1296.8 (15) Å3 0.40 × 0.35 × 0.30 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 5222 independent reflections
Radiation source: fine-focus sealed tube 4285 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
ω scans θmax = 26.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −7→7
Tmin = 0.350, Tmax = 0.435 k = −20→20
14802 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.031P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
5222 reflections Δρmax = 0.28 e Å3
328 parameters Δρmin = −0.45 e Å3
1 restraint Absolute structure: Flack (1983), 2514 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.581 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.19835 (6) 0.61341 (2) −0.42475 (3) 0.05443 (12)
S1 0.10279 (14) 0.43885 (6) 0.11498 (7) 0.0394 (2)
O1 0.8327 (4) 0.49113 (17) −0.10062 (19) 0.0511 (7)
H1A 0.8001 0.5035 −0.0391 0.077*
N1 0.2852 (5) 0.50342 (19) 0.2940 (2) 0.0425 (8)
H1 0.1906 0.4848 0.3368 0.051*
N2 0.4568 (5) 0.5484 (2) 0.3291 (2) 0.0423 (8)
N3 0.4567 (4) 0.53213 (17) 0.1540 (2) 0.0313 (7)
N4 0.5457 (4) 0.53192 (18) 0.0511 (2) 0.0360 (7)
C1 0.2787 (5) 0.4913 (2) 0.1880 (3) 0.0325 (8)
C2 0.5590 (5) 0.5653 (2) 0.2428 (3) 0.0337 (8)
C3 0.7562 (6) 0.6128 (3) 0.2360 (3) 0.0438 (9)
H3A 0.7331 0.6594 0.1898 0.053*
H3B 0.8655 0.5795 0.2039 0.053*
C4 0.8317 (7) 0.6420 (2) 0.3461 (3) 0.0529 (11)
H4A 0.7232 0.6744 0.3786 0.079*
H4B 0.9574 0.6741 0.3380 0.079*
H4C 0.8619 0.5960 0.3909 0.079*
C5 0.4165 (6) 0.5478 (2) −0.0249 (3) 0.0332 (8)
H5 0.2777 0.5616 −0.0087 0.040*
C6 0.4824 (5) 0.5449 (2) −0.1370 (3) 0.0305 (8)
C7 0.6786 (5) 0.5157 (2) −0.1695 (3) 0.0343 (8)
C8 0.7249 (6) 0.5113 (2) −0.2784 (3) 0.0404 (10)
H8 0.8531 0.4893 −0.3004 0.048*
C9 0.5816 (6) 0.5393 (2) −0.3542 (3) 0.0390 (9)
H9 0.6142 0.5370 −0.4268 0.047*
C10 0.3887 (6) 0.5707 (2) −0.3211 (3) 0.0362 (9)
C11 0.3376 (6) 0.5723 (2) −0.2137 (3) 0.0342 (8)
H11 0.2063 0.5917 −0.1923 0.041*
Br2 0.85545 (7) 0.24611 (3) 0.99904 (3) 0.06106 (14)
S2 0.93822 (14) 0.42617 (6) 0.46355 (7) 0.0375 (2)
O2 0.2087 (4) 0.36500 (17) 0.6796 (2) 0.0480 (8)
H2 0.2556 0.3672 0.6184 0.072*
N5 0.7520 (5) 0.36383 (19) 0.2834 (2) 0.0390 (8)
H5A 0.8466 0.3827 0.2409 0.047*
N6 0.5811 (5) 0.3204 (2) 0.2478 (2) 0.0401 (8)
N7 0.5821 (4) 0.33383 (18) 0.4232 (2) 0.0314 (7)
N8 0.4955 (4) 0.33164 (19) 0.5266 (2) 0.0321 (7)
C12 0.7603 (5) 0.3746 (2) 0.3909 (3) 0.0319 (8)
C13 0.4769 (5) 0.3032 (2) 0.3348 (3) 0.0315 (8)
C14 0.2795 (5) 0.2556 (2) 0.3413 (3) 0.0400 (8)
H14A 0.1713 0.2884 0.3750 0.048*
H14B 0.3037 0.2083 0.3863 0.048*
C15 0.1996 (6) 0.2275 (2) 0.2317 (3) 0.0472 (10)
H15A 0.1887 0.2735 0.1845 0.071*
H15B 0.0630 0.2028 0.2393 0.071*
H15C 0.2967 0.1887 0.2023 0.071*
C16 0.6252 (6) 0.3124 (2) 0.6007 (3) 0.0353 (9)
H16 0.7633 0.2985 0.5832 0.042*
C17 0.5601 (6) 0.3117 (2) 0.7123 (3) 0.0328 (8)
C18 0.3609 (6) 0.3392 (2) 0.7470 (3) 0.0361 (9)
C19 0.3173 (6) 0.3417 (2) 0.8567 (3) 0.0443 (9)
H19 0.1881 0.3620 0.8797 0.053*
C20 0.4612 (6) 0.3147 (2) 0.9307 (3) 0.0462 (10)
H20 0.4296 0.3165 1.0034 0.055*
C21 0.6543 (6) 0.2846 (2) 0.8971 (3) 0.0423 (9)
C22 0.7078 (6) 0.2850 (2) 0.7897 (3) 0.0403 (9)
H22 0.8411 0.2675 0.7685 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0537 (2) 0.0799 (3) 0.02963 (19) 0.0011 (2) −0.00409 (16) 0.0045 (2)
S1 0.0403 (5) 0.0497 (6) 0.0281 (4) −0.0051 (4) 0.0038 (4) 0.0017 (4)
O1 0.0457 (16) 0.074 (2) 0.0334 (14) 0.0183 (14) 0.0076 (12) 0.0048 (14)
N1 0.0402 (18) 0.064 (2) 0.0238 (16) −0.0095 (16) 0.0092 (13) 0.0011 (15)
N2 0.0442 (18) 0.058 (2) 0.0251 (15) −0.0021 (16) 0.0042 (14) −0.0043 (14)
N3 0.0337 (16) 0.0378 (18) 0.0226 (15) 0.0022 (14) 0.0057 (12) 0.0023 (13)
N4 0.0364 (17) 0.047 (2) 0.0252 (16) 0.0010 (14) 0.0102 (13) 0.0031 (14)
C1 0.034 (2) 0.036 (2) 0.0277 (19) 0.0065 (16) 0.0038 (15) 0.0053 (15)
C2 0.035 (2) 0.036 (2) 0.0300 (19) 0.0093 (16) 0.0040 (15) −0.0019 (15)
C3 0.047 (2) 0.044 (2) 0.041 (2) −0.002 (2) 0.0050 (16) 0.003 (2)
C4 0.062 (3) 0.047 (3) 0.049 (2) −0.013 (2) −0.008 (2) 0.0012 (19)
C5 0.0341 (19) 0.033 (2) 0.033 (2) 0.0020 (16) 0.0075 (16) 0.0027 (16)
C6 0.0342 (19) 0.031 (2) 0.0260 (18) −0.0051 (16) 0.0071 (15) 0.0024 (15)
C7 0.036 (2) 0.035 (2) 0.0315 (19) 0.0044 (16) 0.0048 (16) 0.0009 (15)
C8 0.043 (2) 0.043 (2) 0.035 (2) 0.0007 (18) 0.0164 (19) −0.0040 (17)
C9 0.048 (2) 0.047 (2) 0.0228 (18) −0.0021 (19) 0.0103 (16) −0.0042 (16)
C10 0.043 (2) 0.040 (2) 0.0249 (18) −0.0066 (17) 0.0016 (16) 0.0001 (16)
C11 0.0327 (19) 0.043 (2) 0.0275 (19) −0.0011 (16) 0.0046 (15) −0.0031 (16)
Br2 0.0659 (3) 0.0819 (3) 0.0352 (2) −0.0148 (2) −0.01050 (19) 0.0139 (2)
S2 0.0369 (5) 0.0487 (6) 0.0268 (4) −0.0048 (4) 0.0045 (4) −0.0016 (4)
O2 0.0395 (16) 0.067 (2) 0.0380 (16) 0.0097 (14) 0.0065 (12) 0.0014 (14)
N5 0.0415 (19) 0.053 (2) 0.0224 (16) −0.0015 (15) 0.0075 (13) 0.0009 (14)
N6 0.0423 (19) 0.055 (2) 0.0233 (16) −0.0035 (16) 0.0007 (14) −0.0044 (14)
N7 0.0297 (16) 0.0400 (18) 0.0248 (15) 0.0023 (14) 0.0068 (12) −0.0010 (13)
N8 0.0317 (16) 0.0435 (19) 0.0213 (16) −0.0013 (14) 0.0081 (13) −0.0012 (13)
C12 0.0308 (19) 0.042 (2) 0.0233 (17) 0.0038 (16) 0.0039 (14) 0.0010 (15)
C13 0.034 (2) 0.037 (2) 0.0237 (18) 0.0016 (16) −0.0003 (15) −0.0048 (15)
C14 0.0397 (19) 0.043 (2) 0.0373 (19) −0.0010 (18) 0.0062 (15) −0.0065 (17)
C15 0.054 (2) 0.041 (3) 0.047 (2) −0.0062 (19) −0.0110 (19) −0.0010 (19)
C16 0.042 (2) 0.038 (2) 0.0264 (19) 0.0009 (17) 0.0117 (17) 0.0011 (16)
C17 0.039 (2) 0.034 (2) 0.0251 (18) −0.0053 (16) 0.0059 (15) 0.0012 (15)
C18 0.043 (2) 0.033 (2) 0.032 (2) −0.0094 (17) 0.0074 (17) −0.0015 (16)
C19 0.049 (2) 0.052 (2) 0.032 (2) −0.0018 (19) 0.0139 (18) −0.0057 (18)
C20 0.059 (3) 0.053 (3) 0.0261 (19) −0.015 (2) 0.0159 (18) −0.0049 (17)
C21 0.053 (2) 0.049 (2) 0.0247 (18) −0.0162 (19) −0.0019 (17) 0.0030 (16)
C22 0.041 (2) 0.043 (2) 0.037 (2) 0.0005 (18) 0.0072 (17) 0.0034 (17)

Geometric parameters (Å, º)

Br1—C10 1.896 (4) Br2—C21 1.901 (4)
S1—C1 1.673 (4) S2—C12 1.672 (4)
O1—C7 1.356 (4) O2—C18 1.343 (4)
O1—H1A 0.8200 O2—H2 0.8200
N1—C1 1.336 (4) N5—C12 1.352 (4)
N1—N2 1.383 (4) N5—N6 1.367 (4)
N1—H1 0.8600 N5—H5A 0.8600
N2—C2 1.288 (4) N6—C13 1.303 (4)
N3—C1 1.380 (4) N7—C12 1.374 (4)
N3—C2 1.391 (4) N7—C13 1.379 (4)
N3—N4 1.403 (4) N7—N8 1.404 (4)
N4—C5 1.275 (4) N8—C16 1.271 (4)
C2—C3 1.474 (5) C13—C14 1.476 (5)
C3—C4 1.527 (5) C14—C15 1.525 (5)
C3—H3A 0.9700 C14—H14A 0.9700
C3—H3B 0.9700 C14—H14B 0.9700
C4—H4A 0.9600 C15—H15A 0.9600
C4—H4B 0.9600 C15—H15B 0.9600
C4—H4C 0.9600 C15—H15C 0.9600
C5—C6 1.461 (5) C16—C17 1.453 (5)
C5—H5 0.9300 C16—H16 0.9300
C6—C7 1.393 (5) C17—C18 1.408 (5)
C6—C11 1.394 (5) C17—C22 1.409 (5)
C7—C8 1.392 (5) C18—C19 1.396 (5)
C8—C9 1.384 (5) C19—C20 1.366 (5)
C8—H8 0.9300 C19—H19 0.9300
C9—C10 1.390 (5) C20—C21 1.384 (5)
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.379 (5) C21—C22 1.382 (5)
C11—H11 0.9300 C22—H22 0.9300
C7—O1—H1A 109.5 C18—O2—H2 109.5
C1—N1—N2 114.3 (3) C12—N5—N6 114.6 (3)
C1—N1—H1 122.8 C12—N5—H5A 122.7
N2—N1—H1 122.8 N6—N5—H5A 122.7
C2—N2—N1 104.4 (3) C13—N6—N5 104.3 (3)
C1—N3—C2 108.9 (3) C12—N7—C13 109.7 (3)
C1—N3—N4 127.7 (3) C12—N7—N8 127.4 (3)
C2—N3—N4 122.8 (3) C13—N7—N8 122.3 (3)
C5—N4—N3 114.8 (3) C16—N8—N7 114.8 (3)
N1—C1—N3 102.2 (3) N5—C12—N7 101.5 (3)
N1—C1—S1 129.1 (3) N5—C12—S2 128.7 (3)
N3—C1—S1 128.7 (3) N7—C12—S2 129.8 (3)
N2—C2—N3 110.2 (3) N6—C13—N7 109.9 (3)
N2—C2—C3 126.3 (3) N6—C13—C14 126.4 (3)
N3—C2—C3 123.5 (3) N7—C13—C14 123.7 (3)
C2—C3—C4 112.1 (3) C13—C14—C15 112.8 (3)
C2—C3—H3A 109.2 C13—C14—H14A 109.0
C4—C3—H3A 109.2 C15—C14—H14A 109.0
C2—C3—H3B 109.2 C13—C14—H14B 109.0
C4—C3—H3B 109.2 C15—C14—H14B 109.0
H3A—C3—H3B 107.9 H14A—C14—H14B 107.8
C3—C4—H4A 109.5 C14—C15—H15A 109.5
C3—C4—H4B 109.5 C14—C15—H15B 109.5
H4A—C4—H4B 109.5 H15A—C15—H15B 109.5
C3—C4—H4C 109.5 C14—C15—H15C 109.5
H4A—C4—H4C 109.5 H15A—C15—H15C 109.5
H4B—C4—H4C 109.5 H15B—C15—H15C 109.5
N4—C5—C6 121.3 (3) N8—C16—C17 120.8 (3)
N4—C5—H5 119.4 N8—C16—H16 119.6
C6—C5—H5 119.4 C17—C16—H16 119.6
C7—C6—C11 119.7 (3) C18—C17—C22 118.7 (3)
C7—C6—C5 123.2 (3) C18—C17—C16 123.3 (3)
C11—C6—C5 117.0 (3) C22—C17—C16 117.9 (3)
O1—C7—C8 116.6 (3) O2—C18—C19 117.3 (3)
O1—C7—C6 123.9 (3) O2—C18—C17 123.3 (3)
C8—C7—C6 119.6 (3) C19—C18—C17 119.4 (4)
C9—C8—C7 120.5 (3) C20—C19—C18 121.1 (4)
C9—C8—H8 119.7 C20—C19—H19 119.4
C7—C8—H8 119.7 C18—C19—H19 119.4
C8—C9—C10 119.6 (3) C19—C20—C21 119.8 (3)
C8—C9—H9 120.2 C19—C20—H20 120.1
C10—C9—H9 120.2 C21—C20—H20 120.1
C11—C10—C9 120.4 (3) C22—C21—C20 120.8 (4)
C11—C10—Br1 120.2 (3) C22—C21—Br2 118.8 (3)
C9—C10—Br1 119.4 (3) C20—C21—Br2 120.3 (3)
C10—C11—C6 120.1 (3) C21—C22—C17 119.9 (3)
C10—C11—H11 119.9 C21—C22—H22 120.0
C6—C11—H11 119.9 C17—C22—H22 120.0
C1—N1—N2—C2 0.5 (4) C12—N5—N6—C13 0.2 (4)
C1—N3—N4—C5 51.3 (5) C12—N7—N8—C16 −51.8 (5)
C2—N3—N4—C5 −139.1 (4) C13—N7—N8—C16 138.0 (4)
N2—N1—C1—N3 −0.7 (4) N6—N5—C12—N7 0.7 (4)
N2—N1—C1—S1 178.4 (3) N6—N5—C12—S2 −177.9 (3)
C2—N3—C1—N1 0.6 (4) C13—N7—C12—N5 −1.3 (4)
N4—N3—C1—N1 171.4 (3) N8—N7—C12—N5 −172.5 (3)
C2—N3—C1—S1 −178.5 (3) C13—N7—C12—S2 177.3 (3)
N4—N3—C1—S1 −7.7 (5) N8—N7—C12—S2 6.1 (5)
N1—N2—C2—N3 −0.1 (4) N5—N6—C13—N7 −1.0 (4)
N1—N2—C2—C3 179.9 (3) N5—N6—C13—C14 −179.0 (3)
C1—N3—C2—N2 −0.4 (4) C12—N7—C13—N6 1.6 (4)
N4—N3—C2—N2 −171.7 (3) N8—N7—C13—N6 173.3 (3)
C1—N3—C2—C3 179.7 (3) C12—N7—C13—C14 179.6 (3)
N4—N3—C2—C3 8.3 (5) N8—N7—C13—C14 −8.7 (5)
N2—C2—C3—C4 −0.3 (6) N6—C13—C14—C15 −1.0 (6)
N3—C2—C3—C4 179.6 (3) N7—C13—C14—C15 −178.7 (3)
N3—N4—C5—C6 −176.1 (3) N7—N8—C16—C17 176.8 (3)
N4—C5—C6—C7 7.9 (6) N8—C16—C17—C18 −6.3 (6)
N4—C5—C6—C11 −172.8 (3) N8—C16—C17—C22 176.1 (3)
C11—C6—C7—O1 177.0 (3) C22—C17—C18—O2 −179.2 (3)
C5—C6—C7—O1 −3.7 (6) C16—C17—C18—O2 3.3 (6)
C11—C6—C7—C8 −2.4 (5) C22—C17—C18—C19 2.0 (6)
C5—C6—C7—C8 176.9 (3) C16—C17—C18—C19 −175.6 (4)
O1—C7—C8—C9 −176.4 (3) O2—C18—C19—C20 178.4 (4)
C6—C7—C8—C9 3.1 (6) C17—C18—C19—C20 −2.8 (6)
C7—C8—C9—C10 −1.1 (6) C18—C19—C20—C21 0.3 (6)
C8—C9—C10—C11 −1.6 (6) C19—C20—C21—C22 3.0 (6)
C8—C9—C10—Br1 177.2 (3) C19—C20—C21—Br2 −179.5 (3)
C9—C10—C11—C6 2.2 (6) C20—C21—C22—C17 −3.7 (6)
Br1—C10—C11—C6 −176.5 (3) Br2—C21—C22—C17 178.8 (3)
C7—C6—C11—C10 −0.2 (5) C18—C17—C22—C21 1.2 (5)
C5—C6—C11—C10 −179.5 (3) C16—C17—C22—C21 178.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S2i 0.86 2.45 3.309 (3) 176
N5—H5A···S1ii 0.86 2.44 3.302 (3) 177
O1—H1A···N4 0.82 2.02 2.712 (4) 141
O2—H2···N8 0.82 1.99 2.695 (4) 143

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FY2115).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orapen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Demirbas, N. (2004). Eur. J. Med. Chem. 39, 793–804. [DOI] [PubMed]
  5. Demirbas, A., Sahin, D., Demirbas, N. & Alpay-Karaoglu, S. (2009). Eur. J. Med. Chem. 44, 2896–2903. [DOI] [PubMed]
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Kochikyan, T. V., Samvelyan, M. A., Arutyunyan, E. V., Arutyunyan, V. S., Avetisyan, A. A., Malakyan, M. G., Vardevanyan, L. A. & Badzhinyan, S. A. (2011). Pharm. Chem. J. 44, 525–527.
  8. Kumar, H., Javed, A. S., Khan, A. S. & Amir, M. (2008). Eur. J. Med. Chem. 43, 2688–2698. [DOI] [PubMed]
  9. Pannu, A. P. S. & Hundal, M. S. (2011). J. Chem. Crystallogr. 41, 1447–1450.
  10. Popiołek, Ł., Kosikowska, U., Mazur, L., Dobosz, M. & Malm, A. (2013). Med. Chem. Res. 22, 3134–3147. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Singhal, N., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chem. Pharm. Res. 3, 126–133.
  14. Sraa, A. M. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 898–905. [DOI] [PubMed]
  15. Todoulou, O., Papadaki-Valiraki, A., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29E, 611–620.
  16. Wu, X., Yuan, C.-X., Ma, L., Zhai, K.-L. & Zhu, M.-L. (2012). Acta Cryst. E68, o1674. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814016833/fy2115sup1.cif

e-70-0o881-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016833/fy2115Isup2.hkl

e-70-0o881-Isup2.hkl (255.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016833/fy2115Isup3.cml

CCDC reference: 1015277

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES