Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 19;70(Pt 8):84–86. doi: 10.1107/S1600536814014445

Crystal structure of (1Z)-1-(4-chloro­benzyl­idene)-5-(4-meth­oxy­phen­yl)-3-oxopyrazolidin-1-ium-2-ide

Peter Mangwala Kimpende a, Thi Kieu Oanh Doan b, Quoc Trung Vu b, Luc Van Meervelt c,*
PMCID: PMC4158503  PMID: 25249861

The planar pyrazolidine ring occurs in the betaine form with a Z conformation of the exocyclic C=N bond. In the crystal, C—H⋯O and C—H⋯π inter­actions result in the formation of ribbons of mol­ecules along [1Inline graphic0].

Keywords: crystal structure, pyrazolidinium ylide, betaine structure

Abstract

The title mol­ecule, C17H15ClN2O2, is L-shaped with the 4-chloro­benzyl­idene ring almost coplanar with the planar pyrazolidine ring (r.m.s. deviation = 0.020 Å), making a dihedral angle of 4.83 (17)°. The 4-meth­oxy­phenyl ring is almost normal to the mean plane of the pyrazolidine ring and the 4-chloro­benzyl­idene ring, with dihedral angles of 87.36 (17) and 89.23 (16)°, respectively. The pyrazolidine ring occurs in the betaine form with a Z configuration for the exocyclic C=N bond. In the crystal, C—H⋯O and C—H⋯π inter­actions generate ribbons of mol­ecules along [1-10].

Chemical context  

Acyclic azomethine imides are difficult to synthesize and have thus rarely been explored. However, cyclic azomethine imides of the 3-oxopyrazolidin-1-um-2-ide type are generated under mild conditions and have largely been used for the novel synthesis of heterocyclic compounds (Schantl, 2004; Padwa & Pearson, 2003) such as monocyclic and bicyclic pyrazolidin­­ones (Zhou et al., 2013; Suarez et al., 2005) and other bicyclic heterocycles (Svete, 2006; Xu et al., 2013). Since numerous pyrazole derivatives have found use in pharmaceutical, agrochemical and other applications, for example, sildenafil or Viagra (Mulhall, 1997), lonazolac (Vinge & Bjorkman, 1986), merpirizole (Naito et al., 1969), the bicyclic pyrazolidinone LY 186826 (Indelicato & Pasini, 1988) and the developing agent in photography, phenidone, a part of our studies is focused on the synthesis of functionalized pyrazoles. For this purpose, the title compound was synthesized and the mol­ecular and crystal structure are reported herein.graphic file with name e-70-00084-scheme1.jpg

Structural Commentary  

The pyrazolidine ring is planar with a maximal deviation of 0.017 (3) Å for atom C10. The 4-chloro­benzyl aromatic ring and the pyrazolidine ring are almost coplanar, making a dihedral angle of 4.83 (17)°, whereas the mean plane through the 4-meth­oxy­phenyl aromatic ring is almost perpendicular [87.36 (17)°] to the pyrazolidine plane. The aromatic rings are inclined to one another at 89.23 (16)°. The configuration of the exocyclic C1=N7 bond is Z. The pyrazolidine ring shows a betaine character with opposite charges located on adjacent nitro­gen atoms, N1 and N2. The N1—N2 bond distance of 1.362 (3) Å agrees with the average value of 1.357 (7) Å obtained for N+—N in pyrazolidine rings found in the Cambridge Structural Database (CSD, Version 5.35, February 2014; Allen, 2002). The intra­molecular C3—H3⋯N2 inter­action (Table 1 and Fig. 1) is also observed in similar compounds found in the CSD.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2 0.96 (4) 2.31 (3) 2.934 (4) 122 (1)
C3—H3⋯O1i 0.96 (4) 2.52 (2) 3.152 (4) 124 (1)
C17—H17CCg ii 1.02 (3) 2.73 (3) 3.551 (4) 138 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 1.

Figure 1

Mol­ecular structure of the title mol­ecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯N inter­action is drawn as a dashed line (see Table 1 for details).

Supra­molecular features  

In the crystal packing C–H⋯O hydrogen bonds are observed (Table 1 and Fig. 2), resulting in the formation of inversion dimers with Inline graphic(16) loops. Furthermore, the aromatic ring of the 4-chloro­benzyl substituent is involved in C—H⋯π inter­actions (Table 1 and Fig. 2), forming ribbons of dimers propagating along [1Inline graphic0].

Figure 2.

Figure 2

Crystal packing for the title compound viewed along the a axis, with the C—H⋯π and C—H⋯O inter­actions drawn as dashed lines (see Table 1 for details).

Database survey  

The Cambridge Structural Database contains 15 crystal structures containing a similar 1-methyl­idene-3-oxopyrazol­idin-1-ium-2-ide fragment. For the 12 structures bearing a 1-benzyl­idene substituent, the dihedral angle between its aromatic ring and the pyrazolidine ring varies from 0.0 to 65.6° depending on the further substitution of the 1-benzyl­idene substituent. A fit of the common parts of the title compound and (1Z)-1-(4-chloro­benzyl­idene-5,5-dimethyl-3-oxopyrazol­idin-1-ium-2-ide (refcode: BOLJUH; Kulpe et al., 1983) results in an r.m.s. deviation of 0.069 Å.

Synthesis and crystallization  

The starting material, ethyl p-meth­oxy­cinnamate, was isolated from Kaempferia galanga L., a traditional medicinal plant in Vietnam (Do, 2011). The reaction scheme to synthesize the title compound, (2), is given in Fig. 3.

Figure 3.

Figure 3

Reaction scheme for the title compound.

Synthesis of 5- p -meth­oxy­phenyl­pyrazolidin-3-one (1): A solution of 1.03 g (5 mmol) of ethyl p-meth­oxy­cinnamate, 0.5 ml of N2H4·H2O 80% in 5 ml of ethanol was refluxed for 24 h. To the cool mixture 0.2 ml of H2O was added and allowed to stand. The resulting precipitate was collected and recrystallized from ethanol to give 0.54 g (yield 56%) of (1) in the form of white crystals; m.p. 442–443 K. IR (KBr, cm−1): 3229, 3180 (NH); 3041, 2951, 2834 (C—H), 1675 (C=O); 1605, 1520 (phenyl C=C). 1H NMR (d 6-DMSO, δ, ppm; J, Hz): 9.14 s (N2H); 5.46 broadened s, (N1H); 2.63 dd, 2 J 15.5, 3 J 7.5 (H4a); 2.37 dd, 2 J 15.5, 3 J 8.0 (H4b); 4.52 t, 3 J 7.5 (H5); 7.32 d, 3 J 8.5 (2H, Ho); 6.91 d, 3 J 8.5 (2H, Hm); 3.74 s (3H, MeO). 13C NMR [d 6-DMSO, δ, p.p.m., according to the HSQC and HMBC spectra of (1)]: 175.37 (C3), 39.00 (C4), 59.87 (C5), 132.37 (Ci), 127.85 (Co), 113.66 (Cm), 158.51 (Cp), 55.06 (MeO). Analysis: calculated for C10H12N2O2: C, 62.49; H, 6.29; N, 14.57; found: C, 62.71; H, 6.08; N, 14.29.

Synthesis of 1-( p -chloro­benzyl­idene)-5-(p-meth­oxy­phen­yl)-3-oxopyrazolidin-1-ium-2-ide (2): A solution of 0.192 g (1 mmol) of (1) and 0.141 g (1 mmol) of 4-chloro­benzaldehyde in 5 ml of ethanol was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was collected and recrystallized from ethanol to give 0.22 g (yield 70%) of (2) as white crystals; m.p. 467–468 K. IR (KBr, cm−1): 3095, 3052, 2930, 2852 (C-H), 1676 (C=O); 1587, 1563, 1512 (phenyl C=C). Analysis: calculated for C17H15ClN2O2: C, 64.87; H, 4.80; N, 8.90. Found: C, 65.08; H, 4.59; N, 8.64.

Colourless plate-like crystals of (2) suitable for X-ray diffraction were obtained by slow evaporation from a water solution acidified with HCl at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were refined using a riding model with stretchable C—H distances, and with U iso = 1.5U eq(C-meth­yl) and = 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C17H15ClN2O2
M r 314.76
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 5.6966 (6), 10.6852 (13), 12.7750 (17)
α, β, γ (°) 101.573 (7), 100.620 (7), 101.311 (6)
V3) 726.47 (15)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.40
Crystal size (mm) 0.55 × 0.1 × 0.05
 
Data collection
Diffractometer Bruker SMART 6000
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.695, 0.887
No. of measured, independent and observed [I > 2σ(I)] reflections 13302, 2723, 2053
R int 0.093
(sin θ/λ)max−1) 0.614
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.064, 0.171, 1.06
No. of reflections 2723
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.52

Computer programs: SMART and SAINT (Bruker, 2003), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 2. DOI: 10.1107/S1600536814014445/su0007sup1.cif

e-70-00084-sup1.cif (247.2KB, cif)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S1600536814014445/su00072sup2.hkl

e-70-00084-2sup2.hkl (136.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014445/su00072sup3.cml

CCDC reference: 1006910

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank VLIR–UOS and the Chemistry Department of KU Leuven for support of this work.

supplementary crystallographic information

Crystal data

C17H15ClN2O2 Z = 2
Mr = 314.76 F(000) = 328
Triclinic, P1 Dx = 1.439 Mg m3
a = 5.6966 (6) Å Melting point: 467(1) K
b = 10.6852 (13) Å Cu Kα radiation, λ = 1.54178 Å
c = 12.7750 (17) Å µ = 2.40 mm1
α = 101.573 (7)° T = 100 K
β = 100.620 (7)° Plate, colourless
γ = 101.311 (6)° 0.55 × 0.1 × 0.05 mm
V = 726.47 (15) Å3

Data collection

Bruker SMART 6000 diffractometer 2053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.093
Graphite monochromator θmax = 71.2°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −6→6
Tmin = 0.695, Tmax = 0.887 k = −13→13
13302 measured reflections l = −13→14
2723 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.2182P] where P = (Fo2 + 2Fc2)/3
2723 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3159 (5) 0.3078 (3) 0.0427 (3) 0.0335 (7)
C2 0.3044 (5) 0.3400 (3) 0.1510 (3) 0.0321 (7)
H2 0.161 (7) 0.3085 (15) 0.1716 (10) 0.039*
C3 0.5098 (5) 0.4202 (3) 0.2295 (3) 0.0307 (6)
H3 0.5032 (6) 0.4434 (11) 0.305 (3) 0.037*
C4 0.7274 (5) 0.4666 (3) 0.1972 (3) 0.0300 (6)
C5 0.7338 (6) 0.4289 (3) 0.0867 (3) 0.0334 (7)
H5 0.868 (7) 0.4554 (14) 0.0670 (11) 0.040*
C6 0.5296 (6) 0.3501 (3) 0.0079 (3) 0.0335 (7)
H6 0.5348 (6) 0.3261 (12) −0.066 (3) 0.040*
C7 0.9528 (5) 0.5525 (3) 0.2711 (3) 0.0318 (7)
H7 1.080 (6) 0.5715 (10) 0.2403 (15) 0.038*
C8 0.9363 (6) 0.6628 (3) 0.5421 (3) 0.0331 (7)
C9 1.2007 (6) 0.7358 (3) 0.5523 (3) 0.0348 (7)
H9A 1.2191 (8) 0.826 (3) 0.5724 (7) 0.042*
H9B 1.309 (3) 0.7121 (7) 0.6044 (16) 0.042*
C10 1.2471 (5) 0.6936 (3) 0.4386 (3) 0.0328 (7)
H10 1.362 (5) 0.644 (2) 0.4414 (3) 0.039*
C11 1.3200 (5) 0.8005 (3) 0.3817 (3) 0.0310 (7)
C12 1.2013 (5) 0.9032 (3) 0.3819 (3) 0.0343 (7)
H12 1.076 (6) 0.9091 (4) 0.4234 (18) 0.041*
C13 1.2591 (6) 0.9962 (3) 0.3244 (3) 0.0349 (7)
H13 1.178 (4) 1.065 (3) 0.3263 (3) 0.042*
C14 1.4372 (5) 0.9886 (3) 0.2629 (3) 0.0324 (7)
C15 1.5645 (6) 0.8904 (3) 0.2644 (3) 0.0332 (7)
H15 1.688 (6) 0.8869 (3) 0.2269 (17) 0.040*
C16 1.5032 (5) 0.7974 (3) 0.3235 (3) 0.0323 (7)
H16 1.590 (4) 0.729 (3) 0.3241 (3) 0.039*
C17 1.6705 (7) 1.0860 (4) 0.1506 (3) 0.0438 (8)
H17A 1.641 (3) 0.998 (3) 0.095 (2) 0.066*
H17B 1.833 (4) 1.103 (3) 0.2060 (15) 0.066*
H17C 1.677 (4) 1.159 (3) 0.110 (2) 0.066*
Cl1 0.05505 (14) 0.21060 (9) −0.05673 (7) 0.0434 (3)
N1 0.9930 (4) 0.6049 (2) 0.3753 (2) 0.0287 (6)
N2 0.8252 (5) 0.5891 (3) 0.4379 (2) 0.0306 (6)
O1 0.8327 (4) 0.6705 (3) 0.6184 (2) 0.0432 (6)
O2 1.4761 (4) 1.0831 (2) 0.2062 (2) 0.0382 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0211 (14) 0.0340 (16) 0.0422 (19) 0.0060 (12) 0.0036 (12) 0.0064 (13)
C2 0.0210 (14) 0.0334 (15) 0.0425 (19) 0.0047 (11) 0.0088 (12) 0.0111 (13)
C3 0.0239 (14) 0.0326 (15) 0.0347 (18) 0.0048 (12) 0.0077 (12) 0.0077 (12)
C4 0.0240 (14) 0.0277 (14) 0.0389 (18) 0.0045 (11) 0.0094 (12) 0.0095 (12)
C5 0.0215 (14) 0.0340 (16) 0.0456 (19) 0.0043 (12) 0.0111 (12) 0.0113 (13)
C6 0.0286 (15) 0.0367 (16) 0.0357 (18) 0.0082 (12) 0.0098 (12) 0.0077 (13)
C7 0.0199 (14) 0.0322 (15) 0.0438 (19) 0.0040 (11) 0.0115 (12) 0.0091 (13)
C8 0.0293 (16) 0.0328 (15) 0.0389 (18) 0.0057 (12) 0.0096 (13) 0.0128 (12)
C9 0.0259 (15) 0.0343 (16) 0.0419 (19) 0.0024 (12) 0.0065 (12) 0.0101 (13)
C10 0.0185 (14) 0.0316 (15) 0.0463 (19) 0.0029 (12) 0.0056 (12) 0.0100 (13)
C11 0.0181 (13) 0.0316 (15) 0.0383 (17) 0.0019 (11) 0.0028 (11) 0.0049 (12)
C12 0.0200 (14) 0.0408 (17) 0.0414 (19) 0.0050 (12) 0.0092 (12) 0.0089 (13)
C13 0.0239 (15) 0.0328 (16) 0.047 (2) 0.0074 (12) 0.0056 (13) 0.0089 (13)
C14 0.0226 (14) 0.0308 (15) 0.0401 (18) 0.0003 (11) 0.0039 (12) 0.0094 (12)
C15 0.0219 (14) 0.0335 (16) 0.0424 (18) 0.0025 (12) 0.0086 (12) 0.0088 (13)
C16 0.0166 (13) 0.0340 (16) 0.0443 (19) 0.0042 (11) 0.0058 (12) 0.0083 (13)
C17 0.0370 (18) 0.048 (2) 0.050 (2) 0.0084 (15) 0.0136 (15) 0.0193 (16)
Cl1 0.0231 (4) 0.0522 (5) 0.0450 (5) 0.0033 (3) 0.0050 (3) −0.0024 (3)
N1 0.0187 (12) 0.0307 (13) 0.0374 (15) 0.0043 (9) 0.0089 (10) 0.0094 (10)
N2 0.0230 (12) 0.0348 (13) 0.0355 (15) 0.0049 (10) 0.0108 (10) 0.0103 (10)
O1 0.0362 (13) 0.0502 (14) 0.0420 (14) 0.0023 (10) 0.0156 (10) 0.0105 (10)
O2 0.0303 (11) 0.0371 (12) 0.0484 (14) 0.0055 (9) 0.0088 (9) 0.0161 (10)

Geometric parameters (Å, º)

C1—C2 1.374 (5) C10—H10 0.9240
C1—C6 1.395 (4) C10—C11 1.506 (4)
C1—Cl1 1.752 (3) C10—N1 1.539 (4)
C2—H2 0.9276 C11—C12 1.398 (5)
C2—C3 1.392 (4) C11—C16 1.389 (4)
C3—H3 0.9509 C12—H12 0.9660
C3—C4 1.408 (4) C12—C13 1.375 (5)
C4—C5 1.398 (5) C13—H13 0.9441
C4—C7 1.458 (4) C13—C14 1.398 (5)
C5—H5 0.8642 C14—C15 1.388 (5)
C5—C6 1.385 (5) C14—O2 1.363 (4)
C6—H6 0.9337 C15—H15 0.9229
C7—H7 0.8959 C15—C16 1.394 (5)
C7—N1 1.296 (4) C16—H16 0.9566
C8—C9 1.523 (4) C17—H17A 1.0168
C8—N2 1.366 (4) C17—H17B 1.0168
C8—O1 1.227 (4) C17—H17C 1.0168
C9—H9A 0.9313 C17—O2 1.420 (4)
C9—H9B 0.9313 N1—N2 1.362 (3)
C9—C10 1.519 (5)
C2—C1—C6 122.3 (3) C11—C10—H10 109.6
C2—C1—Cl1 119.6 (2) C11—C10—N1 109.6 (3)
C6—C1—Cl1 118.0 (3) N1—C10—H10 109.6
C1—C2—H2 120.2 C12—C11—C10 121.6 (3)
C1—C2—C3 119.6 (3) C16—C11—C10 120.7 (3)
C3—C2—H2 120.2 C16—C11—C12 117.7 (3)
C2—C3—H3 120.2 C11—C12—H12 119.4
C2—C3—C4 119.7 (3) C13—C12—C11 121.2 (3)
C4—C3—H3 120.2 C13—C12—H12 119.4
C3—C4—C7 124.9 (3) C12—C13—H13 119.9
C5—C4—C3 119.0 (3) C12—C13—C14 120.3 (3)
C5—C4—C7 116.1 (3) C14—C13—H13 119.9
C4—C5—H5 119.2 C15—C14—C13 119.7 (3)
C6—C5—C4 121.7 (3) O2—C14—C13 115.8 (3)
C6—C5—H5 119.2 O2—C14—C15 124.5 (3)
C1—C6—H6 121.1 C14—C15—H15 120.5
C5—C6—C1 117.7 (3) C14—C15—C16 119.0 (3)
C5—C6—H6 121.1 C16—C15—H15 120.5
C4—C7—H7 115.7 C11—C16—C15 122.0 (3)
N1—C7—C4 128.5 (3) C11—C16—H16 119.0
N1—C7—H7 115.7 C15—C16—H16 119.0
N2—C8—C9 112.6 (3) H17A—C17—H17B 109.5
O1—C8—C9 123.9 (3) H17A—C17—H17C 109.5
O1—C8—N2 123.5 (3) H17B—C17—H17C 109.5
C8—C9—H9A 110.8 O2—C17—H17A 109.5
C8—C9—H9B 110.8 O2—C17—H17B 109.5
H9A—C9—H9B 108.9 O2—C17—H17C 109.5
C10—C9—C8 104.7 (3) C7—N1—C10 120.2 (2)
C10—C9—H9A 110.8 C7—N1—N2 125.3 (3)
C10—C9—H9B 110.8 N2—N1—C10 114.5 (2)
C9—C10—H10 109.6 N1—N2—C8 107.3 (2)
C9—C10—N1 100.9 (2) C14—O2—C17 117.6 (3)
C11—C10—C9 117.1 (3)
C1—C2—C3—C4 −0.4 (5) C10—C11—C16—C15 176.0 (3)
C2—C1—C6—C5 −1.0 (5) C10—N1—N2—C8 1.7 (3)
C2—C3—C4—C5 −1.3 (5) C11—C10—N1—C7 53.0 (4)
C2—C3—C4—C7 179.0 (3) C11—C10—N1—N2 −127.0 (3)
C3—C4—C5—C6 1.8 (5) C11—C12—C13—C14 0.8 (5)
C3—C4—C7—N1 −2.9 (5) C12—C11—C16—C15 −1.8 (5)
C4—C5—C6—C1 −0.7 (5) C12—C13—C14—C15 −3.1 (5)
C4—C7—N1—C10 180.0 (3) C12—C13—C14—O2 178.2 (3)
C4—C7—N1—N2 −0.1 (5) C13—C14—C15—C16 3.0 (5)
C5—C4—C7—N1 177.4 (3) C13—C14—O2—C17 174.5 (3)
C6—C1—C2—C3 1.6 (5) C14—C15—C16—C11 −0.5 (5)
C7—C4—C5—C6 −178.4 (3) C15—C14—O2—C17 −4.1 (5)
C7—N1—N2—C8 −178.3 (3) C16—C11—C12—C13 1.7 (5)
C8—C9—C10—C11 121.5 (3) Cl1—C1—C2—C3 −178.3 (2)
C8—C9—C10—N1 2.6 (3) Cl1—C1—C6—C5 178.8 (2)
C9—C8—N2—N1 0.2 (3) N1—C10—C11—C12 70.4 (4)
C9—C10—C11—C12 −43.7 (4) N1—C10—C11—C16 −107.3 (3)
C9—C10—C11—C16 138.5 (3) N2—C8—C9—C10 −2.0 (4)
C9—C10—N1—C7 177.1 (3) O1—C8—C9—C10 178.9 (3)
C9—C10—N1—N2 −2.8 (3) O1—C8—N2—N1 179.4 (3)
C10—C11—C12—C13 −176.1 (3) O2—C14—C15—C16 −178.4 (3)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···N2 0.96 (4) 2.31 (3) 2.934 (4) 122 (1)
C3—H3···O1i 0.96 (4) 2.52 (2) 3.152 (4) 124 (1)
C17—H17C···Cgii 1.02 (3) 2.73 (3) 3.551 (4) 138 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y+1, z.

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Do, T. L. (2011). Vietnamese Medicinal Plants and Remedies, pp. 365–366. Hanoi: Thoi Dai.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Indelicato, J. M. & Pasini, C. E. (1988). J. Med. Chem. 31, 1227–1230. [DOI] [PubMed]
  6. Kulpe, S., Seidel, I., Leibnitz, P. & Geissler, G. (1983). Acta Cryst. C39, 278–280.
  7. Mulhall, J. (1997). Br. J. Urol. 79, 663–664. [PubMed]
  8. Naito, T., Yoshikawa, T., Kitahara, S. & Aoki, N. (1969). Chem. Pharm. Bull. 17, 1467–1478.
  9. Padwa, A. & Pearson, W. H. (2003). Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products New York: John Wiley & Sons.
  10. Schantl, J. G. (2004). In Science of Synthesis, Vol. 27, edited by A. Padwa, pp. 731–824. Stuttgart, New York: Georg Thieme Verlag.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Suarez, A., Downey, C. W. & Fu, G. C. (2005). J. Am. Chem. Soc. 127, 11244–11245. [DOI] [PubMed]
  13. Svete, J. (2006). Arkivoc, vii, 35–56.
  14. Vinge, E. & Bjorkman, S. B. (1986). Acta Pharmacol. Toxicol. 59, 165–172. [DOI] [PubMed]
  15. Xu, X., Xu, X., Zavalij, P. Y. & Doyle, M. P. (2013). Chem. Commun. 49, 2762–2764. [DOI] [PMC free article] [PubMed]
  16. Zhou, W., Li, X.-X., Li, G.-H., Wu, Y. & Chen, Z. (2013). Chem. Commun. 49, 3552–3554. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 2. DOI: 10.1107/S1600536814014445/su0007sup1.cif

e-70-00084-sup1.cif (247.2KB, cif)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S1600536814014445/su00072sup2.hkl

e-70-00084-2sup2.hkl (136.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014445/su00072sup3.cml

CCDC reference: 1006910

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES