Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 17;70(Pt 8):o868. doi: 10.1107/S1600536814016018

4-Hy­droxy-3-meth­oxy­benzaldehyde 4-ethyl­thio­semicarbazone

Adriano Bof de Oliveira a,*, Johannes Beck b, Jörg Daniels b, Bárbara Regina Santos Feitosa a
PMCID: PMC4158485  PMID: 25249915

Abstract

In the crystal structure of the title compound, C11H15N3O2S, the C—N—N—C and C—N—C—C torsion angles involving the benzene ring and ethyl group are 11.91 (15) and 99.4 (2)°, respectively. An intra­molecular N—H⋯N hydrogen bond is observed. In the crystal, mol­ecules are linked via N—H⋯O and N—H⋯S hydrogen bonds into a three-dimensional hydrogen bonded network. Finally, the molecules show a herringbone arrangement when viewed along the a axis.

Keywords: Synthesis thio­semicarbazones, biological properties of thio­semicarbazones., crystal structure

Related literature  

For the synthesis and biological applications of thio­semicarbazone derivatives, see: Lovejoy & Richardson (2008). For one of the first reports on the synthesis of thio­semicarbazone derivatives, see: Freund & Schander (1902).graphic file with name e-70-0o868-scheme1.jpg

Experimental  

Crystal data  

  • C11H15N3O2S

  • M r = 253.32

  • Orthorhombic, Inline graphic

  • a = 8.9962 (2) Å

  • b = 16.1159 (2) Å

  • c = 8.5491 (1) Å

  • V = 1239.46 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.12 mm

Data collection  

  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.939, T max = 0.990

  • 22619 measured reflections

  • 2837 independent reflections

  • 2590 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.071

  • S = 1.01

  • 2837 reflections

  • 214 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983)

  • Absolute structure parameter: 0.03 (6)

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL, DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536814016018/bx2462sup1.cif

e-70-0o868-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016018/bx2462Isup2.hkl

e-70-0o868-Isup2.hkl (139.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016018/bx2462Isup3.cml

CCDC reference: 1013029

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—HO2⋯S1i 0.86 (3) 2.26 (3) 3.1144 (14) 173 (2)
N3—HN3⋯N1 0.77 (2) 2.25 (2) 2.643 (2) 112.4 (19)
N3—HN3⋯O2ii 0.77 (2) 2.43 (2) 3.023 (2) 135 (2)
N3—HN3⋯O1ii 0.77 (2) 2.52 (2) 3.061 (2) 128.3 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers. BRSF acknowledges the CNPq/UFS for the award of a PIBIC scholarship.

supplementary crystallographic information

S1. Related Literature

For Biological activities of thio­semicarbazone derivatives see Lovejoy & Richardson, 2008.

S2. Comment

Thiosemicarbazone derivatives have a wide range of biological properties. For example, some thiosemicarbazones show anti-proliferative activity against tumor cells (Lovejoy & Richardson, 2008). As part of our study on synthesis and structural chemistry of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a derivative of vanillin.

In the title compound, C11H15N3O2S, Fig. 1, the C-N-N-C and C–N–C–C fragments makes torsion angles of 11.91 (15)° and 99.4 (2)° with the benzene ring and ethyl group respectively. The molecule matches the asymmetric unit (Fig. 1) and shows a trans conformation at the C7—N1 and N1—N2 bonds. In the crystal structure the molecules are linked via N—H···O and O—H···S hydrogen bonds interactions into a crystal packing which shows a herringbone arrangement viewed along the a-axis,Fig.2. Additionally, one N—H···N intramolecular hydrogen bond interactions is observed, Table 1,

S3. Experimental

Starting materials were commercially available and were used without further purification. The synthesis of the title compound was adapted to a procedure reported previously (Freund & Schander, 1902). In a hydrochloric acid catalyzed reaction, a mixture of vanillin (10 mmol) and 4-ethyl-3-thiosemicarbazide (10 mmol) in ethanol (80 ml), was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction were obtained in ethanol by the slow evaporation of solvent.

S4. Refinement

All hydrogen atoms were localized in a difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal structure of the title compound viewed along the b-axis. The herringbone pattern of the crystal packing along the a-axis is observed.

Crystal data

C11H15N3O2S F(000) = 536
Mr = 253.32 Dx = 1.358 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 31793 reflections
a = 8.9962 (2) Å θ = 2.9–27.5°
b = 16.1159 (2) Å µ = 0.26 mm1
c = 8.5491 (1) Å T = 293 K
V = 1239.46 (3) Å3 Prism, yellow
Z = 4 0.15 × 0.13 × 0.12 mm

Data collection

Nonius Kappa CCD diffractometer 2837 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD 2590 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 3.4°
CCD rotation images, thick slices scans h = −11→11
Absorption correction: multi-scan (Blessing, 1995) k = −20→20
Tmin = 0.939, Tmax = 0.990 l = −11→11
22619 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 All H-atom parameters refined
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3575P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2837 reflections Δρmax = 0.15 e Å3
214 parameters Δρmin = −0.23 e Å3
1 restraint Absolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.03 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.13718 (5) −0.18485 (2) −0.32559 (6) 0.02743 (12)
O1 0.63909 (13) 0.01577 (7) −0.84398 (16) 0.0256 (3)
O2 0.77231 (14) −0.08623 (8) −1.02714 (15) 0.0254 (3)
N1 0.21760 (16) −0.15200 (8) −0.58307 (17) 0.0196 (3)
N2 0.10393 (16) −0.18657 (9) −0.49707 (18) 0.0212 (3)
N3 0.03634 (18) −0.05684 (9) −0.41867 (19) 0.0210 (3)
C1 0.42396 (18) −0.17397 (10) −0.7544 (2) 0.0189 (3)
C2 0.47154 (19) −0.09078 (10) −0.7448 (2) 0.0190 (3)
C3 0.58669 (18) −0.06350 (9) −0.8387 (2) 0.0195 (3)
C4 0.65784 (18) −0.11894 (11) −0.9413 (2) 0.0193 (3)
C5 0.61052 (19) −0.20035 (11) −0.9515 (2) 0.0211 (3)
C6 0.49352 (18) −0.22780 (10) −0.8580 (2) 0.0208 (3)
C7 0.29879 (19) −0.20341 (11) −0.6600 (2) 0.0199 (3)
C8 0.00811 (18) −0.13729 (10) −0.4166 (2) 0.0194 (3)
C9 −0.0612 (2) 0.00841 (10) −0.3584 (2) 0.0242 (4)
C10 −0.1481 (2) 0.04899 (14) −0.4896 (2) 0.0328 (4)
C11 0.5543 (2) 0.07826 (11) −0.7660 (3) 0.0306 (4)
HO2 0.795 (3) −0.1171 (16) −1.105 (3) 0.052 (8)*
HN2 0.094 (2) −0.2387 (13) −0.487 (2) 0.019 (5)*
HN3 0.109 (2) −0.0442 (13) −0.461 (2) 0.022 (5)*
H2 0.425 (2) −0.0549 (12) −0.676 (2) 0.022 (5)*
H5 0.664 (2) −0.2354 (12) −1.029 (2) 0.021 (5)*
H6 0.461 (2) −0.2851 (12) −0.866 (2) 0.026 (5)*
H7 0.2793 (19) −0.2637 (12) −0.662 (2) 0.017 (4)*
H9A 0.008 (2) 0.0526 (12) −0.307 (2) 0.023 (5)*
H9B −0.129 (2) −0.0134 (12) −0.279 (2) 0.022 (5)*
H10A −0.078 (3) 0.0751 (15) −0.573 (3) 0.047 (7)*
H10B −0.212 (2) 0.0056 (12) −0.544 (3) 0.028 (5)*
H10C −0.215 (3) 0.0921 (15) −0.450 (3) 0.046 (6)*
H11A 0.604 (2) 0.1297 (13) −0.788 (3) 0.032 (6)*
H11B 0.448 (3) 0.0771 (13) −0.803 (3) 0.038 (6)*
H11C 0.553 (3) 0.0652 (14) −0.645 (3) 0.045 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0304 (2) 0.02365 (19) 0.0283 (2) −0.00829 (17) 0.0134 (2) −0.0068 (2)
O1 0.0267 (6) 0.0195 (5) 0.0305 (7) −0.0043 (5) 0.0100 (6) −0.0047 (6)
O2 0.0264 (6) 0.0264 (6) 0.0234 (7) −0.0068 (5) 0.0098 (5) −0.0045 (5)
N1 0.0187 (7) 0.0211 (7) 0.0190 (7) −0.0021 (6) 0.0033 (6) 0.0017 (6)
N2 0.0221 (7) 0.0163 (7) 0.0253 (8) −0.0019 (6) 0.0089 (6) 0.0004 (6)
N3 0.0207 (7) 0.0180 (7) 0.0244 (8) −0.0002 (6) 0.0054 (6) 0.0001 (6)
C1 0.0183 (8) 0.0217 (8) 0.0168 (7) 0.0011 (6) −0.0002 (7) 0.0038 (6)
C2 0.0181 (8) 0.0205 (8) 0.0182 (8) 0.0023 (6) 0.0014 (7) −0.0012 (7)
C3 0.0207 (7) 0.0184 (7) 0.0192 (8) −0.0006 (6) −0.0001 (7) 0.0011 (7)
C4 0.0191 (8) 0.0235 (8) 0.0154 (7) −0.0009 (6) 0.0022 (7) 0.0021 (6)
C5 0.0217 (8) 0.0217 (8) 0.0200 (9) 0.0020 (6) 0.0019 (7) −0.0016 (7)
C6 0.0209 (8) 0.0188 (7) 0.0226 (8) −0.0005 (6) 0.0008 (7) 0.0013 (7)
C7 0.0212 (8) 0.0202 (8) 0.0182 (8) 0.0006 (7) 0.0006 (7) 0.0013 (7)
C8 0.0208 (8) 0.0213 (8) 0.0162 (7) −0.0021 (7) 0.0002 (7) −0.0015 (7)
C9 0.0299 (9) 0.0190 (7) 0.0238 (9) 0.0026 (7) 0.0081 (8) −0.0024 (7)
C10 0.0321 (10) 0.0347 (10) 0.0316 (10) 0.0121 (9) 0.0042 (9) −0.0003 (9)
C11 0.0323 (11) 0.0192 (9) 0.0404 (12) −0.0005 (8) 0.0100 (9) −0.0054 (8)

Geometric parameters (Å, º)

S1—C8 1.7035 (17) C2—H2 0.93 (2)
O1—C3 1.3625 (18) C3—C4 1.406 (2)
O1—C11 1.429 (2) C4—C5 1.382 (2)
O2—C4 1.370 (2) C5—C6 1.394 (2)
O2—HO2 0.86 (3) C5—H5 0.99 (2)
N1—C7 1.286 (2) C6—H6 0.97 (2)
N1—N2 1.377 (2) C7—N1 1.286 (2)
N2—C8 1.359 (2) C7—H7 0.988 (18)
N2—N1 1.377 (2) C9—C10 1.515 (3)
N2—HN2 0.85 (2) C9—H9A 1.046 (19)
N3—C8 1.321 (2) C9—H9B 0.98 (2)
N3—C9 1.463 (2) C10—H10A 1.04 (3)
N3—HN3 0.77 (2) C10—H10B 1.02 (2)
C1—C6 1.389 (2) C10—H10C 0.98 (3)
C1—C2 1.410 (2) C11—H11A 0.96 (2)
C1—C7 1.464 (2) C11—H11B 1.00 (2)
C2—C3 1.382 (2) C11—H11C 1.06 (3)
C3—O1—C11 117.43 (14) C5—C6—H6 119.1 (12)
C4—O2—HO2 112.0 (18) N1—C7—C1 120.67 (15)
C7—N1—N2 115.75 (14) N1—C7—C1 120.67 (15)
C8—N2—N1 120.31 (14) N1—C7—H7 122.7 (11)
C8—N2—N1 120.31 (14) N1—C7—H7 122.7 (11)
C8—N2—HN2 117.5 (13) C1—C7—H7 116.6 (11)
N1—N2—HN2 122.1 (13) N3—C8—N2 116.42 (15)
N1—N2—HN2 122.1 (13) N3—C8—S1 126.51 (13)
C8—N3—C9 125.82 (15) N2—C8—S1 117.07 (12)
C8—N3—HN3 115.3 (16) N3—C9—C10 111.04 (15)
C9—N3—HN3 118.8 (16) N3—C9—H9A 106.1 (10)
C6—C1—C2 119.64 (15) C10—C9—H9A 109.0 (11)
C6—C1—C7 119.69 (15) N3—C9—H9B 111.2 (11)
C2—C1—C7 120.63 (15) C10—C9—H9B 110.1 (11)
C3—C2—C1 119.74 (15) H9A—C9—H9B 109.3 (16)
C3—C2—H2 120.7 (12) C9—C10—H10A 111.8 (14)
C1—C2—H2 119.5 (12) C9—C10—H10B 109.3 (12)
O1—C3—C2 125.22 (15) H10A—C10—H10B 108.0 (18)
O1—C3—C4 114.69 (14) C9—C10—H10C 111.4 (15)
C2—C3—C4 120.09 (14) H10A—C10—H10C 109 (2)
O2—C4—C5 124.25 (15) H10B—C10—H10C 107.4 (17)
O2—C4—C3 115.59 (14) O1—C11—H11A 105.6 (12)
C5—C4—C3 120.17 (15) O1—C11—H11B 110.1 (13)
C4—C5—C6 119.85 (16) H11A—C11—H11B 113.4 (17)
C4—C5—H5 115.7 (11) O1—C11—H11C 108.9 (13)
C6—C5—H5 124.4 (11) H11A—C11—H11C 111.5 (19)
C1—C6—C5 120.50 (15) H11B—C11—H11C 107 (2)
C1—C6—H6 120.4 (12)
C7—N1—N2—C8 −177.34 (16) C7—C1—C6—C5 178.46 (16)
C6—C1—C2—C3 0.1 (3) C4—C5—C6—C1 0.0 (3)
C7—C1—C2—C3 −177.84 (15) N2—N1—C7—C1 −179.36 (15)
C11—O1—C3—C2 −10.6 (3) C6—C1—C7—N1 −168.55 (16)
C11—O1—C3—C4 168.32 (16) C2—C1—C7—N1 9.4 (3)
C1—C2—C3—O1 177.64 (16) C6—C1—C7—N1 −168.55 (16)
C1—C2—C3—C4 −1.2 (3) C2—C1—C7—N1 9.4 (3)
O1—C3—C4—O2 2.2 (2) C9—N3—C8—N2 171.47 (17)
C2—C3—C4—O2 −178.86 (14) C9—N3—C8—S1 −7.6 (3)
O1—C3—C4—C5 −177.30 (15) N1—N2—C8—N3 −4.0 (2)
C2—C3—C4—C5 1.6 (3) N1—N2—C8—N3 −4.0 (2)
O2—C4—C5—C6 179.51 (15) N1—N2—C8—S1 175.21 (13)
C3—C4—C5—C6 −1.0 (3) N1—N2—C8—S1 175.21 (13)
C2—C1—C6—C5 0.5 (2) C8—N3—C9—C10 −99.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—HO2···S1i 0.86 (3) 2.26 (3) 3.1144 (14) 173 (2)
N3—HN3···N1 0.77 (2) 2.25 (2) 2.643 (2) 112.4 (19)
N3—HN3···O2ii 0.77 (2) 2.43 (2) 3.023 (2) 135 (2)
N3—HN3···O1ii 0.77 (2) 2.52 (2) 3.061 (2) 128.3 (19)

Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BX2462).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.
  5. Lovejoy, D. & Richardson, D. R. (2008). The development of iron chelators for the treatment of cancer - Aroylhydrazone and thiosemicarbazone chelators for cancer treatment, pp. 1–117. Köln: Lambert Academic Publishing AG & Co. KG.
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536814016018/bx2462sup1.cif

e-70-0o868-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016018/bx2462Isup2.hkl

e-70-0o868-Isup2.hkl (139.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016018/bx2462Isup3.cml

CCDC reference: 1013029

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES