Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 23;70(Pt 8):o919–o920. doi: 10.1107/S1600536814015657

Crystal structure of 4-methyl­sulfanyl-2-phenyl­quinazoline

Mohammed B Alshammari a, Keith Smith b, Amany S Hegazy b, Benson M Kariuki b,, Gamal A El-Hiti c,*
PMCID: PMC4158504  PMID: 25249928

Abstract

In the title compound, C15H12N2S, the methylthioquinazoline group is planar with the methyl C displaced by only 0.116 (3) Å from the plane of the quinazoline moiety. The dihedral angle between the phenyl ring and the quinazoline ring system is 13.95 (5)°. In the crystal, each molecule is linked by π–π stacking between to two adjacent inversion-related molecules. On one side, the inverted quinazoline groups interact with a centroid–centroid distance of 3.7105 (9) Å. On the other side, the quinazoline group interacts with the pyrimidine and phenyl rings of the second neighbour with centroid–centroid distances of 3.5287 (8) and 3.8601 (9) Å, respectively.

Keywords: crystal structure, methylthioquinazoline, π–π stacking

Related literature  

For the synthesis of 4-alkythio­qinazolines, see: Leonard & Curtin (1946); Hearn et al. (1951); Meerwein et al. (1956); Blatter & Lukaszewski (1964); Segarra et al. (1998); Smith et al. (2005a ,b ).graphic file with name e-70-0o919-scheme1.jpg

Experimental  

Crystal data  

  • C15H12N2S

  • M r = 252.33

  • Monoclinic, Inline graphic

  • a = 10.1951 (3) Å

  • b = 7.3545 (2) Å

  • c = 16.5300 (5) Å

  • β = 102.860 (3)°

  • V = 1208.33 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.23 × 0.18 × 0.15 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.848, T max = 1.000

  • 11140 measured reflections

  • 3025 independent reflections

  • 2558 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.097

  • S = 1.08

  • 3025 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814015657/xu5801sup1.cif

e-70-0o919-sup1.cif (397.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015657/xu5801Isup2.hkl

e-70-0o919-Isup2.hkl (166.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015657/xu5801Isup3.cml

CCDC reference: 1012164

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under research project 2013/01/8.

supplementary crystallographic information

S1. Chemical context

S2. Structural commentary

In the 4-(methyl­thio)-2-phenyl­quinazoline molecule (Fig 1), the angle between the planes through the phenyl and phenyl­quinazoline ring systems is 13.95 (5)°. The molecules are stacked in the [010] direction with approximately parallel molecular planes. With no strong H-bond donors, one N atom accepts a long C—H···N contact linking molecules along [101]. The second N atom is not involved. 4-Methyl­thio­quinazoline derivatives can be obtained from reaction of the potassium salt of 3H-quinazoline-4-thio­nes with iodo­methane (Leonard & Curtin, 1946; Meerwein et al., 1956). Quinazoline-4-thio­nes are produced from the corresponding 3H-quinazoline-4-ones using phospho­rus penta­sulfide (Hearn, et al., 1951), Lawesson's reagent (Segarra et al., 1998) or iso­thio­cyanates (Blatter & Lukaszewski, 1964). In a continuation of our research focused on new synthetic routes towards novel substituted 4-alkyl­thio­quinazoline derivatives (Smith et al., 2005a,b) we have synthesized 4-(methyl­thio)-2-phenyl­quinazoline in a high yield (Smith et al., 2005a).

S3. Supra­molecular features

S4. Database survey

S5. Synthesis and crystallization

To a solution of 2-phenyl-3H-quinazoline-4-thione (4.81 g, 20.2 mmol) in a 1:1 mixture of MeOH and water (50 ml) containing KOH (3.0 g), was added iodo­methane (3.41 g, 24.0 mmol). The reaction mixture was stirred for 20 min at room temperature and the solid obtained was filtered, washed with H2O (3 × 30 ml), dried and recrystallized from Et2O to give 4-(methyl­thio)-2-phenyl­quinazoline (4.63 g, 18.3 mmol, 91%) as colourless crystals, m.p. 93-94 °C [lit. 94 °C (H2O); Meerwein et al., 1956). 1H NMR (400 MHz, CDCl3, δ, p.p.m.) 8.70-8.66 (m, 2 H, ArH), 8.10-8.03 (m, 2 H, ArH), 7.83 (app. dt, J = 1, 8 Hz, 1 H, H-7), 7.58-7.51 (m, 4 H, ArH), 2.85 (s, 3 H, CH3). 13C NMR (100 MHz, CDCl3, d, p.p.m.) 171.8 (s, C-2), 159.2 (s, C-4), 149.1 (s, C-8a), 138.5 (s, C-1 of Ph), 133.9 (d, C-7), 131.0 (d, C-4 of Ph), 129.4 (d, C-8), 129.0 (d, C-3/C-5 of Ph), 128.9 (d, C-2/C-6 of Ph), 127.1 (d, C-6), 124.1 (d, C-5), 123.0 (s, C-4a), 13.0 (q, CH3). EI—MS (m/z, %): 252 (M+, 100), 251 (72), 205 (60), 102 (47), 77 (61), 51 (33). CI—MS (m/z, %): 253 (MH+, 100), 207 (3). HRMS (CI): Calculated for C15H13N2S [MH] 253.0794; found, 253.0789.

S6. Refinement

H atoms were placed in calculated positions with C—H = 0.95 and 0.98 Å and refined in riding mode, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

A molecule showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Packing diagram.

Crystal data

C15H12N2S F(000) = 528
Mr = 252.33 Dx = 1.387 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.1951 (3) Å Cell parameters from 2558 reflections
b = 7.3545 (2) Å θ = 3.1–29.7°
c = 16.5300 (5) Å µ = 0.25 mm1
β = 102.860 (3)° T = 150 K
V = 1208.33 (6) Å3 Block, colourless
Z = 4 0.23 × 0.18 × 0.15 mm

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 3025 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2558 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
ω scans θmax = 29.7°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) h = −13→12
Tmin = 0.848, Tmax = 1.000 k = −9→10
11140 measured reflections l = −17→22

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.6772P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3025 reflections Δρmax = 0.29 e Å3
164 parameters Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.09137 (15) 0.6738 (2) −0.06125 (9) 0.0182 (3)
C2 0.06916 (15) 0.7676 (2) 0.06700 (9) 0.0189 (3)
C3 −0.07074 (14) 0.8041 (2) 0.03446 (9) 0.0183 (3)
C4 −0.11800 (15) 0.7663 (2) −0.05066 (9) 0.0196 (3)
C5 −0.16032 (16) 0.8695 (2) 0.08196 (10) 0.0229 (3)
H5 −0.1285 0.8950 0.1393 0.027*
C6 −0.29284 (16) 0.8957 (2) 0.04503 (10) 0.0257 (3)
H6 −0.3531 0.9391 0.0770 0.031*
C7 −0.34049 (16) 0.8591 (2) −0.03973 (11) 0.0266 (4)
H7 −0.4328 0.8783 −0.0646 0.032*
C8 −0.25564 (15) 0.7960 (2) −0.08710 (10) 0.0246 (3)
H8 −0.2892 0.7723 −0.1445 0.030*
C9 0.18424 (15) 0.5989 (2) −0.11089 (9) 0.0188 (3)
C10 0.13360 (15) 0.5219 (2) −0.18889 (9) 0.0213 (3)
H10 0.0394 0.5222 −0.2116 0.026*
C11 0.22001 (16) 0.4449 (2) −0.23338 (9) 0.0237 (3)
H11 0.1846 0.3913 −0.2860 0.028*
C12 0.35767 (16) 0.4460 (2) −0.20139 (10) 0.0253 (3)
H12 0.4166 0.3939 −0.2321 0.030*
C13 0.40914 (16) 0.5234 (2) −0.12434 (10) 0.0250 (3)
H13 0.5036 0.5249 −0.1025 0.030*
C14 0.32309 (15) 0.5986 (2) −0.07900 (9) 0.0225 (3)
H14 0.3589 0.6502 −0.0260 0.027*
C15 0.30675 (16) 0.7320 (3) 0.18247 (10) 0.0289 (4)
H15A 0.3070 0.6036 0.1666 0.043*
H15B 0.3564 0.7464 0.2401 0.043*
H15C 0.3498 0.8048 0.1460 0.043*
N1 0.14809 (12) 0.70406 (17) 0.02073 (8) 0.0191 (3)
N2 −0.03494 (12) 0.70111 (17) −0.09896 (8) 0.0200 (3)
S1 0.13627 (4) 0.80726 (6) 0.17278 (2) 0.02388 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0219 (7) 0.0154 (7) 0.0174 (7) −0.0014 (5) 0.0049 (6) 0.0015 (6)
C2 0.0237 (7) 0.0172 (7) 0.0156 (7) −0.0014 (6) 0.0042 (6) 0.0017 (6)
C3 0.0216 (7) 0.0147 (7) 0.0191 (7) −0.0010 (5) 0.0058 (6) 0.0020 (6)
C4 0.0218 (7) 0.0173 (7) 0.0202 (7) −0.0011 (6) 0.0055 (6) 0.0014 (6)
C5 0.0282 (8) 0.0212 (8) 0.0208 (8) 0.0013 (6) 0.0088 (6) 0.0005 (6)
C6 0.0254 (8) 0.0229 (8) 0.0316 (9) 0.0035 (6) 0.0126 (7) −0.0004 (7)
C7 0.0195 (7) 0.0261 (8) 0.0335 (9) 0.0018 (6) 0.0043 (6) 0.0005 (7)
C8 0.0222 (8) 0.0274 (9) 0.0231 (8) −0.0008 (6) 0.0024 (6) −0.0016 (7)
C9 0.0232 (7) 0.0161 (7) 0.0176 (7) 0.0008 (6) 0.0059 (6) 0.0026 (6)
C10 0.0229 (7) 0.0216 (8) 0.0195 (7) −0.0004 (6) 0.0048 (6) 0.0022 (6)
C11 0.0318 (8) 0.0225 (8) 0.0174 (7) −0.0004 (6) 0.0067 (6) −0.0011 (6)
C12 0.0300 (8) 0.0234 (8) 0.0256 (8) 0.0037 (6) 0.0131 (7) 0.0006 (7)
C13 0.0226 (8) 0.0258 (9) 0.0274 (8) 0.0019 (6) 0.0071 (6) 0.0017 (7)
C14 0.0252 (8) 0.0230 (8) 0.0188 (7) 0.0001 (6) 0.0039 (6) −0.0002 (6)
C15 0.0241 (8) 0.0406 (10) 0.0202 (8) 0.0037 (7) 0.0011 (6) 0.0014 (7)
N1 0.0209 (6) 0.0198 (6) 0.0171 (6) −0.0007 (5) 0.0050 (5) 0.0019 (5)
N2 0.0218 (6) 0.0200 (6) 0.0185 (6) −0.0005 (5) 0.0051 (5) −0.0009 (5)
S1 0.0248 (2) 0.0308 (2) 0.0159 (2) 0.00122 (15) 0.00423 (15) −0.00238 (16)

Geometric parameters (Å, º)

C1—N2 1.3153 (19) C8—H8 0.9500
C1—N1 1.3680 (19) C9—C14 1.396 (2)
C1—C9 1.4897 (19) C9—C10 1.398 (2)
C2—N1 1.3134 (18) C10—C11 1.388 (2)
C2—C3 1.433 (2) C10—H10 0.9500
C2—S1 1.7544 (15) C11—C12 1.385 (2)
C3—C4 1.410 (2) C11—H11 0.9500
C3—C5 1.414 (2) C12—C13 1.387 (2)
C4—N2 1.3730 (18) C12—H12 0.9500
C4—C8 1.415 (2) C13—C14 1.389 (2)
C5—C6 1.367 (2) C13—H13 0.9500
C5—H5 0.9500 C14—H14 0.9500
C6—C7 1.403 (2) C15—S1 1.7970 (16)
C6—H6 0.9500 C15—H15A 0.9800
C7—C8 1.370 (2) C15—H15B 0.9800
C7—H7 0.9500 C15—H15C 0.9800
N2—C1—N1 126.73 (13) C10—C9—C1 120.56 (13)
N2—C1—C9 118.08 (13) C11—C10—C9 120.43 (14)
N1—C1—C9 115.18 (13) C11—C10—H10 119.8
N1—C2—C3 122.39 (13) C9—C10—H10 119.8
N1—C2—S1 119.07 (11) C12—C11—C10 120.27 (15)
C3—C2—S1 118.54 (11) C12—C11—H11 119.9
C4—C3—C5 120.11 (14) C10—C11—H11 119.9
C4—C3—C2 115.34 (13) C11—C12—C13 119.80 (14)
C5—C3—C2 124.53 (14) C11—C12—H12 120.1
N2—C4—C3 122.09 (13) C13—C12—H12 120.1
N2—C4—C8 119.20 (14) C12—C13—C14 120.23 (15)
C3—C4—C8 118.71 (13) C12—C13—H13 119.9
C6—C5—C3 119.75 (15) C14—C13—H13 119.9
C6—C5—H5 120.1 C13—C14—C9 120.38 (14)
C3—C5—H5 120.1 C13—C14—H14 119.8
C5—C6—C7 120.47 (14) C9—C14—H14 119.8
C5—C6—H6 119.8 S1—C15—H15A 109.5
C7—C6—H6 119.8 S1—C15—H15B 109.5
C8—C7—C6 120.88 (15) H15A—C15—H15B 109.5
C8—C7—H7 119.6 S1—C15—H15C 109.5
C6—C7—H7 119.6 H15A—C15—H15C 109.5
C7—C8—C4 120.08 (15) H15B—C15—H15C 109.5
C7—C8—H8 120.0 C2—N1—C1 117.13 (13)
C4—C8—H8 120.0 C1—N2—C4 116.31 (13)
C14—C9—C10 118.88 (13) C2—S1—C15 101.10 (7)
C14—C9—C1 120.52 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15B···N2i 0.98 2.67 3.648 (2) 173

Symmetry code: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5801).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Blatter, H. M. & Lukaszewski, H. (1964). Tetrahedron Lett. pp. 855–861.
  3. Hearn, J. M., Morton, R. A. & Simpson, J. C. E. (1951). J. Chem. Soc. pp. 3318–3329.
  4. Leonard, N. J. & Curtin, D. Y. (1946). J. Org. Chem. 11, 349–352. [DOI] [PubMed]
  5. Meerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224–238.
  6. Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Domenech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505–510. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005a). J. Sulfur Chem. 26, 121–131.
  9. Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005b). Synthesis, pp. 2951–2961.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814015657/xu5801sup1.cif

e-70-0o919-sup1.cif (397.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015657/xu5801Isup2.hkl

e-70-0o919-Isup2.hkl (166.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015657/xu5801Isup3.cml

CCDC reference: 1012164

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES