Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 31;70(Pt 8):o884. doi: 10.1107/S1600536814016237

(E)-3-(9-Hexyl-9H-carbazol-3-yl)acrylic acid

Wan Sun a,b, Wen-Mo Liu a,b, Sheng-Li Li a,b,*
PMCID: PMC4158515  PMID: 25249926

Abstract

In the title compound, C21H23NO2, the hexyl group adopts an extended conformation, the six C atoms are nearly coplanar [maximum deviation = 0.082 (3) Å] and their mean plane is approximately perpendicular to the carbazole ring system, with a dihedral angle of 78.91 (15)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming inversion dimers; π–π stacking between carbazole ring systems of adjacent dimers further links the dimers into supra­molecular chains propagating along the b-axis direction [centroid-to-centroid distances = 3.868 (2) and 3.929 (2) Å].

Keywords: crystal structure

Related literature  

For structures of related carbazole derivatives, see: Saeed et al. (2010). For applications of carbazole derivatives, see: Adhikari et al. (2009); Daicho et al. (2013); Tao et al. (2010); Zheng et al. (2012); Dvornikov et al. (2009).graphic file with name e-70-0o884-scheme1.jpg

Experimental  

Crystal data  

  • C21H23NO2

  • M r = 321.40

  • Monoclinic, Inline graphic

  • a = 10.594 (5) Å

  • b = 5.109 (2) Å

  • c = 33.152 (15) Å

  • β = 94.922 (6)°

  • V = 1787.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • 11882 measured reflections

  • 3115 independent reflections

  • 2291 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.192

  • S = 1.07

  • 3115 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814016237/xu5796sup1.cif

e-70-0o884-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016237/xu5796Isup2.hkl

e-70-0o884-Isup2.hkl (152.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016237/xu5796Isup3.cml

CCDC reference: 992361

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.85 2.650 (3) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by Anhui Provincial Natural Science Foundation (grant No. 1308085MB24) and the Foundation of Educational Commission of Anhui Province, China (grant No. KJ2012A025).

supplementary crystallographic information

S1. Comment

Recently, carbazole derivatives have attracted attention as their superphotoelectric effect (Tao et al., 2010) and electron transporting capabilities (Zheng et al., 2012). So they have been widely used in biochemistry optical switching (Adhikari et al., 2009), 3-D microfabrication (Daicho et al., 2013) and optical data storage (Dvornikov et al., 2009). In the present paper, the title carbazole derivative (Fig.1) is synthesized.

In the molecule, the carbazole and carboxylic acid are coplanar, while the hexyl group is nearly perpendicular to the plan of carbazole ring [dihedral angle = 78.91 (15)°]. The molecule connect with each other by intermolecular hydrogen-bonding O1—H1···O2.

S2. Experimental

Carbazole single aldehyde (1.6 g, 5 mmol) and malonic acid (1.04 g, 10 mmol) was dissolved in pyridine with addition of 0.1 ml piperidine. The mixture was refluxed for 3 h, traced by TLC then column chromatography (silica, petroleum ether: ethyl acetate (V/V) = 5: 1) and finally 1.2 g white solid were acquired. Yield: 37%. 0.1 g LCOOH was dissolved in 30 ml me thanol, filtered to 50 ml volumetric flask, naturally evaporated for a week, and then colorless single crystals were obtained. 1H NMR (400 MHz, CD3COCD3) 0.84 (t, 3H), 1.33 (m, 6H), 1.89 (m, 2H), 4.46 (t, 2H), 6.59 (d, 1H), 7.26 (t, 1H), 7.50 (t, 1H), 7.62 (t, 2H), 7.82 (d, 1H), 7.87 (d, 1H), 8.23 (t, 1H), 8.51 (s, 1H), 10.53 (s, 1H).

S3. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 and C—H = 0.93–0.97 Å, Uiso(H) = 1.5Ueq(C,O) for methyl H and hydroxyl H atoms, and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Crystal data

C21H23NO2 F(000) = 688
Mr = 321.40 Dx = 1.194 Mg m3
Monoclinic, P21/n Melting point: 425 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 10.594 (5) Å Cell parameters from 2128 reflections
b = 5.109 (2) Å θ = 4.2–20.6°
c = 33.152 (15) Å µ = 0.08 mm1
β = 94.922 (6)° T = 298 K
V = 1787.5 (14) Å3 Block, yellow
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer 2291 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.027
Graphite monochromator θmax = 25.0°, θmin = 1.2°
phi and ω scans h = −12→12
11882 measured reflections k = −6→5
3115 independent reflections l = −39→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1029P)2 + 0.5377P] where P = (Fo2 + 2Fc2)/3
3115 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7326 (2) 0.3637 (5) 0.18010 (7) 0.0663 (7)
H1A 0.8098 0.2762 0.1834 0.080*
C2 0.7043 (3) 0.5596 (5) 0.20667 (8) 0.0774 (8)
H2 0.7634 0.6047 0.2279 0.093*
C3 0.5892 (3) 0.6895 (5) 0.20204 (8) 0.0758 (8)
H3 0.5727 0.8210 0.2203 0.091*
C4 0.4993 (3) 0.6291 (5) 0.17135 (8) 0.0698 (7)
H4 0.4220 0.7164 0.1686 0.084*
C5 0.5273 (2) 0.4319 (4) 0.14423 (7) 0.0570 (6)
C6 0.6441 (2) 0.2999 (4) 0.14841 (6) 0.0535 (6)
C7 0.64129 (19) 0.1119 (4) 0.11537 (6) 0.0500 (6)
C8 0.5225 (2) 0.1420 (4) 0.09295 (6) 0.0526 (6)
C9 0.4886 (2) −0.0077 (5) 0.05871 (6) 0.0598 (6)
H9 0.4102 0.0127 0.0442 0.072*
C10 0.5756 (2) −0.1879 (5) 0.04707 (6) 0.0587 (6)
H10 0.5545 −0.2896 0.0242 0.070*
C11 0.6947 (2) −0.2234 (4) 0.06846 (6) 0.0529 (6)
C12 0.7261 (2) −0.0701 (4) 0.10286 (6) 0.0532 (6)
H12 0.8045 −0.0909 0.1174 0.064*
C13 0.7861 (2) −0.4127 (4) 0.05570 (6) 0.0568 (6)
H13 0.8624 −0.4229 0.0718 0.068*
C14 0.7743 (2) −0.5720 (5) 0.02407 (7) 0.0609 (6)
H14 0.6993 −0.5668 0.0073 0.073*
C15 0.8722 (2) −0.7543 (5) 0.01418 (7) 0.0605 (6)
C16 0.3276 (2) 0.4227 (5) 0.09634 (8) 0.0730 (8)
H16A 0.3211 0.4295 0.0670 0.088*
H16B 0.3152 0.5989 0.1062 0.088*
C17 0.2239 (2) 0.2500 (7) 0.10958 (9) 0.0903 (10)
H17A 0.1432 0.3267 0.0998 0.108*
H17B 0.2298 0.0817 0.0963 0.108*
C18 0.2226 (3) 0.2040 (7) 0.15327 (9) 0.0911 (9)
H18A 0.2115 0.3705 0.1666 0.109*
H18B 0.3042 0.1341 0.1635 0.109*
C19 0.1198 (3) 0.0179 (7) 0.16456 (13) 0.1166 (13)
H19A 0.1239 −0.1415 0.1488 0.140*
H19B 0.0377 0.0976 0.1576 0.140*
C20 0.1322 (5) −0.0535 (9) 0.21078 (15) 0.1420 (17)
H20A 0.2163 −0.1242 0.2177 0.170*
H20B 0.1252 0.1065 0.2262 0.170*
C21 0.0420 (5) −0.2353 (11) 0.22313 (17) 0.182 (2)
H21A 0.0430 −0.3896 0.2066 0.273*
H21B −0.0409 −0.1579 0.2201 0.273*
H21C 0.0628 −0.2813 0.2510 0.273*
N1 0.45361 (17) 0.3355 (4) 0.11062 (5) 0.0585 (5)
O1 0.84699 (17) −0.8937 (4) −0.01813 (5) 0.0839 (6)
H1 0.9106 −0.9745 −0.0233 0.126*
O2 0.97385 (16) −0.7732 (4) 0.03562 (5) 0.0849 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0730 (16) 0.0645 (15) 0.0614 (14) 0.0008 (13) 0.0060 (12) −0.0050 (12)
C2 0.095 (2) 0.0748 (19) 0.0621 (15) −0.0061 (15) 0.0069 (13) −0.0155 (13)
C3 0.099 (2) 0.0602 (16) 0.0706 (16) 0.0007 (15) 0.0238 (14) −0.0148 (13)
C4 0.0798 (17) 0.0579 (15) 0.0750 (16) 0.0120 (13) 0.0253 (13) −0.0025 (13)
C5 0.0688 (15) 0.0494 (13) 0.0548 (12) 0.0067 (11) 0.0171 (10) 0.0024 (10)
C6 0.0622 (13) 0.0493 (13) 0.0502 (12) 0.0028 (10) 0.0116 (10) 0.0018 (10)
C7 0.0546 (13) 0.0495 (13) 0.0470 (11) 0.0044 (10) 0.0108 (9) 0.0043 (9)
C8 0.0566 (13) 0.0546 (13) 0.0481 (11) 0.0076 (10) 0.0121 (9) 0.0044 (10)
C9 0.0546 (13) 0.0713 (15) 0.0532 (12) 0.0123 (12) 0.0036 (9) 0.0000 (11)
C10 0.0625 (14) 0.0648 (15) 0.0490 (12) 0.0049 (11) 0.0057 (10) −0.0078 (10)
C11 0.0558 (13) 0.0536 (13) 0.0499 (12) 0.0084 (10) 0.0092 (9) 0.0006 (10)
C12 0.0539 (13) 0.0539 (14) 0.0519 (12) 0.0075 (10) 0.0040 (9) 0.0005 (10)
C13 0.0576 (13) 0.0588 (14) 0.0541 (12) 0.0078 (11) 0.0053 (10) −0.0049 (11)
C14 0.0583 (14) 0.0676 (16) 0.0566 (13) 0.0130 (11) 0.0037 (10) −0.0060 (11)
C15 0.0600 (14) 0.0662 (15) 0.0552 (13) 0.0116 (11) 0.0038 (10) −0.0103 (11)
C16 0.0710 (17) 0.0803 (19) 0.0681 (15) 0.0281 (14) 0.0088 (12) 0.0062 (13)
C17 0.0615 (16) 0.123 (3) 0.0839 (19) 0.0204 (17) −0.0066 (14) −0.0058 (17)
C18 0.0790 (19) 0.089 (2) 0.107 (2) 0.0104 (16) 0.0196 (16) −0.0084 (18)
C19 0.095 (2) 0.101 (3) 0.160 (3) −0.012 (2) 0.052 (2) −0.024 (2)
C20 0.151 (4) 0.126 (3) 0.158 (4) −0.042 (3) 0.066 (3) −0.020 (3)
C21 0.189 (5) 0.129 (4) 0.245 (6) −0.028 (3) 0.117 (5) −0.021 (4)
N1 0.0601 (11) 0.0592 (12) 0.0572 (11) 0.0153 (9) 0.0108 (9) 0.0002 (9)
O1 0.0744 (12) 0.1000 (15) 0.0750 (11) 0.0311 (11) −0.0068 (9) −0.0370 (10)
O2 0.0699 (12) 0.1028 (15) 0.0789 (12) 0.0305 (10) −0.0121 (9) −0.0354 (11)

Geometric parameters (Å, º)

C1—C2 1.383 (4) C14—C15 1.452 (3)
C1—C6 1.386 (3) C14—H14 0.9300
C1—H1A 0.9300 C15—O2 1.242 (3)
C2—C3 1.385 (4) C15—O1 1.295 (3)
C2—H2 0.9300 C16—N1 1.448 (3)
C3—C4 1.368 (3) C16—C17 1.504 (4)
C3—H3 0.9300 C16—H16A 0.9700
C4—C5 1.399 (3) C16—H16B 0.9700
C4—H4 0.9300 C17—C18 1.469 (4)
C5—N1 1.394 (3) C17—H17A 0.9700
C5—C6 1.406 (3) C17—H17B 0.9700
C6—C7 1.455 (3) C18—C19 1.517 (5)
C7—C12 1.381 (3) C18—H18A 0.9700
C7—C8 1.414 (3) C18—H18B 0.9700
C8—N1 1.387 (3) C19—C20 1.570 (6)
C8—C9 1.390 (3) C19—H19A 0.9700
C9—C10 1.380 (3) C19—H19B 0.9700
C9—H9 0.9300 C20—C21 1.418 (6)
C10—C11 1.405 (3) C20—H20A 0.9700
C10—H10 0.9300 C20—H20B 0.9700
C11—C12 1.400 (3) C21—H21A 0.9600
C11—C13 1.457 (3) C21—H21B 0.9600
C12—H12 0.9300 C21—H21C 0.9600
C13—C14 1.325 (3) O1—H1 0.8200
C13—H13 0.9300
C2—C1—C6 118.9 (2) O2—C15—C14 121.4 (2)
C2—C1—H1A 120.5 O1—C15—C14 116.04 (19)
C6—C1—H1A 120.5 N1—C16—C17 113.6 (2)
C1—C2—C3 120.9 (2) N1—C16—H16A 108.8
C1—C2—H2 119.6 C17—C16—H16A 108.8
C3—C2—H2 119.6 N1—C16—H16B 108.8
C4—C3—C2 121.6 (2) C17—C16—H16B 108.8
C4—C3—H3 119.2 H16A—C16—H16B 107.7
C2—C3—H3 119.2 C18—C17—C16 116.8 (2)
C3—C4—C5 117.9 (2) C18—C17—H17A 108.1
C3—C4—H4 121.1 C16—C17—H17A 108.1
C5—C4—H4 121.1 C18—C17—H17B 108.1
N1—C5—C4 129.3 (2) C16—C17—H17B 108.1
N1—C5—C6 109.70 (19) H17A—C17—H17B 107.3
C4—C5—C6 121.0 (2) C17—C18—C19 114.3 (3)
C1—C6—C5 119.7 (2) C17—C18—H18A 108.7
C1—C6—C7 134.0 (2) C19—C18—H18A 108.7
C5—C6—C7 106.33 (18) C17—C18—H18B 108.7
C12—C7—C8 119.20 (19) C19—C18—H18B 108.7
C12—C7—C6 134.30 (19) H18A—C18—H18B 107.6
C8—C7—C6 106.49 (18) C18—C19—C20 112.6 (3)
N1—C8—C9 128.9 (2) C18—C19—H19A 109.1
N1—C8—C7 109.38 (19) C20—C19—H19A 109.1
C9—C8—C7 121.7 (2) C18—C19—H19B 109.1
C10—C9—C8 117.6 (2) C20—C19—H19B 109.1
C10—C9—H9 121.2 H19A—C19—H19B 107.8
C8—C9—H9 121.2 C21—C20—C19 115.6 (4)
C9—C10—C11 122.5 (2) C21—C20—H20A 108.4
C9—C10—H10 118.8 C19—C20—H20A 108.4
C11—C10—H10 118.8 C21—C20—H20B 108.4
C12—C11—C10 118.63 (19) C19—C20—H20B 108.4
C12—C11—C13 119.4 (2) H20A—C20—H20B 107.4
C10—C11—C13 122.0 (2) C20—C21—H21A 109.5
C7—C12—C11 120.40 (19) C20—C21—H21B 109.5
C7—C12—H12 119.8 H21A—C21—H21B 109.5
C11—C12—H12 119.8 C20—C21—H21C 109.5
C14—C13—C11 128.1 (2) H21A—C21—H21C 109.5
C14—C13—H13 115.9 H21B—C21—H21C 109.5
C11—C13—H13 115.9 C8—N1—C5 108.09 (18)
C13—C14—C15 123.5 (2) C8—N1—C16 125.8 (2)
C13—C14—H14 118.3 C5—N1—C16 126.14 (19)
C15—C14—H14 118.3 C15—O1—H1 109.5
O2—C15—O1 122.5 (2)
C1—C6—C7—C12 −0.7 (5) N1—C5—C4—C3 −179.6 (2)
C5—C6—C7—C12 179.3 (2) C6—C5—C4—C3 0.2 (4)
C1—C6—C7—C8 180.0 (3) C15—C14—C13—C11 180.0 (2)
C5—C6—C7—C8 0.0 (2) C12—C11—C13—C14 −179.3 (3)
C8—C7—C12—C11 0.0 (3) C10—C11—C13—C14 0.2 (4)
C6—C7—C12—C11 −179.3 (2) N1—C8—C9—C10 179.5 (2)
C10—C11—C12—C7 −0.1 (3) C7—C8—C9—C10 −0.2 (4)
C13—C11—C12—C7 179.5 (2) C8—C9—C10—C11 0.1 (4)
C5—N1—C8—C9 −179.5 (2) C12—C11—C10—C9 0.1 (4)
C16—N1—C8—C9 −0.1 (4) C13—C11—C10—C9 −179.5 (2)
C5—N1—C8—C7 0.3 (3) C5—C4—C3—C2 −0.5 (4)
C16—N1—C8—C7 179.7 (2) C13—C14—C15—O2 1.2 (4)
C12—C7—C8—N1 −179.60 (19) C13—C14—C15—O1 −178.9 (3)
C6—C7—C8—N1 −0.2 (2) C5—C6—C1—C2 −0.6 (4)
C12—C7—C8—C9 0.2 (3) C7—C6—C1—C2 179.3 (3)
C6—C7—C8—C9 179.6 (2) C6—C1—C2—C3 0.3 (4)
C8—N1—C5—C4 179.4 (2) C4—C3—C2—C1 0.3 (5)
C16—N1—C5—C4 0.1 (4) C16—C17—C18—C19 −177.5 (3)
C8—N1—C5—C6 −0.4 (3) C17—C18—C19—C20 173.0 (3)
C16—N1—C5—C6 −179.7 (2) C18—C19—C20—C21 −177.3 (4)
C1—C6—C5—N1 −179.8 (2) C8—N1—C16—C17 81.9 (3)
C7—C6—C5—N1 0.2 (3) C5—N1—C16—C17 −98.9 (3)
C1—C6—C5—C4 0.4 (4) C18—C17—C16—N1 55.5 (4)
C7—C6—C5—C4 −179.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.85 2.650 (3) 166

Symmetry code: (i) −x+2, −y−2, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5796).

References

  1. Adhikari, R. M., Shah, B. M., Palayangoda, S. S. & Neckers, D. C. (2009). Langmuir, 25, 2402–2406. [DOI] [PubMed]
  2. Bruker (2007). SAMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Daicho, Y., Murakami, T., Hagiwara, T. & Maruo, S. (2013). Opt. Mater. Express, 3, 873–883.
  4. Dvornikov, A. S., Walker, E. P. & Rentzepis, P. M. (2009). J. Phys. Chem. A, 113, 13633–13644. [DOI] [PubMed]
  5. Saeed, A., Kazmi, M., Ameen Samra, S., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o2118. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tao, Y.-T., Wang, Q., Yang, C.-L., Cheng, Z. & Ma, D.-G. (2010). Adv. Funct. Mater. 20, 304–311.
  8. Zheng, C.-J., Ye, J. & Lo, M.-F. (2012). Chem. Mater. 24, 643–650.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814016237/xu5796sup1.cif

e-70-0o884-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016237/xu5796Isup2.hkl

e-70-0o884-Isup2.hkl (152.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016237/xu5796Isup3.cml

CCDC reference: 992361

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES