Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 2;70(Pt 8):o841. doi: 10.1107/S1600536814015049

6-Fluoro­indan-1-one

Benjamin R Slaw a, Joseph M Tanski a,*
PMCID: PMC4158499  PMID: 25249894

Abstract

The title compound, C9H7FO, crystallizes with two independent mol­ecules in the asymmetric unit, in which corresponding bond lengths are the same within experimental error. The five-membered ring in each molecule is almost planar, with r.m.s. deviations of 0.016 and 0.029 Å. In the crystal, mol­ecules form sheets parallel to (1 0 0) via C—H⋯O and C—H⋯F inter­actions with F⋯F contacts [3.1788 (16) and 3.2490 (16) Å] between the sheets.

Keywords: crystal structure

Related literature  

For the synthesis of 6-fluoroindan-1-one, see: Cui et al. (2004) and for its use in synthesis, see: Musso et al. (2003); Ślusarczyk et al. (2007); Yin et al. (2013). For the structure of the parent comound, 1-indanone, see: Morin et al. (1974) and Ruiz et al. (2004), the later containing a detailed analysis of the hydrogen bonding. For a related isomeric structure, 5-fluoroindan-1-one, see: Garcia et al. (1995). For more information on C—H⋯X inter­actions, see Desiraju & Steiner (1999) and on fluorine–fluorine inter­actions in the solid state, see: Baker et al. (2012). For van der Waals radii, see: Bondi (1964).graphic file with name e-70-0o841-scheme1.jpg

Experimental  

Crystal data  

  • C9H7FO

  • M r = 150.15

  • Monoclinic, Inline graphic

  • a = 7.1900 (4) Å

  • b = 12.4811 (6) Å

  • c = 15.8685 (8) Å

  • β = 99.453 (1)°

  • V = 1404.69 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 125 K

  • 0.37 × 0.26 × 0.04 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007) T min = 0.91, T max = 1.00

  • 22840 measured reflections

  • 4298 independent reflections

  • 3345 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.121

  • S = 1.03

  • 4298 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814015049/kj2241sup1.cif

e-70-0o841-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015049/kj2241Isup2.hkl

e-70-0o841-Isup2.hkl (235.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015049/kj2241Isup3.cml

CCDC reference: 1010372

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.47 3.3873 (14) 161
C14—H14⋯O2ii 0.95 2.65 3.5107 (14) 150
C2—H2B⋯F2iii 0.99 2.46 3.2062 (13) 132
C6—H6⋯O2iv 0.95 2.65 3.5338 (14) 154
C11—H11B⋯O1v 0.99 2.52 3.3348 (13) 140
C15—H15⋯F1vi 0.95 2.52 3.3664 (13) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

S1. Comment

The titular compound 6-fluoroindan-1-one may be synthesized by the Tb(OTf)3-catalyzed cyclization of 3-(4-fluorophenyl)propanoic acid (Cui et al., 2004). The substance has found laboratory applications in the synthesis of α-arylated compounds (Yin et al., 2013), the synthesis of ethyl 2-(6-fluoro-1-hydroxy-1-indanyl)acetate, a potent muscle relaxant derivative (Musso et al., 2003), and in the creation of methylene-bridged biologically active pteridine derivatives for potential hepatitis C treatments (Ślusarczyk et al., 2007). The crystal structure of the parent compound, 1-indanone, has been reported previously (Morin et al., 1974; Ruiz et al., 2004), as has the structure of an isomer of the title compound, 5-fluoroindan-1-one (Garcia et al., 1995).

The titular compound crystallizes with two molecules of 6-fluoroindan-1-one in the asymmetric unit (Figure 1). The carbonyl C—O bond lengths of 1.2172 (13) and 1.2179 (13) Å, as for the other bond lengths, are the same within the experimental error between the two independent molecules. These carbonyl C—O bond lengths are similar to those found in the structure of the parent comound, 1-indanone, 1.217 (2) Å (Ruiz et al., 2004), and in the structure of the isomeric compound 5-fluoroindan-1-one, 1.218 (2) Å (Garcia et al.,1995). The C—F bond lengths in 6-fluoroindan-1-one, 1.3592 (12) and 1.3596 (11) Å, are also very similar to that found in the structure of the isomeric compound 5-fluoroindan-1-one, 1.354 (2) Å.

The molecules pack together in the solid state to form a two-dimensional sheet parallel to the 1 0 0 plane via several intermolecular C—H···O and C—F···H interactions (Figure 2, Table 2) measuring slightly less than the sum of the van der Waals radii (Bondi, 1964). The oxygen atom in each independent molecule forms two C—H···O interactions, while each independent molecule also forms one C—F···H interaction. For a discussion of C—H···X interactions, see Desiraju & Steiner (1999). There are also two long F···F interactions linking the two-dimensional sheets, (Figure 3, Table 1), which are somewhat longer than the sum of the van der Waals radii, 2.94 Å (Bondi, 1964). For a discussion of fluorine-fluorine interactions, which can vary widely in their metrical parameters and strength, see Baker et al. (2012).

S2. Experimental

Crystalline 6-fluoroindan-1-one (I) was purchased from Aldrich Chemical Company, USA.

S3. Refinement

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 and 0.99 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl and methylene C-atoms, respectively. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Figures

Fig. 1.

Fig. 1.

A view of the two independent molecules of the title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the C—H···O and C—H···F interactions in the packing of 6-fluoroindan-1-one forming a sheet parallel to the 1 0 0 plane. Displacement ellipsoids are shown at the 50% probability level. Symmetry codes: (i) -x + 1, -y + 1, -z; (iii) -x + 3/2, y + 1/2, -z + 1/2; (iv) -x + 1/2, y - 1/2, -z + 1/2; (v) x + 1/2, -y + 3/2, z + 1/2; (vi) x + 1/2, -y + 3/2, z - 1/2; (vii) -x + 1, -y + 1, -z + 1.

Fig. 3.

Fig. 3.

A view of the intermolecular F···F interactions in the packing of 6-fluoroindan-1-one. Distances F1···F1i 3.1788 (16) Å, F2···F2ii 3.2490 (16) Å. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms removed for clarity. Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z.

Crystal data

C9H7FO F(000) = 624
Mr = 150.15 Dx = 1.420 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.1900 (4) Å Cell parameters from 9796 reflections
b = 12.4811 (6) Å θ = 2.6–30.5°
c = 15.8685 (8) Å µ = 0.11 mm1
β = 99.453 (1)° T = 125 K
V = 1404.69 (13) Å3 Plate, colourless
Z = 8 0.37 × 0.26 × 0.04 mm

Data collection

Bruker APEXII CCD diffractometer 4298 independent reflections
Radiation source: fine-focus sealed tube 3345 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.3333 pixels mm-1 θmax = 30.5°, θmin = 2.1°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker 2007) k = −17→17
Tmin = 0.91, Tmax = 1.00 l = −22→22
22840 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.2949P] where P = (Fo2 + 2Fc2)/3
4298 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.57983 (11) 0.61035 (7) 0.04096 (4) 0.03306 (19)
F2 0.08173 (11) 0.60328 (6) 0.05655 (4) 0.03227 (19)
O1 0.58188 (12) 0.56668 (7) 0.37571 (5) 0.02425 (18)
O2 0.10060 (13) 0.64991 (7) 0.39289 (5) 0.0290 (2)
C1 0.63562 (14) 0.65257 (8) 0.35245 (6) 0.01661 (19)
C2 0.69797 (16) 0.74848 (9) 0.40858 (7) 0.0209 (2)
H2A 0.8032 0.7285 0.4543 0.025*
H2B 0.5922 0.7756 0.4354 0.025*
C3 0.76215 (15) 0.83443 (8) 0.35003 (7) 0.0198 (2)
H3A 0.6904 0.9017 0.3526 0.024*
H3B 0.8983 0.8498 0.3666 0.024*
C4 0.72154 (14) 0.78578 (8) 0.26152 (7) 0.0170 (2)
C5 0.74667 (15) 0.83033 (9) 0.18320 (7) 0.0217 (2)
H5 0.7957 0.9007 0.1806 0.026*
C6 0.69871 (16) 0.76990 (10) 0.10921 (7) 0.0238 (2)
H6 0.7148 0.7986 0.0555 0.029*
C7 0.62701 (15) 0.66714 (9) 0.11444 (7) 0.0218 (2)
C8 0.60039 (14) 0.62037 (9) 0.19016 (7) 0.0188 (2)
H8 0.5513 0.5499 0.1923 0.023*
C9 0.64971 (14) 0.68253 (8) 0.26346 (6) 0.01567 (19)
C10 0.14218 (14) 0.56199 (9) 0.36835 (6) 0.0184 (2)
C11 0.19726 (16) 0.46437 (9) 0.42394 (7) 0.0214 (2)
H11A 0.0886 0.4385 0.4493 0.026*
H11B 0.3016 0.4821 0.4707 0.026*
C12 0.26009 (15) 0.37845 (9) 0.36496 (7) 0.0195 (2)
H12A 0.3964 0.363 0.381 0.023*
H12B 0.1884 0.3112 0.3678 0.023*
C13 0.21781 (14) 0.42705 (8) 0.27662 (6) 0.01607 (19)
C14 0.24187 (15) 0.38210 (9) 0.19853 (7) 0.0195 (2)
H14 0.2889 0.3112 0.196 0.023*
C15 0.19576 (15) 0.44297 (9) 0.12451 (7) 0.0212 (2)
H15 0.2117 0.4142 0.0707 0.025*
C16 0.12627 (15) 0.54614 (9) 0.13004 (6) 0.0204 (2)
C17 0.10060 (15) 0.59323 (8) 0.20572 (7) 0.0189 (2)
H17 0.0525 0.6639 0.2079 0.023*
C18 0.14943 (14) 0.53097 (8) 0.27900 (6) 0.01578 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0391 (4) 0.0439 (5) 0.0154 (3) 0.0011 (3) 0.0024 (3) −0.0091 (3)
F2 0.0434 (4) 0.0365 (4) 0.0151 (3) −0.0035 (3) −0.0006 (3) 0.0100 (3)
O1 0.0307 (4) 0.0212 (4) 0.0204 (4) −0.0055 (3) 0.0027 (3) 0.0036 (3)
O2 0.0401 (5) 0.0244 (4) 0.0227 (4) 0.0082 (4) 0.0053 (3) −0.0045 (3)
C1 0.0165 (4) 0.0173 (5) 0.0158 (4) 0.0016 (4) 0.0022 (3) −0.0003 (3)
C2 0.0274 (5) 0.0192 (5) 0.0165 (5) −0.0002 (4) 0.0044 (4) −0.0029 (4)
C3 0.0217 (5) 0.0158 (5) 0.0220 (5) −0.0010 (4) 0.0041 (4) −0.0034 (4)
C4 0.0163 (4) 0.0160 (5) 0.0192 (5) 0.0021 (3) 0.0039 (4) 0.0005 (4)
C5 0.0210 (5) 0.0195 (5) 0.0254 (5) 0.0013 (4) 0.0067 (4) 0.0051 (4)
C6 0.0224 (5) 0.0307 (6) 0.0193 (5) 0.0050 (4) 0.0070 (4) 0.0061 (4)
C7 0.0214 (5) 0.0287 (6) 0.0149 (5) 0.0047 (4) 0.0018 (4) −0.0040 (4)
C8 0.0184 (5) 0.0195 (5) 0.0179 (5) 0.0009 (4) 0.0013 (4) −0.0024 (4)
C9 0.0166 (4) 0.0154 (4) 0.0151 (4) 0.0010 (3) 0.0027 (3) −0.0008 (3)
C10 0.0187 (5) 0.0205 (5) 0.0159 (4) 0.0010 (4) 0.0026 (3) −0.0004 (4)
C11 0.0262 (5) 0.0234 (5) 0.0147 (4) 0.0006 (4) 0.0037 (4) 0.0026 (4)
C12 0.0214 (5) 0.0191 (5) 0.0182 (5) 0.0026 (4) 0.0040 (4) 0.0048 (4)
C13 0.0156 (4) 0.0166 (5) 0.0160 (4) −0.0011 (3) 0.0027 (3) 0.0012 (3)
C14 0.0189 (5) 0.0195 (5) 0.0206 (5) −0.0004 (4) 0.0044 (4) −0.0027 (4)
C15 0.0212 (5) 0.0270 (5) 0.0159 (5) −0.0047 (4) 0.0045 (4) −0.0039 (4)
C16 0.0209 (5) 0.0258 (5) 0.0135 (4) −0.0047 (4) 0.0003 (4) 0.0049 (4)
C17 0.0200 (5) 0.0178 (5) 0.0178 (5) 0.0000 (4) −0.0002 (4) 0.0029 (4)
C18 0.0157 (4) 0.0169 (5) 0.0145 (4) −0.0007 (3) 0.0019 (3) 0.0002 (3)

Geometric parameters (Å, º)

F1—C7 1.3592 (12) C7—C8 1.3772 (15)
F1—F1i 3.1788 (16) C8—C9 1.3947 (14)
F2—C16 1.3596 (11) C8—H8 0.95
F2—F2ii 3.2490 (16) C10—C18 1.4790 (14)
O1—C1 1.2172 (13) C10—C11 1.5181 (15)
O2—C10 1.2179 (13) C11—C12 1.5392 (15)
C1—C9 1.4802 (14) C11—H11A 0.99
C1—C2 1.5152 (14) C11—H11B 0.99
C2—C3 1.5387 (15) C12—C13 1.5118 (14)
C2—H2A 0.99 C12—H12A 0.99
C2—H2B 0.99 C12—H12B 0.99
C3—C4 1.5140 (14) C13—C18 1.3898 (14)
C3—H3A 0.99 C13—C14 1.3967 (14)
C3—H3B 0.99 C14—C15 1.3924 (15)
C4—C9 1.3905 (14) C14—H14 0.95
C4—C5 1.4000 (14) C15—C16 1.3892 (16)
C5—C6 1.3904 (16) C15—H15 0.95
C5—H5 0.95 C16—C17 1.3764 (15)
C6—C7 1.3898 (17) C17—C18 1.3946 (14)
C6—H6 0.95 C17—H17 0.95
F1···F1i 3.1788 (16) F2···F2ii 3.2490 (16)
C7—F1—F1i 145.61 (8) C8—C9—C1 127.39 (9)
C16—F2—F2ii 94.04 (6) O2—C10—C18 126.26 (10)
O1—C1—C9 125.92 (9) O2—C10—C11 126.27 (10)
O1—C1—C2 126.55 (9) C18—C10—C11 107.46 (9)
C9—C1—C2 107.53 (8) C10—C11—C12 106.29 (8)
C1—C2—C3 106.56 (8) C10—C11—H11A 110.5
C1—C2—H2A 110.4 C12—C11—H11A 110.5
C3—C2—H2A 110.4 C10—C11—H11B 110.5
C1—C2—H2B 110.4 C12—C11—H11B 110.5
C3—C2—H2B 110.4 H11A—C11—H11B 108.7
H2A—C2—H2B 108.6 C13—C12—C11 104.47 (8)
C4—C3—C2 104.43 (8) C13—C12—H12A 110.9
C4—C3—H3A 110.9 C11—C12—H12A 110.9
C2—C3—H3A 110.9 C13—C12—H12B 110.9
C4—C3—H3B 110.9 C11—C12—H12B 110.9
C2—C3—H3B 110.9 H12A—C12—H12B 108.9
H3A—C3—H3B 108.9 C18—C13—C14 119.66 (9)
C9—C4—C5 119.36 (10) C18—C13—C12 111.56 (9)
C9—C4—C3 111.52 (9) C14—C13—C12 128.76 (10)
C5—C4—C3 129.12 (10) C15—C14—C13 118.83 (10)
C6—C5—C4 118.94 (10) C15—C14—H14 120.6
C6—C5—H5 120.5 C13—C14—H14 120.6
C4—C5—H5 120.5 C16—C15—C14 119.39 (9)
C7—C6—C5 119.55 (10) C16—C15—H15 120.3
C7—C6—H6 120.2 C14—C15—H15 120.3
C5—C6—H6 120.2 F2—C16—C17 118.56 (10)
F1—C7—C8 118.46 (10) F2—C16—C15 117.94 (9)
F1—C7—C6 118.21 (10) C17—C16—C15 123.51 (9)
C8—C7—C6 123.32 (10) C16—C17—C18 115.98 (10)
C7—C8—C9 116.05 (10) C16—C17—H17 122.0
C7—C8—H8 122.0 C18—C17—H17 122.0
C9—C8—H8 122.0 C13—C18—C17 122.62 (9)
C4—C9—C8 122.78 (9) C13—C18—C10 109.79 (9)
C4—C9—C1 109.83 (9) C17—C18—C10 127.58 (10)
O2—C10—C18—C17 −3.94 (18) C3—C4—C5—C6 −179.93 (10)
O2—C10—C18—C13 174.94 (11) C2—C3—C4—C9 −2.21 (11)
O2—C10—C11—C12 −173.07 (11) C2—C3—C4—C5 177.79 (10)
O1—C1—C9—C8 1.81 (17) C2—C1—C9—C8 −177.56 (10)
O1—C1—C9—C4 −178.32 (10) C2—C1—C9—C4 2.31 (11)
O1—C1—C2—C3 177.04 (10) C1—C2—C3—C4 3.48 (11)
F2ii—F2—C16—C17 −142.91 (9) C18—C13—C14—C15 −0.21 (15)
F2ii—F2—C16—C15 37.18 (10) C18—C10—C11—C12 6.57 (11)
F2—C16—C17—C18 −179.74 (9) C16—C17—C18—C13 −0.78 (15)
F1i—F1—C7—C8 −1.14 (19) C16—C17—C18—C10 177.97 (10)
F1i—F1—C7—C6 179.25 (9) C15—C16—C17—C18 0.17 (16)
F1—C7—C8—C9 −179.49 (9) C14—C15—C16—F2 −179.69 (9)
C9—C4—C5—C6 0.07 (15) C14—C15—C16—C17 0.40 (16)
C9—C1—C2—C3 −3.60 (11) C14—C13—C18—C17 0.82 (15)
C7—C8—C9—C4 0.06 (15) C14—C13—C18—C10 −178.13 (9)
C7—C8—C9—C1 179.91 (10) C13—C14—C15—C16 −0.38 (15)
C6—C7—C8—C9 0.10 (16) C12—C13—C18—C17 179.76 (9)
C5—C6—C7—F1 179.42 (9) C12—C13—C18—C10 0.81 (12)
C5—C6—C7—C8 −0.16 (17) C12—C13—C14—C15 −178.95 (10)
C5—C4—C9—C8 −0.14 (15) C11—C12—C13—C18 3.30 (11)
C5—C4—C9—C1 179.98 (9) C11—C12—C13—C14 −177.87 (10)
C4—C5—C6—C7 0.07 (16) C11—C10—C18—C17 176.42 (10)
C3—C4—C9—C8 179.86 (9) C11—C10—C18—C13 −4.70 (12)
C3—C4—C9—C1 −0.02 (12) C10—C11—C12—C13 −5.93 (11)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1iii 0.95 2.47 3.3873 (14) 161
C14—H14···O2iv 0.95 2.65 3.5107 (14) 150
C2—H2B···F2v 0.99 2.46 3.2062 (13) 132
C6—H6···O2vi 0.95 2.65 3.5338 (14) 154
C11—H11B···O1vii 0.99 2.52 3.3348 (13) 140
C15—H15···F1i 0.95 2.52 3.3664 (13) 148

Symmetry codes: (i) −x+1, −y+1, −z; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) x+1/2, −y+3/2, z−1/2; (vii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: KJ2241).

References

  1. Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435–1444. [DOI] [PubMed]
  2. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  3. Bruker (2007). SAINT, SADABS and APEX2 Bruxer AXS Inc., Madison, Wisconsin, USA.
  4. Cui, D., Zhang, C., Kawamura, M. & Shimada, S. (2004). Tetrahedron Lett. 45, 1741–1745.
  5. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond Oxford University Press.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Garcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301–304.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Morin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461–469.
  10. Musso, D. L., Cochran, F. R., Kelley, J. L., McLean, E. W., Selph, J. L., Rigdon, G. C., Orr, G. F., Davis, R. G., Cooper, B. R., Styles, V. L., Thompson, J. B. & Hall, W. R. (2003). J. Med. Chem. 46, 399–408. [DOI] [PubMed]
  11. Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33–46.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Ślusarczyk, M., DeBorggraeve, W. M., Toppet, S. & Hoornaert, G. J. (2007). Eur. J. Org. Chem. 18, 2987–2994.
  14. Yin, H., Liu, M. & Shao, L. (2013). Org. Lett. 15, 6042–6045. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814015049/kj2241sup1.cif

e-70-0o841-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015049/kj2241Isup2.hkl

e-70-0o841-Isup2.hkl (235.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015049/kj2241Isup3.cml

CCDC reference: 1010372

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES