Abstract
In the crystal structure of the title compound, C11H15N3O2S, the C—N—N—C and C—N—C—C torsion angles involving the benzene ring and ethyl group are 11.91 (15) and 99.4 (2)°, respectively. An intramolecular N—H⋯N hydrogen bond is observed. In the crystal, molecules are linked via N—H⋯O and N—H⋯S hydrogen bonds into a three-dimensional hydrogen bonded network. Finally, the molecules show a herringbone arrangement when viewed along the a axis.
Keywords: Synthesis thiosemicarbazones, biological properties of thiosemicarbazones., crystal structure
Related literature
For the synthesis and biological applications of thiosemicarbazone derivatives, see: Lovejoy & Richardson (2008 ▶). For one of the first reports on the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902 ▶).
Experimental
Crystal data
C11H15N3O2S
M r = 253.32
Orthorhombic,
a = 8.9962 (2) Å
b = 16.1159 (2) Å
c = 8.5491 (1) Å
V = 1239.46 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.26 mm−1
T = 293 K
0.15 × 0.13 × 0.12 mm
Data collection
Nonius Kappa CCD diffractometer
Absorption correction: multi-scan (Blessing, 1995 ▶) T min = 0.939, T max = 0.990
22619 measured reflections
2837 independent reflections
2590 reflections with I > 2σ(I)
R int = 0.050
Refinement
R[F 2 > 2σ(F 2)] = 0.030
wR(F 2) = 0.071
S = 1.01
2837 reflections
214 parameters
1 restraint
All H-atom parameters refined
Δρmax = 0.15 e Å−3
Δρmin = −0.23 e Å−3
Absolute structure: Flack (1983 ▶)
Absolute structure parameter: 0.03 (6)
Data collection: COLLECT (Nonius, 1998 ▶); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: HKL, DENZO (Otwinowski & Minor, 1997 ▶) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536814016018/bx2462sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016018/bx2462Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016018/bx2462Isup3.cml
CCDC reference: 1013029
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—HO2⋯S1i | 0.86 (3) | 2.26 (3) | 3.1144 (14) | 173 (2) |
| N3—HN3⋯N1 | 0.77 (2) | 2.25 (2) | 2.643 (2) | 112.4 (19) |
| N3—HN3⋯O2ii | 0.77 (2) | 2.43 (2) | 3.023 (2) | 135 (2) |
| N3—HN3⋯O1ii | 0.77 (2) | 2.52 (2) | 3.061 (2) | 128.3 (19) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
We gratefully acknowledge financial support by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers. BRSF acknowledges the CNPq/UFS for the award of a PIBIC scholarship.
supplementary crystallographic information
S1. Related Literature
For Biological activities of thiosemicarbazone derivatives see Lovejoy & Richardson, 2008.
S2. Comment
Thiosemicarbazone derivatives have a wide range of biological properties. For example, some thiosemicarbazones show anti-proliferative activity against tumor cells (Lovejoy & Richardson, 2008). As part of our study on synthesis and structural chemistry of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a derivative of vanillin.
In the title compound, C11H15N3O2S, Fig. 1, the C-N-N-C and C–N–C–C fragments makes torsion angles of 11.91 (15)° and 99.4 (2)° with the benzene ring and ethyl group respectively. The molecule matches the asymmetric unit (Fig. 1) and shows a trans conformation at the C7—N1 and N1—N2 bonds. In the crystal structure the molecules are linked via N—H···O and O—H···S hydrogen bonds interactions into a crystal packing which shows a herringbone arrangement viewed along the a-axis,Fig.2. Additionally, one N—H···N intramolecular hydrogen bond interactions is observed, Table 1,
S3. Experimental
Starting materials were commercially available and were used without further purification. The synthesis of the title compound was adapted to a procedure reported previously (Freund & Schander, 1902). In a hydrochloric acid catalyzed reaction, a mixture of vanillin (10 mmol) and 4-ethyl-3-thiosemicarbazide (10 mmol) in ethanol (80 ml), was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction were obtained in ethanol by the slow evaporation of solvent.
S4. Refinement
All hydrogen atoms were localized in a difference density Fourier map. Their positions and isotropic displacement parameters were refined.
Figures
Fig. 1.

The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Crystal structure of the title compound viewed along the b-axis. The herringbone pattern of the crystal packing along the a-axis is observed.
Crystal data
| C11H15N3O2S | F(000) = 536 |
| Mr = 253.32 | Dx = 1.358 Mg m−3 |
| Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2c -2n | Cell parameters from 31793 reflections |
| a = 8.9962 (2) Å | θ = 2.9–27.5° |
| b = 16.1159 (2) Å | µ = 0.26 mm−1 |
| c = 8.5491 (1) Å | T = 293 K |
| V = 1239.46 (3) Å3 | Prism, yellow |
| Z = 4 | 0.15 × 0.13 × 0.12 mm |
Data collection
| Nonius Kappa CCD diffractometer | 2837 independent reflections |
| Radiation source: fine-focus sealed tube, Nonius KappaCCD | 2590 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.050 |
| Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
| CCD rotation images, thick slices scans | h = −11→11 |
| Absorption correction: multi-scan (Blessing, 1995) | k = −20→20 |
| Tmin = 0.939, Tmax = 0.990 | l = −11→11 |
| 22619 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.030 | All H-atom parameters refined |
| wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3575P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.01 | (Δ/σ)max < 0.001 |
| 2837 reflections | Δρmax = 0.15 e Å−3 |
| 214 parameters | Δρmin = −0.23 e Å−3 |
| 1 restraint | Absolute structure: Flack (1983), ???? Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (6) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | −0.13718 (5) | −0.18485 (2) | −0.32559 (6) | 0.02743 (12) | |
| O1 | 0.63909 (13) | 0.01577 (7) | −0.84398 (16) | 0.0256 (3) | |
| O2 | 0.77231 (14) | −0.08623 (8) | −1.02714 (15) | 0.0254 (3) | |
| N1 | 0.21760 (16) | −0.15200 (8) | −0.58307 (17) | 0.0196 (3) | |
| N2 | 0.10393 (16) | −0.18657 (9) | −0.49707 (18) | 0.0212 (3) | |
| N3 | 0.03634 (18) | −0.05684 (9) | −0.41867 (19) | 0.0210 (3) | |
| C1 | 0.42396 (18) | −0.17397 (10) | −0.7544 (2) | 0.0189 (3) | |
| C2 | 0.47154 (19) | −0.09078 (10) | −0.7448 (2) | 0.0190 (3) | |
| C3 | 0.58669 (18) | −0.06350 (9) | −0.8387 (2) | 0.0195 (3) | |
| C4 | 0.65784 (18) | −0.11894 (11) | −0.9413 (2) | 0.0193 (3) | |
| C5 | 0.61052 (19) | −0.20035 (11) | −0.9515 (2) | 0.0211 (3) | |
| C6 | 0.49352 (18) | −0.22780 (10) | −0.8580 (2) | 0.0208 (3) | |
| C7 | 0.29879 (19) | −0.20341 (11) | −0.6600 (2) | 0.0199 (3) | |
| C8 | 0.00811 (18) | −0.13729 (10) | −0.4166 (2) | 0.0194 (3) | |
| C9 | −0.0612 (2) | 0.00841 (10) | −0.3584 (2) | 0.0242 (4) | |
| C10 | −0.1481 (2) | 0.04899 (14) | −0.4896 (2) | 0.0328 (4) | |
| C11 | 0.5543 (2) | 0.07826 (11) | −0.7660 (3) | 0.0306 (4) | |
| HO2 | 0.795 (3) | −0.1171 (16) | −1.105 (3) | 0.052 (8)* | |
| HN2 | 0.094 (2) | −0.2387 (13) | −0.487 (2) | 0.019 (5)* | |
| HN3 | 0.109 (2) | −0.0442 (13) | −0.461 (2) | 0.022 (5)* | |
| H2 | 0.425 (2) | −0.0549 (12) | −0.676 (2) | 0.022 (5)* | |
| H5 | 0.664 (2) | −0.2354 (12) | −1.029 (2) | 0.021 (5)* | |
| H6 | 0.461 (2) | −0.2851 (12) | −0.866 (2) | 0.026 (5)* | |
| H7 | 0.2793 (19) | −0.2637 (12) | −0.662 (2) | 0.017 (4)* | |
| H9A | 0.008 (2) | 0.0526 (12) | −0.307 (2) | 0.023 (5)* | |
| H9B | −0.129 (2) | −0.0134 (12) | −0.279 (2) | 0.022 (5)* | |
| H10A | −0.078 (3) | 0.0751 (15) | −0.573 (3) | 0.047 (7)* | |
| H10B | −0.212 (2) | 0.0056 (12) | −0.544 (3) | 0.028 (5)* | |
| H10C | −0.215 (3) | 0.0921 (15) | −0.450 (3) | 0.046 (6)* | |
| H11A | 0.604 (2) | 0.1297 (13) | −0.788 (3) | 0.032 (6)* | |
| H11B | 0.448 (3) | 0.0771 (13) | −0.803 (3) | 0.038 (6)* | |
| H11C | 0.553 (3) | 0.0652 (14) | −0.645 (3) | 0.045 (7)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0304 (2) | 0.02365 (19) | 0.0283 (2) | −0.00829 (17) | 0.0134 (2) | −0.0068 (2) |
| O1 | 0.0267 (6) | 0.0195 (5) | 0.0305 (7) | −0.0043 (5) | 0.0100 (6) | −0.0047 (6) |
| O2 | 0.0264 (6) | 0.0264 (6) | 0.0234 (7) | −0.0068 (5) | 0.0098 (5) | −0.0045 (5) |
| N1 | 0.0187 (7) | 0.0211 (7) | 0.0190 (7) | −0.0021 (6) | 0.0033 (6) | 0.0017 (6) |
| N2 | 0.0221 (7) | 0.0163 (7) | 0.0253 (8) | −0.0019 (6) | 0.0089 (6) | 0.0004 (6) |
| N3 | 0.0207 (7) | 0.0180 (7) | 0.0244 (8) | −0.0002 (6) | 0.0054 (6) | 0.0001 (6) |
| C1 | 0.0183 (8) | 0.0217 (8) | 0.0168 (7) | 0.0011 (6) | −0.0002 (7) | 0.0038 (6) |
| C2 | 0.0181 (8) | 0.0205 (8) | 0.0182 (8) | 0.0023 (6) | 0.0014 (7) | −0.0012 (7) |
| C3 | 0.0207 (7) | 0.0184 (7) | 0.0192 (8) | −0.0006 (6) | −0.0001 (7) | 0.0011 (7) |
| C4 | 0.0191 (8) | 0.0235 (8) | 0.0154 (7) | −0.0009 (6) | 0.0022 (7) | 0.0021 (6) |
| C5 | 0.0217 (8) | 0.0217 (8) | 0.0200 (9) | 0.0020 (6) | 0.0019 (7) | −0.0016 (7) |
| C6 | 0.0209 (8) | 0.0188 (7) | 0.0226 (8) | −0.0005 (6) | 0.0008 (7) | 0.0013 (7) |
| C7 | 0.0212 (8) | 0.0202 (8) | 0.0182 (8) | 0.0006 (7) | 0.0006 (7) | 0.0013 (7) |
| C8 | 0.0208 (8) | 0.0213 (8) | 0.0162 (7) | −0.0021 (7) | 0.0002 (7) | −0.0015 (7) |
| C9 | 0.0299 (9) | 0.0190 (7) | 0.0238 (9) | 0.0026 (7) | 0.0081 (8) | −0.0024 (7) |
| C10 | 0.0321 (10) | 0.0347 (10) | 0.0316 (10) | 0.0121 (9) | 0.0042 (9) | −0.0003 (9) |
| C11 | 0.0323 (11) | 0.0192 (9) | 0.0404 (12) | −0.0005 (8) | 0.0100 (9) | −0.0054 (8) |
Geometric parameters (Å, º)
| S1—C8 | 1.7035 (17) | C2—H2 | 0.93 (2) |
| O1—C3 | 1.3625 (18) | C3—C4 | 1.406 (2) |
| O1—C11 | 1.429 (2) | C4—C5 | 1.382 (2) |
| O2—C4 | 1.370 (2) | C5—C6 | 1.394 (2) |
| O2—HO2 | 0.86 (3) | C5—H5 | 0.99 (2) |
| N1—C7 | 1.286 (2) | C6—H6 | 0.97 (2) |
| N1—N2 | 1.377 (2) | C7—N1 | 1.286 (2) |
| N2—C8 | 1.359 (2) | C7—H7 | 0.988 (18) |
| N2—N1 | 1.377 (2) | C9—C10 | 1.515 (3) |
| N2—HN2 | 0.85 (2) | C9—H9A | 1.046 (19) |
| N3—C8 | 1.321 (2) | C9—H9B | 0.98 (2) |
| N3—C9 | 1.463 (2) | C10—H10A | 1.04 (3) |
| N3—HN3 | 0.77 (2) | C10—H10B | 1.02 (2) |
| C1—C6 | 1.389 (2) | C10—H10C | 0.98 (3) |
| C1—C2 | 1.410 (2) | C11—H11A | 0.96 (2) |
| C1—C7 | 1.464 (2) | C11—H11B | 1.00 (2) |
| C2—C3 | 1.382 (2) | C11—H11C | 1.06 (3) |
| C3—O1—C11 | 117.43 (14) | C5—C6—H6 | 119.1 (12) |
| C4—O2—HO2 | 112.0 (18) | N1—C7—C1 | 120.67 (15) |
| C7—N1—N2 | 115.75 (14) | N1—C7—C1 | 120.67 (15) |
| C8—N2—N1 | 120.31 (14) | N1—C7—H7 | 122.7 (11) |
| C8—N2—N1 | 120.31 (14) | N1—C7—H7 | 122.7 (11) |
| C8—N2—HN2 | 117.5 (13) | C1—C7—H7 | 116.6 (11) |
| N1—N2—HN2 | 122.1 (13) | N3—C8—N2 | 116.42 (15) |
| N1—N2—HN2 | 122.1 (13) | N3—C8—S1 | 126.51 (13) |
| C8—N3—C9 | 125.82 (15) | N2—C8—S1 | 117.07 (12) |
| C8—N3—HN3 | 115.3 (16) | N3—C9—C10 | 111.04 (15) |
| C9—N3—HN3 | 118.8 (16) | N3—C9—H9A | 106.1 (10) |
| C6—C1—C2 | 119.64 (15) | C10—C9—H9A | 109.0 (11) |
| C6—C1—C7 | 119.69 (15) | N3—C9—H9B | 111.2 (11) |
| C2—C1—C7 | 120.63 (15) | C10—C9—H9B | 110.1 (11) |
| C3—C2—C1 | 119.74 (15) | H9A—C9—H9B | 109.3 (16) |
| C3—C2—H2 | 120.7 (12) | C9—C10—H10A | 111.8 (14) |
| C1—C2—H2 | 119.5 (12) | C9—C10—H10B | 109.3 (12) |
| O1—C3—C2 | 125.22 (15) | H10A—C10—H10B | 108.0 (18) |
| O1—C3—C4 | 114.69 (14) | C9—C10—H10C | 111.4 (15) |
| C2—C3—C4 | 120.09 (14) | H10A—C10—H10C | 109 (2) |
| O2—C4—C5 | 124.25 (15) | H10B—C10—H10C | 107.4 (17) |
| O2—C4—C3 | 115.59 (14) | O1—C11—H11A | 105.6 (12) |
| C5—C4—C3 | 120.17 (15) | O1—C11—H11B | 110.1 (13) |
| C4—C5—C6 | 119.85 (16) | H11A—C11—H11B | 113.4 (17) |
| C4—C5—H5 | 115.7 (11) | O1—C11—H11C | 108.9 (13) |
| C6—C5—H5 | 124.4 (11) | H11A—C11—H11C | 111.5 (19) |
| C1—C6—C5 | 120.50 (15) | H11B—C11—H11C | 107 (2) |
| C1—C6—H6 | 120.4 (12) | ||
| C7—N1—N2—C8 | −177.34 (16) | C7—C1—C6—C5 | 178.46 (16) |
| C6—C1—C2—C3 | 0.1 (3) | C4—C5—C6—C1 | 0.0 (3) |
| C7—C1—C2—C3 | −177.84 (15) | N2—N1—C7—C1 | −179.36 (15) |
| C11—O1—C3—C2 | −10.6 (3) | C6—C1—C7—N1 | −168.55 (16) |
| C11—O1—C3—C4 | 168.32 (16) | C2—C1—C7—N1 | 9.4 (3) |
| C1—C2—C3—O1 | 177.64 (16) | C6—C1—C7—N1 | −168.55 (16) |
| C1—C2—C3—C4 | −1.2 (3) | C2—C1—C7—N1 | 9.4 (3) |
| O1—C3—C4—O2 | 2.2 (2) | C9—N3—C8—N2 | 171.47 (17) |
| C2—C3—C4—O2 | −178.86 (14) | C9—N3—C8—S1 | −7.6 (3) |
| O1—C3—C4—C5 | −177.30 (15) | N1—N2—C8—N3 | −4.0 (2) |
| C2—C3—C4—C5 | 1.6 (3) | N1—N2—C8—N3 | −4.0 (2) |
| O2—C4—C5—C6 | 179.51 (15) | N1—N2—C8—S1 | 175.21 (13) |
| C3—C4—C5—C6 | −1.0 (3) | N1—N2—C8—S1 | 175.21 (13) |
| C2—C1—C6—C5 | 0.5 (2) | C8—N3—C9—C10 | −99.4 (2) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—HO2···S1i | 0.86 (3) | 2.26 (3) | 3.1144 (14) | 173 (2) |
| N3—HN3···N1 | 0.77 (2) | 2.25 (2) | 2.643 (2) | 112.4 (19) |
| N3—HN3···O2ii | 0.77 (2) | 2.43 (2) | 3.023 (2) | 135 (2) |
| N3—HN3···O1ii | 0.77 (2) | 2.52 (2) | 3.061 (2) | 128.3 (19) |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y, z+1/2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: BX2462).
References
- Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.
- Lovejoy, D. & Richardson, D. R. (2008). The development of iron chelators for the treatment of cancer - Aroylhydrazone and thiosemicarbazone chelators for cancer treatment, pp. 1–117. Köln: Lambert Academic Publishing AG & Co. KG.
- Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536814016018/bx2462sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016018/bx2462Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016018/bx2462Isup3.cml
CCDC reference: 1013029
Additional supporting information: crystallographic information; 3D view; checkCIF report

