Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 19;70(Pt 8):80–83. doi: 10.1107/S1600536814014779

Crystal structure of a layered coordination polymer based on a 44 net containing Cd2+ ions and 1,5-bis­(pyridin-4-yl)pentane linkers

William T A Harrison a,*, M John Plater a, Ben M deSilva deSilva a, Mark R St J Foreman a
PMCID: PMC4158512  PMID: 25249860

[Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O, is a layered coordination polymer containing highly squashed 44 nets. The polymeric sheets alternate with layers of counter ions, free ligands and solvent molecules.

Keywords: Cadmium, flexible ligand, layered coordination polymer, crystal structure

Abstract

The title compound, poly[[di­aqua­bis­[1,5-bis­(pyridin-4-yl)pentane-κ2 N:N′]cadmium] bis­(perchlorate) 1,5-bis­(pyridin-4-yl)pentane ethanol mono­solvate], [Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O, is a layered coordination polymer built up from highly squashed 44 nets in which the octa­hedral trans-CdO2N4 nodes (Cd site symmetry -1) are linked by the bifunctional ligands, forming infinite (110) sheets. The cationic sheets are charge-balanced by inter­layer perchlorate ions. A free 1,5-bis­(pyridin-4-yl)pentane mol­ecule and an ethanol mol­ecule of crystallization are also found in the inter­sheet region. A number of O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds help to consolidate the layered structure.

Chemical context  

The most popular linking ligands in metal-organic frameworks (MOFs) are probably multi-functional carboxyl­ates (Batten et al., 2009) but other functional groups are also possible. As part of our ongoing studies of flexible bifunctional pyridyl ligands (Plater et al., 2008) as potential MOF linkers, we now describe the synthesis and structure of the title layered coordination polymer, (I), which combines Cd2+ ions and the little-studied ligand 1,5-bis­(pyridin-4-yl)pentane, C15H18N2. The neutral bridging ligand necessitates the presence of perchlorate counter-ions (from the starting metal salt), which exert an important influence on the structure.graphic file with name e-70-00080-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) contains two Cd2+ ions (both lying on crystallographic inversion centres), three 1,5-bis­(pyridin-4-yl)pentane (C15H18N2; L) molecules, two perchlorate ions, two water mol­ecules and one ethanol mol­ecule (Fig. 1). The cadmium ions, water mol­ecules and two of the L molecules combine to generate an infinite cationic network of compos­ition [Cd(H2O)2 L 2]2+ n.

Figure 1.

Figure 1

The asymmetric unit of (I) showing 50% displacement ellipsoids.

Both cadmium ions adopt almost regular trans-CdO2N4 octa­hedral coordination geometries (Table 1) arising from two water mol­ecules and four ligands. The mean Cd—O and Cd—N bond lengths are 2.327 and 2.341 Å, respectively. Bond-valence sum (BVS) calculations (Brese & O’Keeffe, 1991) in valence units for Cd1 and Cd2 yield values of 2.11 and 2.02, respectively, in close agreement with the expected value of 2.00. The octa­hedral angular variances (Robinson et al., 1971) for Cd1 and Cd2 are 2.53 and 10.57°2, respectively. Both ligands bridge the Cd1 and Cd2 atoms, resulting in a highly squashed and contorted 44 network (O’Keeffe & Hyde, 1996), which propagates in the (110) plane, as shown in Fig. 2: each Cd1 atom is linked to four different Cd2 atoms and vice versa. The shortest Cd1⋯Cd2 separations (via ligands) are 14.4350 (6) and 14.7807 (6) Å. The shortest non-bonded Cd1⋯Cd1 and Cd2⋯Cd2 separations across a squashed 44 square are both 11.0921 (5) Å. It is inter­esting that the shortest metal–metal distances in (I) of 10.0618 (4) and 10.1653 (4) Å for both Cd1 and Cd2 are inter-sheet separations.

Table 1. Selected bond lengths (Å).

Cd1—O1 2.317 (5) Cd2—O2 2.337 (5)
Cd1—N11 2.319 (7) Cd2—N22i 2.333 (6)
Cd1—N21 2.349 (6) Cd2—N12 2.363 (6)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Part of an infinite 44 sheet propagating in (110) in the structure of (I). The Cd1 and Cd2 ions are represented by orange and fuchsia spheres, respectively.

For the N11 ligand mol­ecule, the dihedral angle between the N11 and N12 rings is 77.8 (4)° and the alkyl chain adopts a gaaa (g = gauche, a = anti) conformation (reading from the N11 ring to the N12 ring). Cd1 is displaced by 0.69 (1) Å from the N11 ring plane and Cd2 is displaced by −0.26 (1) Å from the N12 plane. In the N21 ligand mol­ecule, the dihedral angle between the pyridine rings is 75.2 (4)° and the alkyl-chain conformation is aaag (in the sense of the N21 ring to the N22 ring). The displacement of Cd1 from the N21 ring is 0.42 (1) Å and the displacement of Cd2 from the N22 ring is −0.58 (1) Å. The shortest out-and-back pathway from any metal atom to itself encompasses no fewer than 56 atoms (4 metal atoms and 4 × 13 ligand atoms).

The mean Cl—O bond lengths in the perchlorate ions in (I) are 1.446 Å for the Cl1 species and 1.436 Å for the Cl2 species. The third (N31) ligand mol­ecule is not bonded to the metal ions: the dihedral angle between its N31 and N32 rings is 18.3 (5)° and its alkyl chain conformation is ggaa (from N31 to N32; Fig. 3).

Figure 3.

Figure 3

Part of a layer of perchlorate ions, N31-ligands and ethanol mol­ecules in the structure of (I). The Oe—H⋯O (e = ethanol) hydrogen bond is shown as a yellow line.

Supra­molecular features  

In the crystal, the infinite [Cd(H2O)2 L 2]n sheets propagate in the (110) plane (Fig. 4). There is no inter­penetration of the sheets in this structure. Sandwiched between the cationic sheets are layers of perchlorate ions, free (unbounded) N31-molecules and ethanol solvent mol­ecules. The water mol­ecules attached to the cadmium ions each form one O—H⋯O hydrogen bond to a perchlorate ion and one O—H⋯N hydrogen bond to the free solvent mol­ecule, such that both N31 and N32 accept a hydrogen bond. An intra-layer Oe—H⋯Cl (e = ethanol) hydrogen bond also occurs. A number of C—H⋯O inter­actions are also observed (mean H⋯O = 2.54 Å): see Table 2.

Figure 4.

Figure 4

View down [001] of the structure of (I) showing the alternating polymeric [Cd(H2O)2 L 2]n and perchlorate/solvent molecule layers. The Cd1- and Cd2-centred octa­hedra are shown as orange and fuchsia polyhedra, respectively.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O8ii 0.86 1.96 2.795 (9) 165
O1—H2O⋯N32iii 0.84 1.87 2.705 (10) 175
O2—H3O⋯N31ii 0.86 1.91 2.736 (9) 162
O2—H4O⋯O3iv 0.84 2.20 2.880 (8) 138
O11—H11⋯O6 0.84 2.14 2.910 (11) 152
C1—H1C⋯O5 0.98 2.57 3.493 (12) 157
C101—H101⋯O1 0.95 2.55 3.226 (10) 128
C113—H113⋯O6 0.95 2.56 3.257 (12) 130
C201—H201⋯O10ii 0.95 2.54 3.260 (11) 133
C205—H205⋯O7 0.95 2.55 3.214 (12) 127
C214—H214⋯O2v 0.95 2.52 3.201 (11) 128
C304—H304⋯O3 0.95 2.47 3.420 (11) 174

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Database survey  

Only four ‘hits’ for crystal structures containing 1,5-bis(pyridin-4-yl)pentane were obtained from a search of Version 5.31 (last update February 2014) of the Cambridge Structural Database (Allen & Motherwell, 2002). Three of these are the isostructural family [M(C15H18N2)2(NO3)2]n, (M = Co, Ni, Cu) (Plater et al., 2008), which contain inter­penetrated 65.8 nets, with the nitrate counter-ions directly bonded to the metal ions. In [Cd4(C15H18N2)8(NO3)8]n·2nH2O, (II), (Plater et al., 2000), remarkable triply-inter­penetrated 63 nets occur in which the cadmium ions are coordinated by three ligand N atoms and two O,O-bidentate nitrate ions, generating distorted CdN3O4 penta­gonal bipyramids. It may be noted that in (I) and (II) the counter-ions and water mol­ecules have effectively swapped places, resulting in radically different structures.

Synthesis and crystallization  

1,5-Bis(pyridin-4-yl)pentane (0.1 g, 0. 450 mmol; Plater et al., 2000) was dissolved in ethanol (5 ml) and carefully layered onto a solution of Cd(ClO4)2·xH2O (0.137 g, 0.44 mmol) in water (5 ml). The solution was left to stand for two weeks during which time colourless blocks of (I) grew at the layer inter­face. The crystals were harvested and air dried (0.107 g, 45%). IR (KBr disc)/cm−1 ν = 3469 s, 3422 s, 2932 s, 2858 s, 1513 s, 1427 s, 1226 s, 1094 s, 1012 w, 842 w, 800 w, 624 s and 512 w.

Refinement  

The O-bound H atoms were located in difference maps and refined as riding atoms in their as-found relative positions. The C-bound H atoms were placed geometrically and refined as riding atoms. The H atoms of the methyl group were allowed to rotate, but not to tip, to best fit the electron density. The constraint U iso(H) = 1.2U eq(C,O) or 1.5U eq(methyl C) was applied in all cases. Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O
M r 1072.34
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 120
a, b, c (Å) 10.0618 (3), 10.1653 (3), 27.0304 (11)
α, β, γ (°) 87.163 (1), 85.001 (1), 66.509 (1)
V3) 2525.60 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.10 × 0.07 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2001)
T min, T max 0.942, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 20841, 9645, 6116
R int 0.135
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.091, 0.221, 1.10
No. of reflections 9645
No. of parameters 608
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.94, −1.34

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SORTAV (Blessing, 1995), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 1998).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014779/wm0007sup1.cif

e-70-00080-sup1.cif (39.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014779/wm0007Isup2.hkl

e-70-00080-Isup2.hkl (481.1KB, hkl)

CCDC reference: 1008978

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

supplementary crystallographic information

Crystal data

[Cd(C15H18N2)2(H2O)2](ClO4)2·C15H18N2·C2H6O Z = 2
Mr = 1072.34 F(000) = 1116
Triclinic, P1 Dx = 1.410 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.0618 (3) Å Cell parameters from 8655 reflections
b = 10.1653 (3) Å θ = 2.9–26.0°
c = 27.0304 (11) Å µ = 0.60 mm1
α = 87.163 (1)° T = 120 K
β = 85.001 (1)° Chip, colourless
γ = 66.509 (1)° 0.10 × 0.07 × 0.05 mm
V = 2525.60 (15) Å3

Data collection

Nonius KappaCCD diffractometer 9645 independent reflections
Radiation source: fine-focus sealed tube 6116 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.135
ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −11→12
Tmin = 0.942, Tmax = 0.971 k = −12→12
20841 measured reflections l = −33→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0516P)2 + 20.691P] where P = (Fo2 + 2Fc2)/3
9645 reflections (Δ/σ)max < 0.001
608 parameters Δρmax = 2.94 e Å3
24 restraints Δρmin = −1.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.5000 0.0000 0.0000 0.0179 (2)
Cd2 0.0000 0.5000 0.5000 0.0152 (2)
O1 0.3460 (6) −0.1203 (6) 0.0086 (2) 0.0255 (14)
H1O 0.3454 −0.1900 0.0278 0.031*
H2O 0.2884 −0.1118 −0.0131 0.031*
O2 −0.1216 (6) 0.3462 (6) 0.5004 (2) 0.0188 (13)
H3O −0.1082 0.3017 0.4730 0.023*
H4O −0.2117 0.3834 0.5072 0.023*
N11 0.3004 (7) 0.2155 (7) 0.0113 (2) 0.0159 (14)
N12 0.0329 (7) 0.4706 (7) 0.4130 (2) 0.0168 (15)
C101 0.1756 (9) 0.2138 (9) 0.0360 (3) 0.0188 (18)
H101 0.1650 0.1248 0.0382 0.023*
C102 0.0667 (9) 0.3284 (9) 0.0576 (3) 0.0218 (19)
H102 −0.0160 0.3170 0.0736 0.026*
C103 0.0737 (9) 0.4624 (9) 0.0566 (3) 0.0180 (18)
C104 0.1981 (9) 0.4690 (9) 0.0313 (3) 0.0215 (19)
H104 0.2094 0.5576 0.0286 0.026*
C105 0.3048 (9) 0.3478 (9) 0.0101 (3) 0.0227 (19)
H105 0.3877 0.3574 −0.0065 0.027*
C106 −0.0347 (9) 0.5862 (9) 0.0839 (3) 0.0221 (19)
H10A −0.1276 0.5737 0.0889 0.027*
H10B −0.0518 0.6745 0.0636 0.027*
C107 0.0128 (9) 0.6049 (9) 0.1346 (3) 0.0204 (19)
H10C 0.1061 0.6168 0.1298 0.024*
H10D −0.0607 0.6929 0.1502 0.024*
C108 0.0311 (10) 0.4762 (9) 0.1694 (3) 0.025 (2)
H10E 0.1180 0.3924 0.1574 0.030*
H10F −0.0545 0.4516 0.1686 0.030*
C109 0.0473 (10) 0.5069 (9) 0.2231 (3) 0.023 (2)
H10G 0.1307 0.5349 0.2237 0.027*
H10H −0.0413 0.5883 0.2356 0.027*
C110 0.0710 (10) 0.3759 (9) 0.2574 (3) 0.027 (2)
H11A −0.0020 0.3368 0.2517 0.033*
H11B 0.1684 0.3007 0.2485 0.033*
C111 0.0598 (10) 0.4099 (9) 0.3123 (3) 0.022 (2)
C112 0.1818 (10) 0.3809 (9) 0.3390 (3) 0.0231 (19)
H112 0.2769 0.3403 0.3231 0.028*
C113 0.1614 (9) 0.4124 (8) 0.3887 (3) 0.0179 (18)
H113 0.2450 0.3909 0.4066 0.022*
C114 −0.0851 (9) 0.5015 (9) 0.3870 (3) 0.0203 (19)
H114 −0.1787 0.5442 0.4040 0.024*
C115 −0.0759 (10) 0.4739 (9) 0.3371 (3) 0.0212 (19)
H115 −0.1615 0.4986 0.3201 0.025*
N21 0.5191 (8) −0.0094 (8) 0.0862 (2) 0.0192 (16)
N22 0.7871 (7) −0.3004 (6) 0.4863 (2) 0.0113 (13)
C201 0.5874 (9) −0.1351 (9) 0.1092 (3) 0.0226 (19)
H201 0.6121 −0.2209 0.0914 0.027*
C202 0.6240 (10) −0.1453 (10) 0.1584 (3) 0.027 (2)
H202 0.6703 −0.2368 0.1736 0.032*
C203 0.5927 (10) −0.0224 (10) 0.1847 (3) 0.025 (2)
C204 0.5167 (10) 0.1083 (10) 0.1611 (3) 0.027 (2)
H204 0.4871 0.1955 0.1784 0.032*
C205 0.4851 (10) 0.1102 (10) 0.1130 (3) 0.028 (2)
H205 0.4364 0.2006 0.0974 0.034*
C206 0.6337 (10) −0.0278 (11) 0.2377 (3) 0.030 (2)
H20A 0.7225 −0.1151 0.2425 0.036*
H20B 0.6561 0.0565 0.2432 0.036*
C207 0.5147 (10) −0.0287 (11) 0.2752 (3) 0.027 (2)
H20C 0.5032 −0.1204 0.2728 0.033*
H20D 0.4224 0.0498 0.2667 0.033*
C208 0.5406 (9) −0.0109 (10) 0.3284 (3) 0.023 (2)
H20E 0.5551 0.0793 0.3307 0.027*
H20F 0.6309 −0.0912 0.3374 0.027*
C209 0.4158 (9) −0.0072 (9) 0.3655 (3) 0.0196 (19)
H20G 0.4124 −0.1034 0.3675 0.024*
H20H 0.3230 0.0614 0.3533 0.024*
C210 0.4299 (9) 0.0364 (9) 0.4179 (3) 0.0210 (19)
H21A 0.4452 0.1270 0.4156 0.025*
H21B 0.3382 0.0543 0.4385 0.025*
C211 0.5540 (9) −0.0769 (9) 0.4432 (3) 0.0165 (18)
C212 0.5365 (9) −0.1941 (9) 0.4666 (3) 0.0198 (18)
H212 0.4445 −0.2005 0.4685 0.024*
C213 0.6524 (9) −0.3010 (9) 0.4870 (3) 0.0172 (18)
H213 0.6373 −0.3803 0.5026 0.021*
C214 0.8012 (9) −0.1840 (9) 0.4630 (3) 0.0188 (18)
H214 0.8939 −0.1793 0.4608 0.023*
C215 0.6890 (9) −0.0734 (9) 0.4424 (3) 0.0195 (18)
H215 0.7050 0.0062 0.4276 0.023*
N31 −0.0493 (8) 1.1537 (9) 0.4252 (3) 0.0320 (19)
N32 −0.1723 (9) 1.0904 (9) 0.0658 (3) 0.035 (2)
C301 −0.1172 (10) 1.1686 (10) 0.3835 (4) 0.030 (2)
H301 −0.1875 1.2604 0.3752 0.036*
C302 −0.0885 (10) 1.0542 (10) 0.3516 (3) 0.026 (2)
H302 −0.1425 1.0686 0.3232 0.031*
C303 0.0188 (9) 0.9194 (9) 0.3613 (3) 0.0154 (17)
C304 0.0963 (9) 0.9043 (9) 0.4046 (3) 0.0202 (19)
H304 0.1717 0.8157 0.4129 0.024*
C305 0.0566 (10) 1.0247 (10) 0.4341 (3) 0.027 (2)
H305 0.1086 1.0150 0.4627 0.032*
C306 0.0541 (10) 0.7921 (9) 0.3294 (3) 0.028 (2)
H30A −0.0241 0.8133 0.3066 0.033*
H30B 0.0564 0.7095 0.3508 0.033*
C307 0.1996 (10) 0.7500 (9) 0.2985 (3) 0.028 (2)
H30C 0.2780 0.7279 0.3212 0.033*
H30D 0.2185 0.6617 0.2802 0.033*
C308 0.2050 (10) 0.8652 (11) 0.2619 (3) 0.033 (2)
H30E 0.3044 0.8338 0.2455 0.040*
H30F 0.1855 0.9536 0.2803 0.040*
C309 0.0965 (10) 0.9005 (10) 0.2218 (3) 0.028 (2)
H30G −0.0037 0.9424 0.2376 0.034*
H30H 0.1091 0.8110 0.2053 0.034*
C310 0.1180 (11) 1.0081 (10) 0.1822 (3) 0.032 (2)
H31A 0.1001 1.0996 0.1983 0.038*
H31B 0.2196 0.9686 0.1676 0.038*
C311 0.0166 (9) 1.0358 (9) 0.1418 (3) 0.0210 (19)
C312 −0.1188 (10) 1.1552 (10) 0.1427 (4) 0.030 (2)
H312 −0.1468 1.2201 0.1694 0.037*
C313 −0.2088 (11) 1.1779 (10) 0.1058 (4) 0.038 (3)
H313 −0.3002 1.2572 0.1078 0.046*
C314 −0.0463 (10) 0.9765 (9) 0.0655 (3) 0.025 (2)
H314 −0.0214 0.9120 0.0387 0.030*
C315 0.0528 (10) 0.9460 (9) 0.1029 (3) 0.023 (2)
H315 0.1424 0.8646 0.1007 0.028*
Cl1 0.5093 (2) 0.4849 (2) 0.40637 (8) 0.0265 (5)
O3 0.3649 (6) 0.5756 (7) 0.4264 (2) 0.0309 (15)
O4 0.5991 (7) 0.4198 (8) 0.4469 (3) 0.0458 (19)
O5 0.5694 (8) 0.5707 (8) 0.3756 (2) 0.0425 (19)
O6 0.4995 (7) 0.3747 (7) 0.3767 (2) 0.0373 (17)
Cl2 0.4508 (3) 0.5691 (2) 0.11401 (9) 0.0307 (6)
O7 0.4223 (8) 0.4435 (7) 0.1242 (3) 0.0416 (18)
O8 0.3993 (8) 0.6319 (8) 0.0671 (3) 0.054 (2)
O9 0.3709 (9) 0.6750 (9) 0.1517 (3) 0.066 (3)
O10 0.6020 (7) 0.5384 (7) 0.1153 (3) 0.0359 (16)
C1 0.6037 (12) 0.5405 (12) 0.2465 (4) 0.047 (3)
H1A 0.5424 0.6134 0.2239 0.071*
H1B 0.7062 0.5157 0.2356 0.071*
H1C 0.5840 0.5783 0.2802 0.071*
C2 0.5708 (14) 0.4094 (12) 0.2460 (4) 0.052 (3)
H2A 0.4658 0.4369 0.2550 0.062*
H2B 0.5916 0.3719 0.2119 0.062*
O11 0.6511 (11) 0.2977 (9) 0.2790 (3) 0.080 (3)
H11 0.6325 0.3277 0.3082 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0242 (5) 0.0207 (5) 0.0097 (4) −0.0101 (4) −0.0019 (4) 0.0028 (4)
Cd2 0.0155 (5) 0.0196 (5) 0.0088 (4) −0.0055 (4) 0.0000 (3) 0.0000 (3)
O1 0.031 (4) 0.030 (4) 0.024 (3) −0.020 (3) −0.007 (3) 0.003 (3)
O2 0.018 (3) 0.020 (3) 0.018 (3) −0.008 (3) 0.002 (2) −0.001 (2)
N11 0.017 (2) 0.017 (2) 0.014 (2) −0.0080 (16) −0.0034 (16) 0.0051 (16)
N12 0.020 (4) 0.020 (4) 0.014 (3) −0.011 (3) −0.001 (3) 0.000 (3)
C101 0.031 (5) 0.018 (4) 0.012 (4) −0.015 (4) 0.000 (4) −0.002 (3)
C102 0.023 (5) 0.031 (5) 0.012 (4) −0.012 (4) 0.003 (3) 0.000 (4)
C103 0.025 (5) 0.022 (5) 0.006 (4) −0.007 (4) −0.007 (3) 0.001 (3)
C104 0.026 (5) 0.021 (5) 0.019 (4) −0.011 (4) 0.003 (4) −0.002 (4)
C105 0.025 (5) 0.031 (5) 0.015 (4) −0.015 (4) 0.002 (4) 0.003 (4)
C106 0.024 (5) 0.022 (5) 0.013 (4) −0.001 (4) −0.001 (3) 0.001 (4)
C107 0.025 (5) 0.013 (4) 0.014 (4) 0.001 (4) 0.001 (3) −0.003 (3)
C108 0.032 (5) 0.024 (5) 0.017 (5) −0.010 (4) 0.000 (4) 0.001 (4)
C109 0.032 (5) 0.021 (5) 0.011 (4) −0.008 (4) 0.005 (4) −0.003 (3)
C110 0.039 (6) 0.027 (5) 0.008 (4) −0.004 (4) −0.002 (4) 0.000 (4)
C111 0.036 (5) 0.019 (4) 0.006 (4) −0.006 (4) 0.004 (4) 0.000 (3)
C112 0.026 (5) 0.024 (5) 0.017 (4) −0.008 (4) −0.001 (4) −0.002 (4)
C113 0.017 (4) 0.016 (4) 0.016 (4) −0.001 (4) −0.004 (3) 0.001 (3)
C114 0.021 (5) 0.028 (5) 0.018 (4) −0.016 (4) −0.003 (4) −0.001 (4)
C115 0.026 (5) 0.024 (5) 0.014 (4) −0.010 (4) −0.006 (4) 0.001 (4)
N21 0.023 (4) 0.029 (4) 0.008 (3) −0.014 (3) 0.002 (3) 0.003 (3)
N22 0.012 (2) 0.012 (2) 0.009 (2) −0.0042 (16) 0.0046 (16) −0.0034 (16)
C201 0.028 (5) 0.026 (5) 0.010 (4) −0.007 (4) 0.000 (3) −0.001 (4)
C202 0.029 (5) 0.031 (5) 0.015 (4) −0.008 (4) 0.001 (4) −0.001 (4)
C203 0.029 (5) 0.036 (6) 0.015 (4) −0.019 (4) 0.002 (4) −0.004 (4)
C204 0.045 (6) 0.019 (5) 0.022 (5) −0.016 (4) −0.006 (4) −0.001 (4)
C205 0.042 (6) 0.025 (5) 0.022 (5) −0.018 (5) −0.007 (4) 0.002 (4)
C206 0.033 (6) 0.045 (6) 0.016 (5) −0.018 (5) −0.006 (4) 0.000 (4)
C207 0.022 (5) 0.045 (6) 0.015 (4) −0.014 (5) −0.002 (4) 0.000 (4)
C208 0.023 (5) 0.035 (5) 0.008 (4) −0.009 (4) 0.000 (3) 0.003 (4)
C209 0.023 (5) 0.020 (5) 0.013 (4) −0.007 (4) −0.005 (3) 0.009 (3)
C210 0.021 (5) 0.025 (5) 0.012 (4) −0.004 (4) 0.000 (3) 0.000 (4)
C211 0.019 (5) 0.025 (5) 0.004 (4) −0.006 (4) −0.001 (3) −0.004 (3)
C212 0.013 (4) 0.025 (5) 0.017 (4) −0.003 (4) 0.001 (3) −0.004 (4)
C213 0.020 (5) 0.017 (4) 0.013 (4) −0.006 (4) 0.004 (3) −0.001 (3)
C214 0.018 (4) 0.023 (5) 0.015 (4) −0.008 (4) 0.001 (3) 0.000 (3)
C215 0.026 (5) 0.021 (5) 0.010 (4) −0.010 (4) 0.003 (3) 0.002 (3)
N31 0.026 (5) 0.038 (5) 0.034 (5) −0.015 (4) 0.002 (4) −0.008 (4)
N32 0.033 (5) 0.042 (5) 0.031 (5) −0.018 (4) −0.005 (4) 0.010 (4)
C301 0.032 (6) 0.025 (5) 0.040 (6) −0.019 (4) 0.003 (4) −0.005 (4)
C302 0.026 (5) 0.031 (5) 0.019 (5) −0.008 (4) −0.006 (4) 0.005 (4)
C303 0.019 (4) 0.025 (5) 0.007 (4) −0.013 (4) −0.005 (3) 0.002 (3)
C304 0.021 (4) 0.024 (4) 0.016 (4) −0.010 (3) −0.007 (3) 0.010 (3)
C305 0.028 (5) 0.045 (6) 0.013 (4) −0.020 (5) 0.002 (4) −0.008 (4)
C306 0.040 (6) 0.019 (5) 0.028 (5) −0.016 (4) −0.007 (4) 0.007 (4)
C307 0.026 (5) 0.024 (5) 0.030 (5) −0.005 (4) −0.007 (4) −0.007 (4)
C308 0.025 (5) 0.039 (6) 0.032 (5) −0.007 (5) −0.006 (4) −0.012 (5)
C309 0.032 (5) 0.035 (5) 0.016 (4) −0.012 (4) −0.001 (4) −0.003 (4)
C310 0.040 (6) 0.032 (5) 0.030 (5) −0.020 (5) −0.007 (4) 0.003 (4)
C311 0.021 (5) 0.023 (5) 0.024 (5) −0.016 (4) 0.007 (4) 0.002 (4)
C312 0.031 (6) 0.022 (5) 0.042 (6) −0.014 (4) −0.006 (5) −0.002 (4)
C313 0.028 (6) 0.024 (5) 0.057 (7) −0.007 (4) 0.010 (5) 0.012 (5)
C314 0.043 (6) 0.020 (5) 0.021 (5) −0.021 (5) −0.007 (4) −0.001 (4)
C315 0.024 (4) 0.018 (4) 0.028 (4) −0.009 (3) −0.005 (3) 0.012 (3)
Cl1 0.0150 (11) 0.0345 (13) 0.0266 (12) −0.0066 (10) 0.0037 (9) −0.0067 (10)
O3 0.016 (3) 0.035 (4) 0.031 (4) −0.003 (3) 0.013 (3) −0.003 (3)
O4 0.029 (4) 0.047 (5) 0.044 (4) 0.005 (3) −0.012 (3) −0.002 (4)
O5 0.048 (5) 0.066 (5) 0.029 (4) −0.041 (4) 0.015 (3) −0.010 (3)
O6 0.028 (4) 0.042 (4) 0.043 (4) −0.013 (3) −0.003 (3) −0.023 (3)
Cl2 0.0286 (13) 0.0232 (12) 0.0387 (14) −0.0086 (10) −0.0094 (10) 0.0107 (10)
O7 0.049 (5) 0.028 (4) 0.055 (5) −0.024 (3) −0.012 (4) 0.023 (3)
O8 0.055 (5) 0.051 (5) 0.061 (5) −0.026 (4) −0.024 (4) 0.043 (4)
O9 0.046 (5) 0.067 (6) 0.070 (6) −0.005 (4) 0.005 (4) −0.036 (5)
O10 0.024 (4) 0.028 (4) 0.056 (5) −0.010 (3) −0.010 (3) 0.000 (3)
C1 0.046 (7) 0.061 (8) 0.028 (6) −0.016 (6) −0.001 (5) −0.001 (5)
C2 0.064 (8) 0.045 (7) 0.029 (6) −0.003 (6) −0.005 (5) −0.003 (5)
O11 0.117 (8) 0.044 (5) 0.043 (5) 0.005 (5) −0.003 (5) 0.001 (4)

Geometric parameters (Å, º)

Cd1—O1 2.317 (5) C207—H20D 0.9900
Cd1—O1i 2.317 (5) C208—C209 1.527 (11)
Cd1—N11i 2.319 (7) C208—H20E 0.9900
Cd1—N11 2.319 (7) C208—H20F 0.9900
Cd1—N21i 2.349 (6) C209—C210 1.541 (11)
Cd1—N21 2.349 (6) C209—H20G 0.9900
Cd2—O2ii 2.337 (5) C209—H20H 0.9900
Cd2—O2 2.337 (5) C210—C211 1.508 (11)
Cd2—N22iii 2.333 (6) C210—H21A 0.9900
Cd2—N22iv 2.333 (6) C210—H21B 0.9900
Cd2—N12ii 2.363 (6) C211—C215 1.372 (11)
Cd2—N12 2.363 (6) C211—C212 1.387 (11)
O1—H1O 0.8595 C212—C213 1.374 (11)
O1—H2O 0.8386 C212—H212 0.9500
O2—H3O 0.8596 C213—H213 0.9500
O2—H4O 0.8387 C214—C215 1.371 (11)
N11—C105 1.362 (10) C214—H214 0.9500
N11—C101 1.376 (10) C215—H215 0.9500
N12—C113 1.317 (10) N31—C301 1.340 (12)
N12—C114 1.352 (10) N31—C305 1.347 (12)
C101—C102 1.355 (12) N32—C314 1.333 (12)
C101—H101 0.9500 N32—C313 1.364 (13)
C102—C103 1.391 (12) C301—C302 1.403 (13)
C102—H102 0.9500 C301—H301 0.9500
C103—C104 1.398 (11) C302—C303 1.395 (12)
C103—C106 1.474 (11) C302—H302 0.9500
C104—C105 1.380 (12) C303—C304 1.431 (11)
C104—H104 0.9500 C303—C306 1.495 (12)
C105—H105 0.9500 C304—C305 1.395 (12)
C106—C107 1.535 (11) C304—H304 0.9500
C106—H10A 0.9900 C305—H305 0.9500
C106—H10B 0.9900 C306—C307 1.531 (12)
C107—C108 1.531 (11) C306—H30A 0.9900
C107—H10C 0.9900 C306—H30B 0.9900
C107—H10D 0.9900 C307—C308 1.510 (13)
C108—C109 1.535 (11) C307—H30C 0.9900
C108—H10E 0.9900 C307—H30D 0.9900
C108—H10F 0.9900 C308—C309 1.532 (12)
C109—C110 1.533 (11) C308—H30E 0.9900
C109—H10G 0.9900 C308—H30F 0.9900
C109—H10H 0.9900 C309—C310 1.556 (12)
C110—C111 1.525 (11) C309—H30G 0.9900
C110—H11A 0.9900 C309—H30H 0.9900
C110—H11B 0.9900 C310—C311 1.498 (12)
C111—C115 1.384 (12) C310—H31A 0.9900
C111—C112 1.400 (12) C310—H31B 0.9900
C112—C113 1.376 (11) C311—C315 1.355 (12)
C112—H112 0.9500 C311—C312 1.418 (13)
C113—H113 0.9500 C312—C313 1.355 (14)
C114—C115 1.379 (11) C312—H312 0.9500
C114—H114 0.9500 C313—H313 0.9500
C115—H115 0.9500 C314—C315 1.417 (12)
N21—C201 1.337 (11) C314—H314 0.9500
N21—C205 1.353 (11) C315—H315 0.9500
N22—C213 1.356 (10) Cl1—O5 1.441 (7)
N22—C214 1.365 (10) Cl1—O4 1.443 (7)
N22—Cd2v 2.333 (6) Cl1—O6 1.449 (6)
C201—C202 1.397 (11) Cl1—O3 1.449 (6)
C201—H201 0.9500 Cl2—O7 1.425 (6)
C202—C203 1.380 (12) Cl2—O10 1.429 (7)
C202—H202 0.9500 Cl2—O8 1.433 (7)
C203—C204 1.396 (12) Cl2—O9 1.456 (8)
C203—C206 1.516 (11) C1—C2 1.497 (15)
C204—C205 1.361 (12) C1—H1A 0.9800
C204—H204 0.9500 C1—H1B 0.9800
C205—H205 0.9500 C1—H1C 0.9800
C206—C207 1.504 (12) C2—O11 1.424 (13)
C206—H20A 0.9900 C2—H2A 0.9900
C206—H20B 0.9900 C2—H2B 0.9900
C207—C208 1.513 (11) O11—H11 0.8400
C207—H20C 0.9900
O1—Cd1—O1i 180.0 H20A—C206—H20B 107.9
O1—Cd1—N11i 90.6 (2) C206—C207—C208 114.4 (7)
O1i—Cd1—N11i 89.4 (2) C206—C207—H20C 108.7
O1—Cd1—N11 89.4 (2) C208—C207—H20C 108.7
O1i—Cd1—N11 90.6 (2) C206—C207—H20D 108.7
N11i—Cd1—N11 180.0 C208—C207—H20D 108.7
O1—Cd1—N21i 88.7 (2) H20C—C207—H20D 107.6
O1i—Cd1—N21i 91.3 (2) C207—C208—C209 113.3 (7)
N11i—Cd1—N21i 87.8 (2) C207—C208—H20E 108.9
N11—Cd1—N21i 92.2 (2) C209—C208—H20E 108.9
O1—Cd1—N21 91.3 (2) C207—C208—H20F 108.9
O1i—Cd1—N21 88.7 (2) C209—C208—H20F 108.9
N11i—Cd1—N21 92.2 (2) H20E—C208—H20F 107.7
N11—Cd1—N21 87.8 (2) C208—C209—C210 113.1 (7)
N21i—Cd1—N21 180.0 C208—C209—H20G 109.0
N22iii—Cd2—N22iv 180.0 C210—C209—H20G 109.0
N22iii—Cd2—O2ii 88.5 (2) C208—C209—H20H 109.0
N22iv—Cd2—O2ii 91.5 (2) C210—C209—H20H 109.0
N22iii—Cd2—O2 91.5 (2) H20G—C209—H20H 107.8
N22iv—Cd2—O2 88.5 (2) C211—C210—C209 112.4 (7)
O2ii—Cd2—O2 180.0 C211—C210—H21A 109.1
N22iii—Cd2—N12ii 92.9 (2) C209—C210—H21A 109.1
N22iv—Cd2—N12ii 87.1 (2) C211—C210—H21B 109.1
O2ii—Cd2—N12ii 85.8 (2) C209—C210—H21B 109.1
O2—Cd2—N12ii 94.2 (2) H21A—C210—H21B 107.9
N22iii—Cd2—N12 87.1 (2) C215—C211—C212 117.0 (7)
N22iv—Cd2—N12 92.9 (2) C215—C211—C210 122.6 (7)
O2ii—Cd2—N12 94.2 (2) C212—C211—C210 120.3 (7)
O2—Cd2—N12 85.8 (2) C213—C212—C211 119.9 (8)
N12ii—Cd2—N12 180.0 C213—C212—H212 120.0
Cd1—O1—H1O 131.8 C211—C212—H212 120.0
Cd1—O1—H2O 120.6 N22—C213—C212 124.0 (7)
H1O—O1—H2O 106.4 N22—C213—H213 118.0
Cd2—O2—H3O 113.7 C212—C213—H213 118.0
Cd2—O2—H4O 116.2 N22—C214—C215 123.7 (8)
H3O—O2—H4O 106.4 N22—C214—H214 118.1
C105—N11—C101 112.7 (7) C215—C214—H214 118.1
C105—N11—Cd1 125.5 (5) C214—C215—C211 120.5 (8)
C101—N11—Cd1 118.6 (5) C214—C215—H215 119.8
C113—N12—C114 117.4 (7) C211—C215—H215 119.8
C113—N12—Cd2 123.4 (5) C301—N31—C305 117.0 (8)
C114—N12—Cd2 118.9 (5) C314—N32—C313 117.1 (8)
C102—C101—N11 125.4 (7) N31—C301—C302 122.7 (9)
C102—C101—H101 117.3 N31—C301—H301 118.7
N11—C101—H101 117.3 C302—C301—H301 118.7
C101—C102—C103 121.2 (8) C303—C302—C301 120.4 (8)
C101—C102—H102 119.4 C303—C302—H302 119.8
C103—C102—H102 119.4 C301—C302—H302 119.8
C102—C103—C104 115.1 (8) C302—C303—C304 117.2 (8)
C102—C103—C106 123.0 (8) C302—C303—C306 123.4 (7)
C104—C103—C106 121.7 (8) C304—C303—C306 119.3 (8)
C105—C104—C103 120.6 (8) C305—C304—C303 117.4 (8)
C105—C104—H104 119.7 C305—C304—H304 121.3
C103—C104—H104 119.7 C303—C304—H304 121.3
N11—C105—C104 125.0 (8) N31—C305—C304 125.2 (8)
N11—C105—H105 117.5 N31—C305—H305 117.4
C104—C105—H105 117.5 C304—C305—H305 117.4
C103—C106—C107 112.8 (7) C303—C306—C307 113.5 (7)
C103—C106—H10A 109.0 C303—C306—H30A 108.9
C107—C106—H10A 109.0 C307—C306—H30A 108.9
C103—C106—H10B 109.0 C303—C306—H30B 108.9
C107—C106—H10B 109.0 C307—C306—H30B 108.9
H10A—C106—H10B 107.8 H30A—C306—H30B 107.7
C108—C107—C106 111.8 (7) C308—C307—C306 113.5 (7)
C108—C107—H10C 109.2 C308—C307—H30C 108.9
C106—C107—H10C 109.2 C306—C307—H30C 108.9
C108—C107—H10D 109.2 C308—C307—H30D 108.9
C106—C107—H10D 109.2 C306—C307—H30D 108.9
H10C—C107—H10D 107.9 H30C—C307—H30D 107.7
C107—C108—C109 112.0 (7) C307—C308—C309 114.0 (8)
C107—C108—H10E 109.2 C307—C308—H30E 108.8
C109—C108—H10E 109.2 C309—C308—H30E 108.8
C107—C108—H10F 109.2 C307—C308—H30F 108.8
C109—C108—H10F 109.2 C309—C308—H30F 108.8
H10E—C108—H10F 107.9 H30E—C308—H30F 107.7
C110—C109—C108 111.8 (7) C308—C309—C310 111.5 (8)
C110—C109—H10G 109.3 C308—C309—H30G 109.3
C108—C109—H10G 109.3 C310—C309—H30G 109.3
C110—C109—H10H 109.3 C308—C309—H30H 109.3
C108—C109—H10H 109.3 C310—C309—H30H 109.3
H10G—C109—H10H 107.9 H30G—C309—H30H 108.0
C111—C110—C109 113.2 (7) C311—C310—C309 111.0 (7)
C111—C110—H11A 108.9 C311—C310—H31A 109.4
C109—C110—H11A 108.9 C309—C310—H31A 109.4
C111—C110—H11B 108.9 C311—C310—H31B 109.4
C109—C110—H11B 108.9 C309—C310—H31B 109.4
H11A—C110—H11B 107.8 H31A—C310—H31B 108.0
C115—C111—C112 117.8 (7) C315—C311—C312 117.7 (8)
C115—C111—C110 119.4 (8) C315—C311—C310 120.4 (8)
C112—C111—C110 122.8 (8) C312—C311—C310 121.9 (8)
C113—C112—C111 118.8 (8) C313—C312—C311 120.9 (9)
C113—C112—H112 120.6 C313—C312—H312 119.6
C111—C112—H112 120.6 C311—C312—H312 119.6
N12—C113—C112 123.9 (8) C312—C313—N32 122.0 (9)
N12—C113—H113 118.1 C312—C313—H313 119.0
C112—C113—H113 118.1 N32—C313—H313 119.0
N12—C114—C115 123.0 (8) N32—C314—C315 123.8 (8)
N12—C114—H114 118.5 N32—C314—H314 118.1
C115—C114—H114 118.5 C315—C314—H314 118.1
C114—C115—C111 119.0 (8) C311—C315—C314 118.5 (9)
C114—C115—H115 120.5 C311—C315—H315 120.8
C111—C115—H115 120.5 C314—C315—H315 120.8
C201—N21—C205 116.7 (7) O5—Cl1—O4 110.3 (5)
C201—N21—Cd1 120.2 (5) O5—Cl1—O6 109.5 (4)
C205—N21—Cd1 122.2 (6) O4—Cl1—O6 109.9 (4)
C213—N22—C214 114.8 (7) O5—Cl1—O3 109.3 (4)
C213—N22—Cd2v 125.4 (5) O4—Cl1—O3 108.9 (4)
C214—N22—Cd2v 117.4 (5) O6—Cl1—O3 109.0 (4)
N21—C201—C202 122.7 (8) O7—Cl2—O10 111.3 (4)
N21—C201—H201 118.7 O7—Cl2—O8 110.6 (4)
C202—C201—H201 118.7 O10—Cl2—O8 110.9 (4)
C203—C202—C201 119.9 (8) O7—Cl2—O9 108.9 (5)
C203—C202—H202 120.0 O10—Cl2—O9 108.3 (5)
C201—C202—H202 120.0 O8—Cl2—O9 106.9 (5)
C202—C203—C204 117.0 (8) C2—C1—H1A 109.5
C202—C203—C206 121.9 (8) C2—C1—H1B 109.5
C204—C203—C206 121.0 (8) H1A—C1—H1B 109.5
C205—C204—C203 119.8 (8) C2—C1—H1C 109.5
C205—C204—H204 120.1 H1A—C1—H1C 109.5
C203—C204—H204 120.1 H1B—C1—H1C 109.5
N21—C205—C204 123.8 (8) O11—C2—C1 114.2 (10)
N21—C205—H205 118.1 O11—C2—H2A 108.7
C204—C205—H205 118.1 C1—C2—H2A 108.7
C207—C206—C203 112.4 (7) O11—C2—H2B 108.7
C207—C206—H20A 109.1 C1—C2—H2B 108.7
C203—C206—H20A 109.1 H2A—C2—H2B 107.6
C207—C206—H20B 109.1 C2—O11—H11 109.5
C203—C206—H20B 109.1
O1—Cd1—N11—C105 −178.7 (6) N11i—Cd1—N21—C205 145.8 (7)
O1i—Cd1—N11—C105 1.3 (6) N11—Cd1—N21—C205 −34.2 (7)
N11i—Cd1—N11—C105 −165 (5) N21i—Cd1—N21—C205 61 (15)
N21i—Cd1—N11—C105 −90.1 (6) C205—N21—C201—C202 −0.5 (12)
N21—Cd1—N11—C105 89.9 (6) Cd1—N21—C201—C202 168.8 (6)
O1—Cd1—N11—C101 23.3 (6) N21—C201—C202—C203 −1.6 (13)
O1i—Cd1—N11—C101 −156.7 (6) C201—C202—C203—C204 3.8 (13)
N11i—Cd1—N11—C101 37 (5) C201—C202—C203—C206 −178.4 (8)
N21i—Cd1—N11—C101 111.9 (6) C202—C203—C204—C205 −4.1 (13)
N21—Cd1—N11—C101 −68.1 (6) C206—C203—C204—C205 178.0 (8)
N22iii—Cd2—N12—C113 150.8 (6) C201—N21—C205—C204 0.1 (13)
N22iv—Cd2—N12—C113 −29.2 (6) Cd1—N21—C205—C204 −168.9 (7)
O2ii—Cd2—N12—C113 62.5 (6) C203—C204—C205—N21 2.2 (14)
O2—Cd2—N12—C113 −117.5 (6) C202—C203—C206—C207 −91.2 (11)
N12ii—Cd2—N12—C113 −95 (26) C204—C203—C206—C207 86.5 (11)
N22iii—Cd2—N12—C114 −36.1 (6) C203—C206—C207—C208 −171.0 (8)
N22iv—Cd2—N12—C114 143.9 (6) C206—C207—C208—C209 178.1 (8)
O2ii—Cd2—N12—C114 −124.3 (6) C207—C208—C209—C210 −170.2 (7)
O2—Cd2—N12—C114 55.7 (6) C208—C209—C210—C211 −69.2 (9)
N12ii—Cd2—N12—C114 78 (26) C209—C210—C211—C215 95.5 (9)
C105—N11—C101—C102 −0.1 (11) C209—C210—C211—C212 −81.6 (9)
Cd1—N11—C101—C102 160.6 (7) C215—C211—C212—C213 −1.0 (11)
N11—C101—C102—C103 −0.7 (13) C210—C211—C212—C213 176.3 (7)
C101—C102—C103—C104 1.3 (12) C214—N22—C213—C212 −0.5 (11)
C101—C102—C103—C106 −173.4 (8) Cd2v—N22—C213—C212 −162.2 (6)
C102—C103—C104—C105 −1.2 (12) C211—C212—C213—N22 0.5 (12)
C106—C103—C104—C105 173.6 (8) C213—N22—C214—C215 1.3 (11)
C101—N11—C105—C104 0.2 (12) Cd2v—N22—C214—C215 164.6 (6)
Cd1—N11—C105—C104 −158.9 (7) N22—C214—C215—C211 −2.0 (13)
C103—C104—C105—N11 0.5 (13) C212—C211—C215—C214 1.7 (12)
C102—C103—C106—C107 95.9 (10) C210—C211—C215—C214 −175.5 (8)
C104—C103—C106—C107 −78.5 (10) C305—N31—C301—C302 4.4 (13)
C103—C106—C107—C108 −62.7 (10) N31—C301—C302—C303 −3.0 (14)
C106—C107—C108—C109 −168.2 (7) C301—C302—C303—C304 0.1 (12)
C107—C108—C109—C110 −177.9 (8) C301—C302—C303—C306 179.2 (8)
C108—C109—C110—C111 −169.4 (8) C302—C303—C304—C305 1.1 (11)
C109—C110—C111—C115 79.7 (10) C306—C303—C304—C305 −178.1 (7)
C109—C110—C111—C112 −99.4 (10) C301—N31—C305—C304 −3.2 (13)
C115—C111—C112—C113 2.3 (12) C303—C304—C305—N31 0.5 (13)
C110—C111—C112—C113 −178.6 (8) C302—C303—C306—C307 107.9 (10)
C114—N12—C113—C112 −0.4 (12) C304—C303—C306—C307 −73.1 (10)
Cd2—N12—C113—C112 172.9 (6) C303—C306—C307—C308 −62.3 (10)
C111—C112—C113—N12 −1.0 (13) C306—C307—C308—C309 −63.3 (10)
C113—N12—C114—C115 0.4 (12) C307—C308—C309—C310 −174.2 (8)
Cd2—N12—C114—C115 −173.2 (6) C308—C309—C310—C311 177.0 (8)
N12—C114—C115—C111 1.0 (13) C309—C310—C311—C315 −84.8 (10)
C112—C111—C115—C114 −2.3 (12) C309—C310—C311—C312 95.4 (10)
C110—C111—C115—C114 178.6 (8) C315—C311—C312—C313 0.3 (12)
O1—Cd1—N21—C201 67.8 (6) C310—C311—C312—C313 −179.9 (8)
O1i—Cd1—N21—C201 −112.2 (6) C311—C312—C313—N32 −1.9 (14)
N11i—Cd1—N21—C201 −22.8 (6) C314—N32—C313—C312 3.1 (13)
N11—Cd1—N21—C201 157.2 (6) C313—N32—C314—C315 −2.9 (13)
N21i—Cd1—N21—C201 −107 (15) C312—C311—C315—C314 0.0 (11)
O1—Cd1—N21—C205 −123.5 (7) C310—C311—C315—C314 −179.9 (7)
O1i—Cd1—N21—C205 56.5 (7) N32—C314—C315—C311 1.4 (13)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+1, −z+1; (iii) x−1, y+1, z; (iv) −x+1, −y, −z+1; (v) x+1, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O8vi 0.86 1.96 2.795 (9) 165
O1—H2O···N32vii 0.84 1.87 2.705 (10) 175
O2—H3O···N31vi 0.86 1.91 2.736 (9) 162
O2—H4O···O3ii 0.84 2.20 2.880 (8) 138
O11—H11···O6 0.84 2.14 2.910 (11) 152
C1—H1C···O5 0.98 2.57 3.493 (12) 157
C101—H101···O1 0.95 2.55 3.226 (10) 128
C113—H113···O6 0.95 2.56 3.257 (12) 130
C201—H201···O10vi 0.95 2.54 3.260 (11) 133
C205—H205···O7 0.95 2.55 3.214 (12) 127
C214—H214···O2iv 0.95 2.52 3.201 (11) 128
C304—H304···O3 0.95 2.47 3.420 (11) 174

Symmetry codes: (ii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1; (vi) x, y−1, z; (vii) −x, −y+1, −z.

References

  1. Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422. [DOI] [PubMed]
  2. Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications Cambridge: RSC Publishing.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  5. Dowty, E. (1998). ATOMS Shape Software, Kingsport, Tennessee, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. O’Keeffe, M. & Hyde, B. G. (1996). Crystal Structures I: Patterns and Symmetry, p. 164. Washington DC: Mineralogical Society of America.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Plater, M. J., Foreman, M. R. St J., Gelbrich, T., Coles, S. J. & Hursthouse, M. B. (2000). J. Chem. Soc. Dalton Trans. pp. 3065–3073.
  11. Plater, M. J., Gelbrich, T., Hursthouse, M. B. & De Silva, B. M. (2008). CrystEngComm, 10, 125–130.
  12. Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. [DOI] [PubMed]
  13. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014779/wm0007sup1.cif

e-70-00080-sup1.cif (39.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014779/wm0007Isup2.hkl

e-70-00080-Isup2.hkl (481.1KB, hkl)

CCDC reference: 1008978

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES