Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 2;70(Pt 8):m286–m287. doi: 10.1107/S1600536814014366

Crystal structure of 1,1-di­acetyl­ferrocene dihydrazone

Namig G Shikhaliyev a,*, Atash V Gurbanov a, Vasily M Muzalevsky b, Valentine G Nenajdenko b, Victor N Khrustalev c
PMCID: PMC4158501  PMID: 25249874

Abstract

The title compound, [Fe(C7H9N2)2], crystallizes with two crystallographically independent mol­ecules in the unit cell. These represent the chiral atropoisomers distinguished by the mutual arrangement of the two acet­yl–hydrazone groups with a cis conformation of the C=N bonds. The two cyclo­penta­dienyl (Cp) rings are planar and nearly parallel, the tilt between the two rings being 3.16 (16)° [4.40 (18)° for the second independent mol­ecule]. The conformation of the Cp rings is close to eclipsed, the twist angle being 0.1 (2)° [3.3 (2)°]. The two acet­yl–hydrazone substituents are also planar and are inclined at 13.99 (15)/9.17 (16)° [6.83 (17)/14.59 (15)°] relative to the Cp rings. The Fe—C bond lengths range from 2.035 (3) to 2.065 (2) Å, with an average of 2.050 (3) Å [2.036 (3) to 2.069 (2), average 2.046 (3) Å], which agrees well with those reported for most ferrocene derivatives. In the crystal, the mol­ecules form dimers via two strong N—H⋯N hydrogen bonds. The dimers are linked into a three-dimensional framework by weak N—H⋯N hydrogen bonds.

Keywords: crystal structure, ferrocene, dihydrazone, chiral atropoisomers, hydrogen bonds

Related literature  

For a new catalytic olefination reaction and synthesis of 1,1-di­acetyl­ferrocene dihydrazone, see: Korotchenko et al. (2001); Nenajdenko et al. (2004); Abd-Elzaher et al. (2005). For related compounds, see: Xiao et al. (1999); Fang et al. (2001); Lopez et al. (2003); Zhang et al. (2006); Zhou et al. (2007); Qiao et al. (2009).graphic file with name e-70-0m286-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C7H9N2)2]

  • M r = 298.17

  • Orthorhombic, Inline graphic

  • a = 9.2647 (3) Å

  • b = 12.9260 (4) Å

  • c = 22.0729 (7) Å

  • V = 2643.35 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 295 K

  • 0.26 × 0.22 × 0.18 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.757, T max = 0.822

  • 38476 measured reflections

  • 6542 independent reflections

  • 6096 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.080

  • S = 1.08

  • 6542 reflections

  • 347 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 3181 Friedel pairs

  • Absolute structure parameter: 0.475 (16)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014366/rk2429sup1.cif

e-70-0m286-sup1.cif (54.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014366/rk2429Isup2.hkl

e-70-0m286-Isup2.hkl (320.2KB, hkl)

CCDC reference: 1009066

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N7i 0.90 2.53 3.287 (5) 142
N4—H4A⋯N5ii 0.90 2.29 3.137 (4) 157
N4—H4B⋯N2iii 0.90 2.61 3.421 (4) 150
N6—H6A⋯N3iv 0.90 2.24 3.073 (4) 154
N8—H8B⋯N1v 0.90 2.60 3.497 (5) 178

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank Professor Abel M. Maharramov for fruitful discussions and help with this work.

supplementary crystallographic information

S1. Comment

The Nenajdenko–Shastin catalytic olefination reaction discovered by us recently is a facile approach to functionally substituted halogen–alkenes (Korotchenko et al., 2001; Nenajdenko et al., 2004) (Fig. 1). To study the further synthetic potential of this reaction, we have investigated the olefination of 1,1–diacetylferrocene as a representative of metallocenes. The structure of the reaction product, C14H18FeN4, I, has been unambiguously established by X–ray diffraction analysis. It has been revealed that the olefination of 1,1–diacetylferrocene allows the developing of a simple and convenient way to obtain the halogen–substituted ferrocene–alkenes II–V (Fig. 2).

The I crystallizes in the non–centrosymmetric orthorhombic space group Pna21 with two crystallographically independent molecules in the unit cell. The two crystallographically independent molecules of I represent the chiral atropoisomers (Fig. 3). The atropoisomers are distinguished by the mutual arrangement of the two acetyl–hydrazone groups having the cis–configuration of the C═N bonds (the disposition of the hydrazone groups is right/left and left/right, respectively). The two Cp rings are planar (r.m.s. deviations are 0.001, 0.003 and 0.003, 0.002 for the two crystallographically independent molecules, respectively) and nearly parallel, the ring–tilt between the two rings being 3.16 (16)° and 4.40 (18)° for the two crystallographically independent molecules, respectively. The conformation of the Cp rings is close to eclipsed, which is common for ferrocene derivatives. The twist angle of the Cp rings is defined as the torsion angle between a ring C atom, the two ring centers and the corresponding C atom on the opposite ring. The value of the twist angle in I is 0.1 (2)° and 3.3 (2)° for the two crystallographically independent molecules, respectively. The two acetyl–hydrazone substituents are also planar (r.m.s. deviations are 0.012, 0.026 and 0.018, 0.027 for the two crystallographically independent molecules, respectively) and are inclined relative to the Cp rings at 13.99 (15)°, 9.17 (16)° and 6.83 (17)°, 14.59 (15)° for the two crystallographically independent molecules, respectively. The Fe–C distances are as expected for a ferrocene derivative, ranging from 2.035 (3)Å to 2.065 (2)Å, with an average of 2.050 (3)Å and 2.046 (3)Å (for the two crystallographically independent molecules, respectively), which agree well with those reported for most of ferrocene derivatives (Xiao et al., 1999; Fang et al., 2001; Lopez et al., 2003; Zhang et al., 2006; Zhou et al., 2007; Qiao et al., 2009).

In the crystal, the molecules of I form a dimers via the two strong intermolecular N—H···N hydrogen bonds (Fig. 4, Table 1). Further, the dimers are linked into three–dimensional framework by the additional weak intermolecular N—H···N hydrogen bonds (Fig. 5, Table 1).

S2. Experimental

The product I was prepared by use of the methodics described in Abd-Elzaher et al., 2005. The single crystals of I were obtained by slow crystallization from C2H5OH. M.p. = 452–454 K.

S3. Refinement

The value of Flack parameter 0.475 (16) (3181 Friedel pairs measured, 99%) indicates that, in this case, the absolute structure cannot be objectively determined due to the specifical (pseudo–centrosymmetrical) arrangement of heavy Fe atoms.

The hydrogen atoms of the amino–groups were localized in the difference Fourier maps and refined isotropically with fixed displacement parameters (Uiso(H) = 1.2Ueq(N)). The other hydrogen atoms were placed in calculated positions with with C—H = 0.96Å (Cp H) and 0.98Å (methyl H) and refined within the riding model with fixed isotropic displacement parameters (Uiso(H) = 1.2Ueq(C)).

Figures

Fig. 1.

Fig. 1.

The Nenajdenko–Shastin catalytic olefination reaction as a general method for the preparation of alkenes.

Fig. 2.

Fig. 2.

Reaction of 1,1'–diacetylferrocene with hydrazone in C2H5OH.

Fig. 3.

Fig. 3.

Molecular structure of I with the atom numbering scheme. The two crystallographically independent molecules are presented. Displacement ellipsoids are shown at the 40% probability level. H atoms are depicted as a small spheres of arbitrary radius.

Fig. 4.

Fig. 4.

The H–bonded dimers of I. Dashed lines indicate the intermolecular hydrogen bonds.

Fig. 5.

Fig. 5.

A portion of the crystal packing of I along the a axis. Dashed lines indicate the intermolecular hydrogen bonds.

Crystal data

[Fe(C7H9N2)2] Dx = 1.498 Mg m3
Mr = 298.17 Melting point = 452–454 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 9951 reflections
a = 9.2647 (3) Å θ = 2.7–28.3°
b = 12.9260 (4) Å µ = 1.13 mm1
c = 22.0729 (7) Å T = 295 K
V = 2643.35 (15) Å3 Prism, colourless
Z = 8 0.26 × 0.22 × 0.18 mm
F(000) = 1248

Data collection

Bruker APEXII CCD diffractometer 6542 independent reflections
Radiation source: fine–focus sealed tube 6096 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
φ and ω scans θmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −12→12
Tmin = 0.757, Tmax = 0.822 k = −17→17
38476 measured reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0361P)2 + 1.3943P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
6542 reflections Δρmax = 0.43 e Å3
347 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), 3181 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.475 (16)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.34263 (3) 0.58615 (2) 0.871244 (14) 0.03239 (8)
N1 0.2664 (3) 0.29657 (18) 0.92124 (12) 0.0476 (5)
N2 0.1723 (3) 0.2109 (2) 0.92300 (16) 0.0639 (8)
H2A 0.1429 0.2401 0.9579 0.077*
H2B 0.1236 0.2219 0.8883 0.077*
N3 −0.0469 (3) 0.50928 (18) 0.81874 (11) 0.0417 (5)
N4 −0.1449 (3) 0.4276 (2) 0.81548 (14) 0.0526 (6)
H4A −0.1934 0.4383 0.7807 0.063*
H4B −0.2017 0.4161 0.8479 0.063*
C1 0.3861 (2) 0.42947 (18) 0.87079 (14) 0.0351 (5)
C2 0.4474 (3) 0.4795 (2) 0.81904 (14) 0.0454 (7)
H2 0.4260 0.4634 0.7766 0.054*
C3 0.5449 (3) 0.5561 (3) 0.83974 (16) 0.0500 (7)
H3 0.6023 0.6021 0.8139 0.060*
C4 0.5453 (3) 0.5555 (2) 0.90370 (15) 0.0462 (7)
H4 0.6029 0.6005 0.9300 0.055*
C5 0.4472 (3) 0.4772 (2) 0.92296 (13) 0.0359 (5)
H5 0.4244 0.4598 0.9651 0.043*
C6 0.1226 (2) 0.61015 (17) 0.87053 (13) 0.0344 (4)
C7 0.1880 (3) 0.6567 (2) 0.81897 (13) 0.0397 (6)
H7 0.1663 0.6402 0.7766 0.048*
C8 0.2910 (3) 0.7300 (2) 0.83914 (18) 0.0520 (8)
H6 0.3520 0.7734 0.8132 0.062*
C9 0.2912 (3) 0.7293 (2) 0.90302 (17) 0.0521 (8)
H9 0.3516 0.7725 0.9293 0.062*
C10 0.1877 (3) 0.6548 (2) 0.92278 (13) 0.0421 (6)
H10 0.1647 0.6378 0.9650 0.051*
C11 0.2823 (2) 0.34326 (16) 0.87073 (14) 0.0384 (5)
C12 0.2072 (4) 0.3174 (3) 0.81283 (16) 0.0613 (9)
H12A 0.2265 0.2466 0.8023 0.092*
H12B 0.2418 0.3619 0.7812 0.092*
H12C 0.1051 0.3270 0.8178 0.092*
C13 0.0107 (2) 0.52915 (16) 0.86991 (14) 0.0354 (4)
C14 −0.0273 (4) 0.4756 (3) 0.92816 (15) 0.0536 (8)
H14A −0.0365 0.4027 0.9210 0.080*
H14B −0.1171 0.5024 0.9432 0.080*
H14C 0.0474 0.4876 0.9575 0.080*
Fe2 0.39440 (3) 0.41401 (2) 0.617696 (15) 0.03361 (8)
N5 0.7745 (2) 0.4900 (2) 0.68237 (11) 0.0429 (5)
N6 0.8748 (3) 0.5680 (2) 0.68788 (14) 0.0566 (7)
H6A 0.9232 0.5624 0.7231 0.068*
H6B 0.9449 0.5782 0.6603 0.068*
N7 0.4742 (3) 0.6966 (2) 0.55835 (14) 0.0597 (7)
N8 0.5659 (4) 0.7824 (3) 0.5554 (2) 0.0937 (13)
H8A 0.6512 0.7784 0.5747 0.112*
H8B 0.6117 0.7617 0.5215 0.112*
C15 0.6146 (2) 0.38990 (18) 0.62404 (13) 0.0355 (5)
C16 0.5409 (3) 0.3428 (2) 0.67357 (13) 0.0389 (5)
H16 0.5562 0.3588 0.7165 0.047*
C17 0.4408 (4) 0.2695 (2) 0.65045 (16) 0.0487 (7)
H17 0.3761 0.2259 0.6746 0.058*
C18 0.4501 (4) 0.2712 (3) 0.58659 (16) 0.0528 (8)
H18 0.3935 0.2286 0.5586 0.063*
C19 0.5564 (3) 0.3450 (2) 0.56992 (13) 0.0448 (6)
H19 0.5852 0.3623 0.5284 0.054*
C20 0.3500 (2) 0.5705 (2) 0.61202 (14) 0.0377 (6)
C21 0.2817 (3) 0.5239 (3) 0.66391 (14) 0.0484 (7)
H21 0.2983 0.5437 0.7062 0.058*
C22 0.1879 (3) 0.4450 (3) 0.64422 (18) 0.0571 (8)
H22 0.1276 0.4013 0.6702 0.069*
C23 0.1963 (3) 0.4401 (3) 0.58071 (16) 0.0516 (7)
H23 0.1428 0.3920 0.5547 0.062*
C24 0.2954 (3) 0.5164 (2) 0.56057 (14) 0.0414 (6)
H24 0.3225 0.5294 0.5183 0.050*
C25 0.7274 (2) 0.4692 (2) 0.62853 (12) 0.0378 (5)
C26 0.7826 (4) 0.5208 (3) 0.57320 (15) 0.0534 (8)
H26A 0.8859 0.5155 0.5721 0.080*
H26B 0.7552 0.5925 0.5737 0.080*
H26C 0.7424 0.4880 0.5380 0.080*
C27 0.4541 (3) 0.6555 (2) 0.61029 (14) 0.0459 (6)
C28 0.5251 (4) 0.6872 (3) 0.66867 (18) 0.0707 (11)
H28A 0.6108 0.7263 0.6600 0.106*
H28B 0.5504 0.6266 0.6915 0.106*
H28C 0.4596 0.7290 0.6919 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.02844 (15) 0.02768 (14) 0.04106 (17) 0.00246 (11) 0.00040 (14) −0.00025 (17)
N1 0.0393 (11) 0.0360 (11) 0.0674 (15) −0.0054 (9) −0.0021 (11) 0.0015 (11)
N2 0.0499 (14) 0.0445 (14) 0.097 (2) −0.0114 (11) −0.0001 (14) 0.0051 (14)
N3 0.0365 (11) 0.0384 (11) 0.0504 (12) 0.0030 (9) −0.0059 (9) −0.0025 (10)
N4 0.0412 (12) 0.0508 (14) 0.0660 (16) −0.0094 (10) −0.0077 (11) −0.0048 (12)
C1 0.0322 (11) 0.0333 (11) 0.0398 (12) 0.0096 (7) 0.0016 (13) −0.0027 (11)
C2 0.0478 (15) 0.0489 (17) 0.0395 (13) 0.0177 (13) 0.0081 (12) 0.0014 (12)
C3 0.0342 (13) 0.0475 (17) 0.068 (2) 0.0055 (13) 0.0156 (13) 0.0129 (15)
C4 0.0313 (12) 0.0405 (14) 0.0667 (19) 0.0007 (11) −0.0069 (13) 0.0046 (13)
C5 0.0355 (12) 0.0323 (12) 0.0399 (13) 0.0030 (10) −0.0034 (10) 0.0019 (10)
C6 0.0293 (9) 0.0324 (10) 0.0415 (12) 0.0068 (7) −0.0003 (12) −0.0012 (11)
C7 0.0369 (13) 0.0358 (13) 0.0465 (14) 0.0081 (11) −0.0014 (10) 0.0053 (11)
C8 0.0413 (16) 0.0286 (13) 0.086 (2) −0.0005 (12) 0.0000 (15) 0.0107 (15)
C9 0.0460 (17) 0.0325 (14) 0.078 (2) 0.0036 (13) −0.0045 (16) −0.0140 (15)
C10 0.0382 (13) 0.0437 (14) 0.0446 (14) 0.0076 (11) −0.0024 (11) −0.0113 (11)
C11 0.0365 (10) 0.0282 (9) 0.0505 (12) 0.0065 (8) −0.0044 (12) −0.0049 (12)
C12 0.073 (2) 0.0441 (16) 0.0671 (19) 0.0066 (15) −0.0256 (17) −0.0143 (14)
C13 0.0272 (9) 0.0361 (11) 0.0429 (11) 0.0053 (8) 0.0025 (11) −0.0009 (12)
C14 0.0494 (16) 0.064 (2) 0.0471 (16) −0.0102 (15) 0.0060 (13) 0.0088 (15)
Fe2 0.02893 (15) 0.03346 (16) 0.03846 (16) 0.00323 (11) −0.00165 (14) 0.00044 (17)
N5 0.0377 (10) 0.0441 (12) 0.0469 (12) 0.0003 (9) −0.0073 (9) −0.0050 (10)
N6 0.0481 (13) 0.0602 (16) 0.0615 (16) −0.0142 (12) −0.0100 (12) −0.0059 (13)
N7 0.0462 (13) 0.0500 (15) 0.0828 (19) −0.0088 (11) −0.0112 (13) 0.0192 (14)
N8 0.0643 (19) 0.060 (2) 0.156 (4) −0.0189 (17) −0.021 (2) 0.030 (2)
C15 0.0294 (9) 0.0360 (10) 0.0411 (12) 0.0088 (9) −0.0039 (10) −0.0062 (11)
C16 0.0398 (13) 0.0327 (12) 0.0442 (13) 0.0082 (10) −0.0013 (10) 0.0039 (10)
C17 0.0455 (16) 0.0312 (12) 0.070 (2) 0.0040 (12) −0.0037 (14) 0.0037 (13)
C18 0.0478 (17) 0.0392 (15) 0.071 (2) 0.0039 (14) −0.0113 (15) −0.0182 (15)
C19 0.0422 (14) 0.0487 (15) 0.0436 (14) 0.0091 (12) −0.0010 (11) −0.0120 (12)
C20 0.0332 (12) 0.0370 (12) 0.0427 (14) 0.0122 (8) −0.0009 (11) 0.0019 (12)
C21 0.0515 (16) 0.0501 (17) 0.0436 (15) 0.0243 (13) 0.0083 (12) 0.0032 (12)
C22 0.0354 (13) 0.0590 (19) 0.077 (2) 0.0086 (14) 0.0124 (14) 0.0185 (17)
C23 0.0310 (13) 0.0541 (17) 0.070 (2) −0.0031 (12) −0.0100 (13) 0.0107 (15)
C24 0.0342 (12) 0.0465 (16) 0.0435 (14) 0.0023 (11) −0.0069 (11) 0.0051 (12)
C25 0.0303 (10) 0.0422 (12) 0.0410 (14) 0.0077 (9) −0.0012 (10) −0.0013 (11)
C26 0.0465 (15) 0.067 (2) 0.0473 (15) −0.0066 (14) 0.0024 (12) 0.0045 (15)
C27 0.0417 (12) 0.0357 (12) 0.0603 (17) 0.0104 (10) −0.0149 (13) −0.0058 (13)
C28 0.080 (2) 0.0457 (17) 0.087 (3) 0.0142 (17) −0.032 (2) −0.0236 (17)

Geometric parameters (Å, º)

Fe1—C10 2.035 (3) Fe2—C18 2.036 (3)
Fe1—C9 2.035 (3) Fe2—C21 2.037 (3)
Fe1—C3 2.036 (3) Fe2—C23 2.037 (3)
Fe1—C2 2.042 (3) Fe2—C19 2.040 (3)
Fe1—C8 2.046 (3) Fe2—C22 2.040 (3)
Fe1—C4 2.049 (3) Fe2—C24 2.045 (3)
Fe1—C7 2.053 (3) Fe2—C17 2.048 (3)
Fe1—C5 2.055 (3) Fe2—C16 2.052 (3)
Fe1—C6 2.0624 (19) Fe2—C20 2.067 (3)
Fe1—C1 2.065 (2) Fe2—C15 2.069 (2)
N1—C11 1.276 (4) N5—C25 1.294 (4)
N1—N2 1.410 (3) N5—N6 1.377 (3)
N2—H2A 0.8996 N6—H6A 0.9003
N2—H2B 0.9002 N6—H6B 0.8993
N3—C13 1.276 (4) N7—C27 1.277 (4)
N3—N4 1.394 (3) N7—N8 1.398 (4)
N4—H4A 0.9002 N8—H8A 0.8998
N4—H4B 0.9004 N8—H8B 0.9005
C1—C5 1.424 (4) C15—C16 1.425 (4)
C1—C2 1.430 (4) C15—C19 1.433 (4)
C1—C11 1.472 (3) C15—C25 1.466 (3)
C2—C3 1.416 (5) C16—C17 1.421 (4)
C2—H2 0.9800 C16—H16 0.9800
C3—C4 1.412 (4) C17—C18 1.413 (4)
C3—H3 0.9800 C17—H17 0.9800
C4—C5 1.426 (4) C18—C19 1.420 (5)
C4—H4 0.9800 C18—H18 0.9800
C5—H5 0.9800 C19—H19 0.9800
C6—C7 1.423 (4) C20—C24 1.426 (4)
C6—C10 1.424 (4) C20—C21 1.440 (4)
C6—C13 1.473 (3) C20—C27 1.463 (4)
C7—C8 1.417 (4) C21—C22 1.409 (5)
C7—H7 0.9800 C21—H21 0.9800
C8—C9 1.410 (4) C22—C23 1.405 (5)
C8—H6 0.9800 C22—H22 0.9800
C9—C10 1.427 (5) C23—C24 1.419 (4)
C9—H9 0.9800 C23—H23 0.9800
C10—H10 0.9800 C24—H24 0.9800
C11—C12 1.493 (4) C25—C26 1.483 (4)
C12—H12A 0.9600 C26—H26A 0.9600
C12—H12B 0.9600 C26—H26B 0.9600
C12—H12C 0.9600 C26—H26C 0.9600
C13—C14 1.502 (4) C27—C28 1.504 (4)
C14—H14A 0.9600 C28—H28A 0.9600
C14—H14B 0.9600 C28—H28B 0.9600
C14—H14C 0.9600 C28—H28C 0.9600
C10—Fe1—C9 41.05 (13) C18—Fe2—C21 158.63 (15)
C10—Fe1—C3 157.39 (13) C18—Fe2—C23 104.11 (14)
C9—Fe1—C3 120.43 (14) C21—Fe2—C23 67.87 (14)
C10—Fe1—C2 160.90 (13) C18—Fe2—C19 40.77 (14)
C9—Fe1—C2 156.84 (14) C21—Fe2—C19 160.22 (14)
C3—Fe1—C2 40.63 (14) C23—Fe2—C19 121.90 (13)
C10—Fe1—C8 68.45 (14) C18—Fe2—C22 120.85 (15)
C9—Fe1—C8 40.42 (12) C21—Fe2—C22 40.42 (15)
C3—Fe1—C8 105.66 (13) C23—Fe2—C22 40.32 (14)
C2—Fe1—C8 121.94 (14) C19—Fe2—C22 157.55 (15)
C10—Fe1—C4 122.37 (12) C18—Fe2—C24 119.51 (14)
C9—Fe1—C4 105.66 (13) C21—Fe2—C24 68.13 (12)
C3—Fe1—C4 40.44 (12) C23—Fe2—C24 40.68 (12)
C2—Fe1—C4 68.35 (13) C19—Fe2—C24 107.11 (13)
C8—Fe1—C4 120.73 (13) C22—Fe2—C24 68.24 (13)
C10—Fe1—C7 68.20 (9) C18—Fe2—C17 40.47 (12)
C9—Fe1—C7 68.08 (13) C21—Fe2—C17 124.51 (13)
C3—Fe1—C7 122.33 (13) C23—Fe2—C17 118.79 (13)
C2—Fe1—C7 108.31 (12) C19—Fe2—C17 68.27 (14)
C8—Fe1—C7 40.44 (12) C22—Fe2—C17 105.93 (14)
C4—Fe1—C7 157.23 (12) C24—Fe2—C17 154.40 (13)
C10—Fe1—C5 108.69 (12) C18—Fe2—C16 68.19 (12)
C9—Fe1—C5 122.80 (13) C21—Fe2—C16 110.53 (12)
C3—Fe1—C5 68.01 (12) C23—Fe2—C16 155.69 (12)
C2—Fe1—C5 68.10 (10) C19—Fe2—C16 68.16 (10)
C8—Fe1—C5 157.67 (13) C22—Fe2—C16 122.40 (13)
C4—Fe1—C5 40.66 (11) C24—Fe2—C16 163.21 (11)
C7—Fe1—C5 160.95 (11) C17—Fe2—C16 40.56 (12)
C10—Fe1—C6 40.67 (10) C18—Fe2—C20 156.46 (14)
C9—Fe1—C6 68.55 (11) C21—Fe2—C20 41.08 (12)
C3—Fe1—C6 159.37 (13) C23—Fe2—C20 68.55 (12)
C2—Fe1—C6 124.55 (12) C19—Fe2—C20 122.86 (12)
C8—Fe1—C6 68.26 (11) C22—Fe2—C20 68.83 (13)
C4—Fe1—C6 159.72 (12) C24—Fe2—C20 40.57 (12)
C7—Fe1—C6 40.46 (11) C17—Fe2—C20 162.74 (13)
C5—Fe1—C6 124.97 (11) C16—Fe2—C20 127.34 (11)
C10—Fe1—C1 124.59 (12) C18—Fe2—C15 68.66 (12)
C9—Fe1—C1 159.87 (14) C21—Fe2—C15 125.21 (12)
C3—Fe1—C1 68.40 (11) C23—Fe2—C15 160.19 (13)
C2—Fe1—C1 40.76 (12) C19—Fe2—C15 40.83 (11)
C8—Fe1—C1 159.23 (14) C22—Fe2—C15 159.21 (13)
C4—Fe1—C1 68.48 (11) C24—Fe2—C15 125.55 (11)
C7—Fe1—C1 124.67 (11) C17—Fe2—C15 68.41 (12)
C5—Fe1—C1 40.42 (11) C16—Fe2—C15 40.48 (11)
C6—Fe1—C1 109.90 (9) C20—Fe2—C15 110.34 (9)
C11—N1—N2 117.8 (3) C25—N5—N6 117.5 (3)
N1—N2—H2A 83.2 N5—N6—H6A 110.7
N1—N2—H2B 99.3 N5—N6—H6B 122.4
H2A—N2—H2B 120.7 H6A—N6—H6B 103.7
C13—N3—N4 118.1 (3) C27—N7—N8 117.4 (3)
N3—N4—H4A 104.7 N7—N8—H8A 117.7
N3—N4—H4B 117.7 N7—N8—H8B 95.2
H4A—N4—H4B 114.2 H8A—N8—H8B 87.9
C5—C1—C2 107.0 (2) C16—C15—C19 106.6 (2)
C5—C1—C11 126.0 (3) C16—C15—C25 126.0 (2)
C2—C1—C11 127.0 (3) C19—C15—C25 127.4 (3)
C5—C1—Fe1 69.42 (14) C16—C15—Fe2 69.11 (14)
C2—C1—Fe1 68.76 (15) C19—C15—Fe2 68.49 (14)
C11—C1—Fe1 127.97 (14) C25—C15—Fe2 127.00 (16)
C3—C2—C1 108.2 (3) C17—C16—C15 108.8 (3)
C3—C2—Fe1 69.44 (18) C17—C16—Fe2 69.59 (16)
C1—C2—Fe1 70.48 (15) C15—C16—Fe2 70.41 (14)
C3—C2—H2 125.9 C17—C16—H16 125.6
C1—C2—H2 125.9 C15—C16—H16 125.6
Fe1—C2—H2 125.9 Fe2—C16—H16 125.6
C4—C3—C2 108.7 (3) C18—C17—C16 107.9 (3)
C4—C3—Fe1 70.27 (19) C18—C17—Fe2 69.3 (2)
C2—C3—Fe1 69.93 (17) C16—C17—Fe2 69.86 (16)
C4—C3—H3 125.6 C18—C17—H17 126.0
C2—C3—H3 125.6 C16—C17—H17 126.0
Fe1—C3—H3 125.6 Fe2—C17—H17 126.0
C3—C4—C5 107.5 (3) C17—C18—C19 108.2 (3)
C3—C4—Fe1 69.29 (19) C17—C18—Fe2 70.2 (2)
C5—C4—Fe1 69.92 (15) C19—C18—Fe2 69.76 (17)
C3—C4—H4 126.3 C17—C18—H18 125.9
C5—C4—H4 126.3 C19—C18—H18 125.9
Fe1—C4—H4 126.3 Fe2—C18—H18 125.9
C1—C5—C4 108.7 (3) C18—C19—C15 108.5 (3)
C1—C5—Fe1 70.15 (14) C18—C19—Fe2 69.47 (18)
C4—C5—Fe1 69.42 (16) C15—C19—Fe2 70.68 (14)
C1—C5—H5 125.7 C18—C19—H19 125.8
C4—C5—H5 125.7 C15—C19—H19 125.8
Fe1—C5—H5 125.7 Fe2—C19—H19 125.8
C7—C6—C10 107.2 (2) C24—C20—C21 105.8 (2)
C7—C6—C13 126.4 (3) C24—C20—C27 125.5 (3)
C10—C6—C13 126.4 (3) C21—C20—C27 128.6 (3)
C7—C6—Fe1 69.40 (13) C24—C20—Fe2 68.89 (16)
C10—C6—Fe1 68.63 (13) C21—C20—Fe2 68.31 (16)
C13—C6—Fe1 126.05 (15) C27—C20—Fe2 127.28 (16)
C8—C7—C6 108.6 (3) C22—C21—C20 109.2 (3)
C8—C7—Fe1 69.54 (17) C22—C21—Fe2 69.94 (18)
C6—C7—Fe1 70.14 (13) C20—C21—Fe2 70.61 (15)
C8—C7—H7 125.7 C22—C21—H21 125.4
C6—C7—H7 125.7 C20—C21—H21 125.4
Fe1—C7—H7 125.7 Fe2—C21—H21 125.4
C9—C8—C7 108.1 (3) C23—C22—C21 107.8 (3)
C9—C8—Fe1 69.4 (2) C23—C22—Fe2 69.72 (19)
C7—C8—Fe1 70.02 (16) C21—C22—Fe2 69.64 (17)
C9—C8—H6 126.0 C23—C22—H22 126.1
C7—C8—H6 126.0 C21—C22—H22 126.1
Fe1—C8—H6 126.0 Fe2—C22—H22 126.1
C8—C9—C10 108.0 (3) C22—C23—C24 108.5 (3)
C8—C9—Fe1 70.2 (2) C22—C23—Fe2 69.96 (19)
C10—C9—Fe1 69.47 (16) C24—C23—Fe2 69.97 (16)
C8—C9—H9 126.0 C22—C23—H23 125.8
C10—C9—H9 126.0 C24—C23—H23 125.8
Fe1—C9—H9 126.0 Fe2—C23—H23 125.8
C6—C10—C9 108.1 (3) C23—C24—C20 108.7 (3)
C6—C10—Fe1 70.71 (13) C23—C24—Fe2 69.35 (17)
C9—C10—Fe1 69.48 (17) C20—C24—Fe2 70.54 (15)
C6—C10—H10 126.0 C23—C24—H24 125.7
C9—C10—H10 126.0 C20—C24—H24 125.7
Fe1—C10—H10 126.0 Fe2—C24—H24 125.7
N1—C11—C1 115.7 (3) N5—C25—C15 116.6 (3)
N1—C11—C12 126.0 (2) N5—C25—C26 123.1 (3)
C1—C11—C12 118.3 (3) C15—C25—C26 120.3 (3)
C11—C12—H12A 109.5 C25—C26—H26A 109.5
C11—C12—H12B 109.5 C25—C26—H26B 109.5
H12A—C12—H12B 109.5 H26A—C26—H26B 109.5
C11—C12—H12C 109.5 C25—C26—H26C 109.5
H12A—C12—H12C 109.5 H26A—C26—H26C 109.5
H12B—C12—H12C 109.5 H26B—C26—H26C 109.5
N3—C13—C6 116.5 (3) N7—C27—C20 115.6 (3)
N3—C13—C14 124.5 (2) N7—C27—C28 126.3 (3)
C6—C13—C14 119.0 (3) C20—C27—C28 118.1 (3)
C13—C14—H14A 109.5 C27—C28—H28A 109.5
C13—C14—H14B 109.5 C27—C28—H28B 109.5
H14A—C14—H14B 109.5 H28A—C28—H28B 109.5
C13—C14—H14C 109.5 C27—C28—H28C 109.5
H14A—C14—H14C 109.5 H28A—C28—H28C 109.5
H14B—C14—H14C 109.5 H28B—C28—H28C 109.5
C10—Fe1—C1—C5 −77.91 (18) C18—Fe2—C15—C16 −80.99 (18)
C9—Fe1—C1—C5 −39.2 (4) C21—Fe2—C15—C16 80.46 (19)
C3—Fe1—C1—C5 81.00 (19) C23—Fe2—C15—C16 −152.8 (3)
C2—Fe1—C1—C5 118.7 (2) C19—Fe2—C15—C16 −118.7 (2)
C8—Fe1—C1—C5 158.0 (3) C22—Fe2—C15—C16 40.5 (4)
C4—Fe1—C1—C5 37.37 (17) C24—Fe2—C15—C16 167.25 (17)
C7—Fe1—C1—C5 −163.81 (16) C17—Fe2—C15—C16 −37.35 (17)
C6—Fe1—C1—C5 −121.00 (16) C20—Fe2—C15—C16 124.21 (16)
C10—Fe1—C1—C2 163.35 (18) C18—Fe2—C15—C19 37.68 (19)
C9—Fe1—C1—C2 −157.9 (3) C21—Fe2—C15—C19 −160.88 (18)
C3—Fe1—C1—C2 −37.74 (19) C23—Fe2—C15—C19 −34.1 (4)
C8—Fe1—C1—C2 39.3 (4) C22—Fe2—C15—C19 159.1 (3)
C4—Fe1—C1—C2 −81.4 (2) C24—Fe2—C15—C19 −74.1 (2)
C7—Fe1—C1—C2 77.4 (2) C17—Fe2—C15—C19 81.3 (2)
C5—Fe1—C1—C2 −118.7 (2) C16—Fe2—C15—C19 118.7 (2)
C6—Fe1—C1—C2 120.26 (18) C20—Fe2—C15—C19 −117.13 (18)
C10—Fe1—C1—C11 42.4 (3) C18—Fe2—C15—C25 159.0 (3)
C9—Fe1—C1—C11 81.1 (4) C21—Fe2—C15—C25 −39.5 (3)
C3—Fe1—C1—C11 −158.7 (3) C23—Fe2—C15—C25 87.2 (4)
C2—Fe1—C1—C11 −121.0 (4) C19—Fe2—C15—C25 121.3 (3)
C8—Fe1—C1—C11 −81.7 (4) C22—Fe2—C15—C25 −79.5 (4)
C4—Fe1—C1—C11 157.6 (3) C24—Fe2—C15—C25 47.2 (3)
C7—Fe1—C1—C11 −43.5 (3) C17—Fe2—C15—C25 −157.4 (3)
C5—Fe1—C1—C11 120.3 (3) C16—Fe2—C15—C25 −120.0 (3)
C6—Fe1—C1—C11 −0.7 (3) C20—Fe2—C15—C25 4.2 (3)
C5—C1—C2—C3 0.3 (3) C19—C15—C16—C17 0.8 (3)
C11—C1—C2—C3 −178.3 (2) C25—C15—C16—C17 −179.6 (2)
Fe1—C1—C2—C3 59.4 (2) Fe2—C15—C16—C17 59.19 (19)
C5—C1—C2—Fe1 −59.13 (15) C19—C15—C16—Fe2 −58.43 (15)
C11—C1—C2—Fe1 122.2 (2) C25—C15—C16—Fe2 121.3 (2)
C10—Fe1—C2—C3 −165.2 (3) C18—Fe2—C16—C17 −37.6 (2)
C9—Fe1—C2—C3 41.7 (4) C21—Fe2—C16—C17 119.5 (2)
C8—Fe1—C2—C3 76.2 (2) C23—Fe2—C16—C17 38.1 (4)
C4—Fe1—C2—C3 −37.36 (18) C19—Fe2—C16—C17 −81.6 (2)
C7—Fe1—C2—C3 118.65 (19) C22—Fe2—C16—C17 76.0 (2)
C5—Fe1—C2—C3 −81.3 (2) C24—Fe2—C16—C17 −158.3 (4)
C6—Fe1—C2—C3 160.46 (18) C20—Fe2—C16—C17 162.92 (19)
C1—Fe1—C2—C3 −119.1 (3) C15—Fe2—C16—C17 −119.8 (2)
C10—Fe1—C2—C1 −46.1 (4) C18—Fe2—C16—C15 82.25 (18)
C9—Fe1—C2—C1 160.8 (3) C21—Fe2—C16—C15 −120.64 (17)
C3—Fe1—C2—C1 119.1 (3) C23—Fe2—C16—C15 157.9 (3)
C8—Fe1—C2—C1 −164.67 (16) C19—Fe2—C16—C15 38.17 (15)
C4—Fe1—C2—C1 81.73 (18) C22—Fe2—C16—C15 −164.17 (17)
C7—Fe1—C2—C1 −122.26 (16) C24—Fe2—C16—C15 −38.5 (5)
C5—Fe1—C2—C1 37.79 (15) C17—Fe2—C16—C15 119.8 (2)
C6—Fe1—C2—C1 −80.44 (19) C20—Fe2—C16—C15 −77.26 (18)
C1—C2—C3—C4 −0.3 (4) C15—C16—C17—C18 −0.7 (3)
Fe1—C2—C3—C4 59.8 (2) Fe2—C16—C17—C18 59.0 (2)
C1—C2—C3—Fe1 −60.09 (18) C15—C16—C17—Fe2 −59.70 (17)
C10—Fe1—C3—C4 47.9 (4) C21—Fe2—C17—C18 159.3 (2)
C9—Fe1—C3—C4 78.1 (2) C23—Fe2—C17—C18 77.6 (3)
C2—Fe1—C3—C4 −119.6 (3) C19—Fe2—C17—C18 −37.9 (2)
C8—Fe1—C3—C4 119.3 (2) C22—Fe2—C17—C18 119.1 (2)
C7—Fe1—C3—C4 160.00 (19) C24—Fe2—C17—C18 46.4 (4)
C5—Fe1—C3—C4 −38.06 (19) C16—Fe2—C17—C18 −119.3 (3)
C6—Fe1—C3—C4 −171.0 (2) C20—Fe2—C17—C18 −171.2 (3)
C1—Fe1—C3—C4 −81.7 (2) C15—Fe2—C17—C18 −82.0 (2)
C10—Fe1—C3—C2 167.5 (3) C18—Fe2—C17—C16 119.3 (3)
C9—Fe1—C3—C2 −162.33 (19) C21—Fe2—C17—C16 −81.4 (2)
C8—Fe1—C3—C2 −121.1 (2) C23—Fe2—C17—C16 −163.17 (18)
C4—Fe1—C3—C2 119.6 (3) C19—Fe2—C17—C16 81.37 (18)
C7—Fe1—C3—C2 −80.4 (2) C22—Fe2—C17—C16 −121.6 (2)
C5—Fe1—C3—C2 81.54 (17) C24—Fe2—C17—C16 165.7 (3)
C6—Fe1—C3—C2 −51.4 (4) C20—Fe2—C17—C16 −51.9 (5)
C1—Fe1—C3—C2 37.85 (18) C15—Fe2—C17—C16 37.28 (17)
C2—C3—C4—C5 0.2 (4) C16—C17—C18—C19 0.3 (4)
Fe1—C3—C4—C5 59.7 (2) Fe2—C17—C18—C19 59.7 (2)
C2—C3—C4—Fe1 −59.6 (2) C16—C17—C18—Fe2 −59.4 (2)
C10—Fe1—C4—C3 −160.3 (2) C21—Fe2—C18—C17 −53.1 (5)
C9—Fe1—C4—C3 −118.8 (2) C23—Fe2—C18—C17 −118.1 (2)
C2—Fe1—C4—C3 37.5 (2) C19—Fe2—C18—C17 119.1 (3)
C8—Fe1—C4—C3 −77.7 (3) C22—Fe2—C18—C17 −78.0 (3)
C7—Fe1—C4—C3 −48.3 (4) C24—Fe2—C18—C17 −158.9 (2)
C5—Fe1—C4—C3 118.7 (3) C16—Fe2—C18—C17 37.7 (2)
C6—Fe1—C4—C3 170.9 (3) C20—Fe2—C18—C17 173.5 (2)
C1—Fe1—C4—C3 81.5 (2) C15—Fe2—C18—C17 81.3 (2)
C10—Fe1—C4—C5 81.0 (2) C21—Fe2—C18—C19 −172.2 (3)
C9—Fe1—C4—C5 122.49 (19) C23—Fe2—C18—C19 122.88 (19)
C3—Fe1—C4—C5 −118.7 (3) C22—Fe2—C18—C19 162.92 (18)
C2—Fe1—C4—C5 −81.15 (18) C24—Fe2—C18—C19 82.0 (2)
C8—Fe1—C4—C5 163.63 (19) C17—Fe2—C18—C19 −119.1 (3)
C7—Fe1—C4—C5 −167.0 (3) C16—Fe2—C18—C19 −81.41 (18)
C6—Fe1—C4—C5 52.2 (4) C20—Fe2—C18—C19 54.4 (4)
C1—Fe1—C4—C5 −37.17 (17) C15—Fe2—C18—C19 −37.73 (17)
C2—C1—C5—C4 −0.2 (3) C17—C18—C19—C15 0.2 (4)
C11—C1—C5—C4 178.4 (2) Fe2—C18—C19—C15 60.16 (18)
Fe1—C1—C5—C4 −58.92 (18) C17—C18—C19—Fe2 −60.0 (3)
C2—C1—C5—Fe1 58.72 (16) C16—C15—C19—C18 −0.6 (3)
C11—C1—C5—Fe1 −122.6 (2) C25—C15—C19—C18 179.7 (2)
C3—C4—C5—C1 0.0 (3) Fe2—C15—C19—C18 −59.4 (2)
Fe1—C4—C5—C1 59.37 (18) C16—C15—C19—Fe2 58.82 (15)
C3—C4—C5—Fe1 −59.3 (2) C25—C15—C19—Fe2 −120.9 (2)
C10—Fe1—C5—C1 121.82 (15) C21—Fe2—C19—C18 171.6 (3)
C9—Fe1—C5—C1 165.00 (16) C23—Fe2—C19—C18 −73.6 (2)
C3—Fe1—C5—C1 −82.07 (19) C22—Fe2—C19—C18 −41.3 (4)
C2—Fe1—C5—C1 −38.10 (15) C24—Fe2—C19—C18 −115.6 (2)
C8—Fe1—C5—C1 −159.5 (3) C17—Fe2—C19—C18 37.65 (19)
C4—Fe1—C5—C1 −119.9 (2) C16—Fe2—C19—C18 81.5 (2)
C7—Fe1—C5—C1 44.6 (4) C20—Fe2—C19—C18 −157.25 (18)
C6—Fe1—C5—C1 79.60 (18) C15—Fe2—C19—C18 119.3 (3)
C10—Fe1—C5—C4 −118.26 (19) C18—Fe2—C19—C15 −119.3 (3)
C9—Fe1—C5—C4 −75.1 (2) C21—Fe2—C19—C15 52.3 (4)
C3—Fe1—C5—C4 37.85 (19) C23—Fe2—C19—C15 167.06 (16)
C2—Fe1—C5—C4 81.8 (2) C22—Fe2—C19—C15 −160.7 (3)
C8—Fe1—C5—C4 −39.6 (4) C24—Fe2—C19—C15 125.05 (17)
C7—Fe1—C5—C4 164.5 (3) C17—Fe2—C19—C15 −81.68 (18)
C6—Fe1—C5—C4 −160.48 (18) C16—Fe2—C19—C15 −37.85 (15)
C1—Fe1—C5—C4 119.9 (2) C20—Fe2—C19—C15 83.42 (19)
C10—Fe1—C6—C7 119.1 (2) C18—Fe2—C20—C24 38.3 (3)
C9—Fe1—C6—C7 80.95 (18) C21—Fe2—C20—C24 −117.9 (2)
C3—Fe1—C6—C7 −39.1 (4) C23—Fe2—C20—C24 −37.44 (18)
C2—Fe1—C6—C7 −77.31 (18) C19—Fe2—C20—C24 77.53 (19)
C8—Fe1—C6—C7 37.32 (18) C22—Fe2—C20—C24 −80.86 (19)
C4—Fe1—C6—C7 157.9 (3) C17—Fe2—C20—C24 −156.1 (4)
C5—Fe1—C6—C7 −163.23 (16) C16—Fe2—C20—C24 163.84 (17)
C1—Fe1—C6—C7 −120.52 (17) C15—Fe2—C20—C24 121.37 (17)
C9—Fe1—C6—C10 −38.18 (19) C18—Fe2—C20—C21 156.2 (3)
C3—Fe1—C6—C10 −158.3 (3) C23—Fe2—C20—C21 80.5 (2)
C2—Fe1—C6—C10 163.56 (18) C19—Fe2—C20—C21 −164.55 (18)
C8—Fe1—C6—C10 −81.8 (2) C22—Fe2—C20—C21 37.1 (2)
C4—Fe1—C6—C10 38.7 (4) C24—Fe2—C20—C21 117.9 (2)
C7—Fe1—C6—C10 −119.1 (2) C17—Fe2—C20—C21 −38.2 (4)
C5—Fe1—C6—C10 77.64 (19) C16—Fe2—C20—C21 −78.2 (2)
C1—Fe1—C6—C10 120.35 (18) C15—Fe2—C20—C21 −120.71 (18)
C10—Fe1—C6—C13 −120.2 (3) C18—Fe2—C20—C27 −81.0 (4)
C9—Fe1—C6—C13 −158.4 (3) C21—Fe2—C20—C27 122.8 (4)
C3—Fe1—C6—C13 81.5 (4) C23—Fe2—C20—C27 −156.7 (3)
C2—Fe1—C6—C13 43.3 (3) C19—Fe2—C20—C27 −41.8 (3)
C8—Fe1—C6—C13 158.0 (3) C22—Fe2—C20—C27 159.9 (3)
C4—Fe1—C6—C13 −81.5 (4) C24—Fe2—C20—C27 −119.3 (4)
C7—Fe1—C6—C13 120.6 (3) C17—Fe2—C20—C27 84.6 (5)
C5—Fe1—C6—C13 −42.6 (3) C16—Fe2—C20—C27 44.6 (3)
C1—Fe1—C6—C13 0.1 (3) C15—Fe2—C20—C27 2.1 (3)
C10—C6—C7—C8 −0.7 (3) C24—C20—C21—C22 −0.6 (3)
C13—C6—C7—C8 −179.4 (2) C27—C20—C21—C22 179.4 (2)
Fe1—C6—C7—C8 −59.12 (19) Fe2—C20—C21—C22 −59.5 (2)
C10—C6—C7—Fe1 58.39 (15) C24—C20—C21—Fe2 58.96 (17)
C13—C6—C7—Fe1 −120.3 (2) C27—C20—C21—Fe2 −121.1 (2)
C10—Fe1—C7—C8 81.9 (2) C18—Fe2—C21—C22 −33.9 (4)
C9—Fe1—C7—C8 37.5 (2) C23—Fe2—C21—C22 37.6 (2)
C3—Fe1—C7—C8 −75.5 (2) C19—Fe2—C21—C22 161.3 (3)
C2—Fe1—C7—C8 −118.1 (2) C24—Fe2—C21—C22 81.7 (2)
C4—Fe1—C7—C8 −40.5 (4) C17—Fe2—C21—C22 −72.9 (2)
C5—Fe1—C7—C8 166.1 (3) C16—Fe2—C21—C22 −116.3 (2)
C6—Fe1—C7—C8 119.7 (3) C20—Fe2—C21—C22 119.9 (3)
C1—Fe1—C7—C8 −160.25 (19) C15—Fe2—C21—C22 −159.41 (19)
C10—Fe1—C7—C6 −37.81 (14) C18—Fe2—C21—C20 −153.8 (3)
C9—Fe1—C7—C6 −82.21 (18) C23—Fe2—C21—C20 −82.29 (18)
C3—Fe1—C7—C6 164.74 (16) C19—Fe2—C21—C20 41.4 (4)
C2—Fe1—C7—C6 122.18 (17) C22—Fe2—C21—C20 −119.9 (3)
C8—Fe1—C7—C6 −119.7 (3) C24—Fe2—C21—C20 −38.26 (16)
C4—Fe1—C7—C6 −160.3 (3) C17—Fe2—C21—C20 167.15 (17)
C5—Fe1—C7—C6 46.4 (4) C16—Fe2—C21—C20 123.79 (16)
C1—Fe1—C7—C6 80.02 (18) C15—Fe2—C21—C20 80.66 (19)
C6—C7—C8—C9 0.4 (3) C20—C21—C22—C23 0.4 (3)
Fe1—C7—C8—C9 −59.1 (2) Fe2—C21—C22—C23 −59.5 (2)
C6—C7—C8—Fe1 59.48 (17) C20—C21—C22—Fe2 59.93 (18)
C10—Fe1—C8—C9 38.1 (2) C18—Fe2—C22—C23 −74.6 (3)
C3—Fe1—C8—C9 −118.8 (2) C21—Fe2—C22—C23 119.0 (3)
C2—Fe1—C8—C9 −159.9 (2) C19—Fe2—C22—C23 −44.5 (4)
C4—Fe1—C8—C9 −77.7 (3) C24—Fe2—C22—C23 37.7 (2)
C7—Fe1—C8—C9 119.4 (3) C17—Fe2—C22—C23 −116.0 (2)
C5—Fe1—C8—C9 −48.8 (5) C16—Fe2—C22—C23 −156.96 (19)
C6—Fe1—C8—C9 82.0 (2) C20—Fe2—C22—C23 81.4 (2)
C1—Fe1—C8—C9 171.0 (2) C15—Fe2—C22—C23 173.1 (3)
C10—Fe1—C8—C7 −81.24 (18) C18—Fe2—C22—C21 166.33 (19)
C9—Fe1—C8—C7 −119.4 (3) C23—Fe2—C22—C21 −119.0 (3)
C3—Fe1—C8—C7 121.8 (2) C19—Fe2—C22—C21 −163.5 (3)
C2—Fe1—C8—C7 80.8 (2) C24—Fe2—C22—C21 −81.37 (19)
C4—Fe1—C8—C7 162.98 (18) C17—Fe2—C22—C21 125.0 (2)
C5—Fe1—C8—C7 −168.1 (3) C16—Fe2—C22—C21 84.0 (2)
C6—Fe1—C8—C7 −37.34 (17) C20—Fe2—C22—C21 −37.64 (18)
C1—Fe1—C8—C7 51.6 (4) C15—Fe2—C22—C21 54.1 (4)
C7—C8—C9—C10 0.1 (4) C21—C22—C23—C24 −0.2 (4)
Fe1—C8—C9—C10 −59.4 (2) Fe2—C22—C23—C24 −59.6 (2)
C7—C8—C9—Fe1 59.5 (2) C21—C22—C23—Fe2 59.4 (2)
C10—Fe1—C9—C8 −119.1 (3) C18—Fe2—C23—C22 121.4 (2)
C3—Fe1—C9—C8 78.1 (3) C21—Fe2—C23—C22 −37.7 (2)
C2—Fe1—C9—C8 47.9 (4) C19—Fe2—C23—C22 161.6 (2)
C4—Fe1—C9—C8 119.3 (2) C24—Fe2—C23—C22 −119.5 (3)
C7—Fe1—C9—C8 −37.5 (2) C17—Fe2—C23—C22 80.6 (3)
C5—Fe1—C9—C8 160.1 (2) C16—Fe2—C23—C22 53.4 (4)
C6—Fe1—C9—C8 −81.2 (2) C20—Fe2—C23—C22 −82.1 (2)
C1—Fe1—C9—C8 −170.7 (2) C15—Fe2—C23—C22 −172.8 (3)
C3—Fe1—C9—C10 −162.88 (17) C18—Fe2—C23—C24 −119.1 (2)
C2—Fe1—C9—C10 167.0 (3) C21—Fe2—C23—C24 81.7 (2)
C8—Fe1—C9—C10 119.1 (3) C19—Fe2—C23—C24 −78.9 (2)
C4—Fe1—C9—C10 −121.65 (18) C22—Fe2—C23—C24 119.5 (3)
C7—Fe1—C9—C10 81.52 (17) C17—Fe2—C23—C24 −159.94 (19)
C5—Fe1—C9—C10 −80.8 (2) C16—Fe2—C23—C24 172.8 (3)
C6—Fe1—C9—C10 37.83 (17) C20—Fe2—C23—C24 37.34 (19)
C1—Fe1—C9—C10 −51.6 (4) C15—Fe2—C23—C24 −53.3 (4)
C7—C6—C10—C9 0.8 (3) C22—C23—C24—C20 −0.2 (4)
C13—C6—C10—C9 179.4 (2) Fe2—C23—C24—C20 −59.78 (19)
Fe1—C6—C10—C9 59.67 (19) C22—C23—C24—Fe2 59.6 (2)
C7—C6—C10—Fe1 −58.88 (15) C21—C20—C24—C23 0.5 (3)
C13—C6—C10—Fe1 119.8 (2) C27—C20—C24—C23 −179.5 (2)
C8—C9—C10—C6 −0.6 (4) Fe2—C20—C24—C23 59.0 (2)
Fe1—C9—C10—C6 −60.44 (18) C21—C20—C24—Fe2 −58.58 (16)
C8—C9—C10—Fe1 59.9 (2) C27—C20—C24—Fe2 121.5 (2)
C9—Fe1—C10—C6 118.8 (3) C18—Fe2—C24—C23 76.8 (2)
C3—Fe1—C10—C6 160.2 (3) C21—Fe2—C24—C23 −81.0 (2)
C2—Fe1—C10—C6 −45.4 (4) C19—Fe2—C24—C23 119.3 (2)
C8—Fe1—C10—C6 81.29 (18) C22—Fe2—C24—C23 −37.3 (2)
C4—Fe1—C10—C6 −165.12 (15) C17—Fe2—C24—C23 44.1 (4)
C7—Fe1—C10—C6 37.62 (14) C16—Fe2—C24—C23 −169.8 (4)
C5—Fe1—C10—C6 −122.32 (16) C20—Fe2—C24—C23 −119.8 (3)
C1—Fe1—C10—C6 −80.30 (19) C15—Fe2—C24—C23 160.48 (19)
C3—Fe1—C10—C9 41.3 (4) C18—Fe2—C24—C20 −163.47 (17)
C2—Fe1—C10—C9 −164.3 (3) C21—Fe2—C24—C20 38.73 (16)
C8—Fe1—C10—C9 −37.54 (19) C23—Fe2—C24—C20 119.8 (3)
C4—Fe1—C10—C9 76.0 (2) C19—Fe2—C24—C20 −120.89 (17)
C7—Fe1—C10—C9 −81.2 (2) C22—Fe2—C24—C20 82.4 (2)
C5—Fe1—C10—C9 118.8 (2) C17—Fe2—C24—C20 163.8 (3)
C6—Fe1—C10—C9 −118.8 (3) C16—Fe2—C24—C20 −50.0 (5)
C1—Fe1—C10—C9 160.86 (19) C15—Fe2—C24—C20 −79.75 (19)
N2—N1—C11—C1 −177.6 (2) N6—N5—C25—C15 −176.7 (2)
N2—N1—C11—C12 1.7 (4) N6—N5—C25—C26 3.7 (4)
C5—C1—C11—N1 −12.9 (3) C16—C15—C25—N5 7.8 (4)
C2—C1—C11—N1 165.4 (2) C19—C15—C25—N5 −172.6 (2)
Fe1—C1—C11—N1 −103.9 (3) Fe2—C15—C25—N5 97.6 (3)
C5—C1—C11—C12 167.7 (2) C16—C15—C25—C26 −172.5 (2)
C2—C1—C11—C12 −14.0 (3) C19—C15—C25—C26 7.1 (4)
Fe1—C1—C11—C12 76.7 (3) Fe2—C15—C25—C26 −82.8 (3)
N4—N3—C13—C6 175.0 (2) N8—N7—C27—C20 176.1 (3)
N4—N3—C13—C14 −4.6 (4) N8—N7—C27—C28 −3.1 (5)
C7—C6—C13—N3 −10.5 (3) C24—C20—C27—N7 14.5 (4)
C10—C6—C13—N3 171.1 (2) C21—C20—C27—N7 −165.5 (3)
Fe1—C6—C13—N3 −100.2 (3) Fe2—C20—C27—N7 103.8 (3)
C7—C6—C13—C14 169.2 (2) C24—C20—C27—C28 −166.3 (3)
C10—C6—C13—C14 −9.2 (3) C21—C20—C27—C28 13.8 (4)
Fe1—C6—C13—C14 79.5 (3) Fe2—C20—C27—C28 −77.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N7i 0.90 2.53 3.287 (5) 142
N4—H4A···N5ii 0.90 2.29 3.137 (4) 157
N4—H4B···N2iii 0.90 2.61 3.421 (4) 150
N6—H6A···N3iv 0.90 2.24 3.073 (4) 154
N8—H8B···N1v 0.90 2.60 3.497 (5) 178

Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) x−1, y, z; (iii) x−1/2, −y+1/2, z; (iv) x+1, y, z; (v) −x+1, −y+1, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RK2429).

References

  1. Abd-Elzaher, M. M., Hegazy, W. H. & Gaafar, A. E.-D. M. (2005). Appl. Organomet. Chem. 19, 911–916.
  2. Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fang, C.-J., Duan, C.-Y., Mo, H., He, C., Meng, Q.-J., Liu, Y.-J., Mei, Y.-H. & Wang, Z.-M. (2001). Organometallics, 20, 2525–2532.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Korotchenko, V. N., Shastin, A. V., Nenajdenko, V. G. & Balenkova, E. S. (2001). Synthesis, pp. 2081–2084.
  8. Lopez, C., Bosque, R., Arias, J., Evangelio, E., Solans, X. & Font-Bardia, M. (2003). J. Organomet. Chem. 672, 34–42.
  9. Nenajdenko, V. G., Korotchenko, V. N., Shastin, A. V. & Balenkova, E. S. (2004). Russ. Chem. Bull. Int. Ed. 53, 1034–1064.
  10. Qiao, C., Li, J., Xu, Y., Guo, S., Qi, X. & Fan, Y. (2009). Appl. Organomet. Chem. 23, 421–424.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Xiao, W., Lu, Z.-L., Li, R.-Y., Su, C.-Y., Kang, B.-S., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 1762–1764.
  13. Zhang, B.-G., Xu, J., Zhao, Y.-G., Duan, C.-Y., Cao, X. & Meng, Q.-J. (2006). Dalton Trans. pp. 1271–1276. [DOI] [PubMed]
  14. Zhou, J., Zheng, L.-P., Chen, C.-L. & Li, M.-X. (2007). Acta Cryst. E63, m3079.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814014366/rk2429sup1.cif

e-70-0m286-sup1.cif (54.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014366/rk2429Isup2.hkl

e-70-0m286-Isup2.hkl (320.2KB, hkl)

CCDC reference: 1009066

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES