Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 23;70(Pt 8):o875–o876. doi: 10.1107/S1600536814015670

6-Amino-3-methyl-4-(3,4,5-tri­meth­oxy­phen­yl)-2,4-di­hydro­pyrano[2,3-c]pyrazole-5-carbo­nitrile

Naresh Sharma a, Goutam Brahmachari b, Bubun Banerjee b, Rajni Kant a, Vivek K Gupta a,*
PMCID: PMC4158517  PMID: 25249920

Abstract

In the title compound, C17H18N4O4, the dihedral angle between the benzene ring and 2,4-di­hydro­pyrano[2,3-c]pyrazole ring system is 89.41 (7)°. The pyran moiety adopts a strongly flattened boat conformation. In the crystal, mol­ecules are linked by N—H⋯N, N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds into an infinite two-dimensional network parallel to (110). There are π–π inter­actions between the pyrazole rings in neighbouring layers [centroid–centroid distance = 3.621 (1) Å].

Keywords: crystal structure

Related literature  

For background to the biological activity of synthetic pyrano[2,3-c] pyrazole compounds, see: Zaki et al. (2006); Abdelrazek et al. (2007); Mohamed et al. (2010); Bhavanarushi et al. (2013). For the synthesis of the title compound, see: Brahmachari & Banerjee (2014). For a related structure, see: Low et al. (2004).graphic file with name e-70-0o875-scheme1.jpg

Experimental  

Crystal data  

  • C17H18N4O4

  • M r = 342.35

  • Triclinic, Inline graphic

  • a = 7.6168 (6) Å

  • b = 9.9967 (5) Å

  • c = 11.7888 (6) Å

  • α = 105.283 (5)°

  • β = 99.416 (5)°

  • γ = 92.221 (5)°

  • V = 851.05 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.805, T max = 1.000

  • 6228 measured reflections

  • 3344 independent reflections

  • 2201 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.125

  • S = 1.00

  • 3344 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814015670/gk2612sup1.cif

e-70-0o875-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015670/gk2612Isup2.hkl

e-70-0o875-Isup2.hkl (160.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015670/gk2612Isup3.cml

CCDC reference: 973484

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H30⋯O20i 0.94 (2) 1.96 (2) 2.882 (2) 165 (2)
N11—H40⋯N1ii 0.95 (2) 2.11 (2) 3.030 (3) 163 (2)
N11—H50⋯N10iii 0.91 (2) 2.25 (2) 3.156 (3) 172 (2)
C8—H8C⋯O18i 0.96 2.52 3.305 (3) 139
C19—H19B⋯N1iv 0.96 2.52 3.455 (4) 165
C21—H21ACg3v 0.96 2.85 3.55 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. BB is grateful to the UGC, New Delhi for the award of a Senior Research Fellowship.

supplementary crystallographic information

S1. Comment

Pyrano[2,3-c]pyrazole scaffolds represent a "privileged" structural motif well distributed in bioactive natural products and pharmaceutically potent synthetic heterocycles possessing a wide range of activities (Abdelrazek et al., 2007; Zaki et al., 2006; Mohamed et al., 2010; Bhavanarushi et al., 2013). Hence, investigation of the structural features of biologically relevant pyrano[2,3-c]pyrazole derivatives is of both scientific and practical interest. In continuation of our efforts to develop useful synthetic protocols for biologically significant molecules, we herein report an efficient and environmentally benign synthesis and the crystal structure of the title compound. In this communication we wish to report the crystal structure of 6-amino-3-methyl-4-(3,4,5-trimethoxyphenyl)-2, 4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1) synthesized via one-pot multicomponent reaction (MCR) at room temperature using commercially available urea as inexpensive and environmentally benign organo-catalyst. The structure of the title compound 1 was elucidated by spectral methods and X-ray diffraction studies. The bond distances in the title compound are comparable to the closely related structure (Low et al., 2004). In the title compound, C17H18N4O4, the dihedral angle between the benzene ring (C12/C13/C14/C15/C16/C17) and the pyrazole ring is 87.05 (7)° and between pyrano and pyrazole rings is 4.69 (8)°. The benzene ring and the pyrazole ring are nearly planar with a maximum deviation of 0.0018 Å for the phenyl C3 atom and 0.0227 Å for the pyrazole C15 atom. The pyran moiety adopts a strongly flattened boat conformation with one mirror plane passing through the atoms C4 and O7 and the other bisecting the bonds C3A—C7A and C5—C6. In the crystal, molecules are linked by N—H···N hydrogen bonds into infinite two-dimensional network parallel to (110) . There are π - π interactions between the pyrazole rings in neighbouring networks [centroid–centroid seperation = 3.621 (1) Å, interplanar spacing = 3.333 Å, centriod shift = 1.242 Å, symmetry code: 1 - x,1 - y,1 - z].

S2. Experimental

The synthesis of the title compound was carried out via one-pot multi-component reaction in aqueous ethanol using low-cost and environmentally benign urea as catalyst at room temperature. An oven-dried screw cap test tube was charged with a magnetic stir bar, ethyl acetoacetate (0.130 g, 1.0 mmol) and hydrazine hydrate (0.050 g, 1 mmol). The reaction mixture was then stirred at room temperature for about 10 min and 3,4,5-trimethoxybenzaldehyde (0.196 g, 1 mmol), malononitrile (0.066 g, 1.1 mmol), urea (0.007 g, 10 mol % as organo-catalyst) and EtOH:H2O (1:1 v/v; 4 ml) were added in a sequential manner (Brahmachari & Banerjee, 2014). The reaction mixture was then stirred vigorously at room temperature and the stirring was continued for 16 h. The progress of the reaction was monitored by TLC. On completion of the reaction, a solid was precipitated out, filtered off and repeatedly washed with aqueous ethanol to obtain a crude product which was purified by recrystallization from ethanol without carrying out column chromatography. The structure of the title compound was confirmed by analytical as well as spectral studies, including 1H NMR, 13C NMR, and TOF-MS. Single crystal was obtained from DMSO. For crystallization 50 mg of compound was dissolved in 5 ml DMSO and left for several days at ambient temperature.

6-Amino-3-methyl-4-(3,4,5-trimethoxyphenyl)-2,4-dihydropyrano[2,3-c] pyrazole-5-carbonitrile (1). White solid. Yield 89%. Mp: 491–493 K. 1H NMR (400 MHz, DMSO-d6) δ /p.p.m.: 12.11(1H, s, NH), 6.87 (2H, s, NH2), 6.47 (2H, s, aromatic H), 4.59 (1H, s, CH), 3.72 (6H, s, 2 \ OCH3), 3.64 (3H, s, OCH3), 1.87 (3H, s, CH3). 13C NMR (100 MHz, DMSO-d6) δ /p.p.m.: 161.39, 155.11, 153.20 (2 C), 140.49, 136.55, 136.20, 121.29, 104.98 (2 C), 97.74, 60.38, 57.33, 56.22 (2 C), 36.87, 10.34. TOF-MS: 365.1230 [M+Na]+. Elemental analysis: Calcd. (%) for C17H18N4O4: C, 59.64; H, 5.30; N, 16.37; found: C, 59.62; H, 5.28; N, 16.39.

S3. Refinement

The positions of the N-H group H atoms were determined from a difference Fourier map and freely refined. All the remaining H atoms were placed geometrically and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis.

Crystal data

C17H18N4O4 Z = 2
Mr = 342.35 F(000) = 360
Triclinic, P1 Dx = 1.336 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6168 (6) Å Cell parameters from 1789 reflections
b = 9.9967 (5) Å θ = 4.1–26.7°
c = 11.7888 (6) Å µ = 0.10 mm1
α = 105.283 (5)° T = 293 K
β = 99.416 (5)° Block, colourless
γ = 92.221 (5)° 0.30 × 0.20 × 0.20 mm
V = 851.05 (9) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 3344 independent reflections
Radiation source: fine-focus sealed tube 2201 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.5°
ω scans h = −9→4
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −12→12
Tmin = 0.805, Tmax = 1.000 l = −14→14
6228 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3
3344 reflections (Δ/σ)max < 0.001
242 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2660 (2) 0.39361 (17) 0.45176 (13) 0.0399 (4)
N2 0.4190 (2) 0.32739 (18) 0.44265 (15) 0.0420 (4)
C3 0.5002 (3) 0.3075 (2) 0.54703 (17) 0.0403 (5)
C3A 0.3973 (3) 0.36369 (18) 0.63060 (16) 0.0332 (5)
C4 0.4095 (3) 0.37099 (18) 0.76047 (15) 0.0329 (4)
H4 0.5116 0.4362 0.8064 0.039*
C5 0.2393 (3) 0.43016 (19) 0.79658 (15) 0.0340 (5)
C6 0.1121 (3) 0.4790 (2) 0.72636 (16) 0.0377 (5)
O7 0.11958 (19) 0.47720 (15) 0.61077 (11) 0.0469 (4)
C7A 0.2595 (3) 0.4131 (2) 0.56623 (16) 0.0353 (5)
C8 0.6670 (3) 0.2363 (3) 0.5545 (2) 0.0644 (7)
H8A 0.6381 0.1384 0.5413 0.097*
H8B 0.7392 0.2738 0.6322 0.097*
H8C 0.7317 0.2505 0.4947 0.097*
C9 0.2164 (3) 0.44234 (19) 0.91550 (16) 0.0354 (5)
N10 0.1998 (2) 0.45179 (18) 1.01250 (14) 0.0487 (5)
N11 −0.0360 (3) 0.5354 (2) 0.75602 (17) 0.0532 (5)
C12 0.4390 (3) 0.22862 (19) 0.78092 (15) 0.0329 (5)
C13 0.3050 (3) 0.1214 (2) 0.73981 (16) 0.0393 (5)
H13 0.1912 0.1378 0.7066 0.047*
C14 0.3410 (3) −0.0109 (2) 0.74832 (16) 0.0413 (5)
C15 0.5115 (3) −0.03574 (19) 0.79687 (16) 0.0394 (5)
C16 0.6430 (3) 0.0735 (2) 0.84271 (17) 0.0387 (5)
C17 0.6066 (3) 0.20604 (19) 0.83509 (16) 0.0363 (5)
H17 0.6945 0.2797 0.8663 0.044*
O18 0.2197 (2) −0.12489 (15) 0.71128 (13) 0.0599 (5)
C19 0.0428 (4) −0.1075 (3) 0.6622 (3) 0.0823 (9)
H19A −0.0082 −0.0431 0.7213 0.123*
H19B −0.0270 −0.1956 0.6379 0.123*
H19C 0.0435 −0.0718 0.5942 0.123*
O20 0.5514 (2) −0.17034 (13) 0.79545 (11) 0.0522 (4)
C21 0.5144 (4) −0.2128 (2) 0.89635 (19) 0.0656 (8)
H21A 0.5801 −0.1499 0.9684 0.098*
H21B 0.5494 −0.3052 0.8905 0.098*
H21C 0.3889 −0.2117 0.8979 0.098*
O22 0.8041 (2) 0.04130 (15) 0.89463 (14) 0.0568 (4)
C23 0.9389 (3) 0.1526 (3) 0.9471 (3) 0.0761 (8)
H23A 0.9602 0.1989 0.8882 0.114*
H23B 1.0471 0.1167 0.9763 0.114*
H23C 0.9006 0.2176 1.0122 0.114*
H40 −0.119 (3) 0.569 (2) 0.703 (2) 0.072 (8)*
H30 0.442 (3) 0.290 (2) 0.365 (2) 0.063 (7)*
H50 −0.072 (3) 0.543 (2) 0.8274 (19) 0.055 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0455 (11) 0.0444 (11) 0.0312 (9) 0.0059 (8) 0.0110 (8) 0.0099 (7)
N2 0.0508 (12) 0.0445 (11) 0.0330 (9) 0.0095 (8) 0.0158 (9) 0.0091 (8)
C3 0.0465 (13) 0.0395 (12) 0.0386 (11) 0.0069 (9) 0.0128 (10) 0.0132 (9)
C3A 0.0377 (12) 0.0316 (11) 0.0321 (10) 0.0048 (8) 0.0098 (9) 0.0091 (8)
C4 0.0360 (11) 0.0307 (11) 0.0313 (10) 0.0023 (8) 0.0046 (8) 0.0082 (8)
C5 0.0399 (12) 0.0357 (11) 0.0270 (9) 0.0085 (9) 0.0056 (9) 0.0090 (8)
C6 0.0469 (13) 0.0412 (12) 0.0275 (10) 0.0104 (9) 0.0088 (9) 0.0114 (9)
O7 0.0494 (9) 0.0688 (11) 0.0315 (7) 0.0247 (8) 0.0135 (7) 0.0226 (7)
C7A 0.0393 (12) 0.0383 (12) 0.0321 (10) 0.0065 (9) 0.0127 (9) 0.0120 (9)
C8 0.0692 (18) 0.0812 (19) 0.0544 (14) 0.0381 (15) 0.0274 (13) 0.0243 (13)
C9 0.0389 (12) 0.0350 (11) 0.0328 (11) 0.0116 (8) 0.0059 (9) 0.0094 (9)
N10 0.0560 (13) 0.0601 (13) 0.0333 (10) 0.0164 (9) 0.0119 (9) 0.0144 (9)
N11 0.0534 (13) 0.0800 (15) 0.0365 (10) 0.0348 (11) 0.0180 (10) 0.0236 (10)
C12 0.0405 (12) 0.0333 (11) 0.0262 (9) 0.0066 (9) 0.0092 (9) 0.0078 (8)
C13 0.0405 (12) 0.0394 (12) 0.0380 (11) 0.0050 (9) 0.0081 (9) 0.0097 (9)
C14 0.0549 (14) 0.0334 (12) 0.0341 (11) −0.0029 (10) 0.0125 (10) 0.0049 (9)
C15 0.0609 (15) 0.0302 (11) 0.0328 (10) 0.0104 (10) 0.0199 (10) 0.0106 (9)
C16 0.0448 (13) 0.0408 (12) 0.0357 (10) 0.0137 (10) 0.0132 (9) 0.0143 (9)
C17 0.0402 (12) 0.0342 (11) 0.0352 (10) 0.0036 (9) 0.0084 (9) 0.0101 (9)
O18 0.0702 (12) 0.0415 (10) 0.0623 (10) −0.0144 (8) 0.0072 (9) 0.0098 (8)
C19 0.0618 (19) 0.0663 (19) 0.103 (2) −0.0226 (14) 0.0191 (17) −0.0026 (16)
O20 0.0901 (13) 0.0325 (8) 0.0418 (8) 0.0183 (8) 0.0266 (8) 0.0130 (7)
C21 0.111 (2) 0.0492 (15) 0.0487 (13) 0.0143 (14) 0.0246 (14) 0.0269 (12)
O22 0.0504 (10) 0.0523 (10) 0.0726 (11) 0.0182 (8) 0.0060 (8) 0.0266 (9)
C23 0.0474 (16) 0.0711 (19) 0.106 (2) 0.0087 (13) −0.0095 (15) 0.0304 (16)

Geometric parameters (Å, º)

N1—C7A 1.321 (2) C12—C17 1.386 (2)
N1—N2 1.368 (2) C13—C14 1.388 (3)
N2—C3 1.351 (2) C13—H13 0.9300
N2—H30 0.94 (2) C14—O18 1.366 (2)
C3—C3A 1.377 (3) C14—C15 1.390 (3)
C3—C8 1.481 (3) C15—C16 1.384 (3)
C3A—C7A 1.378 (3) C15—O20 1.387 (2)
C3A—C4 1.501 (2) C16—O22 1.369 (2)
C4—C5 1.523 (3) C16—C17 1.387 (3)
C4—C12 1.524 (2) C17—H17 0.9300
C4—H4 0.9800 O18—C19 1.413 (3)
C5—C6 1.360 (2) C19—H19A 0.9600
C5—C9 1.415 (2) C19—H19B 0.9600
C6—N11 1.336 (3) C19—H19C 0.9600
C6—O7 1.369 (2) O20—C21 1.429 (2)
O7—C7A 1.371 (2) C21—H21A 0.9600
C8—H8A 0.9600 C21—H21B 0.9600
C8—H8B 0.9600 C21—H21C 0.9600
C8—H8C 0.9600 O22—C23 1.420 (3)
C9—N10 1.151 (2) C23—H23A 0.9600
N11—H40 0.95 (2) C23—H23B 0.9600
N11—H50 0.91 (2) C23—H23C 0.9600
C12—C13 1.380 (3)
C7A—N1—N2 101.46 (15) C17—C12—C4 118.71 (16)
C3—N2—N1 113.28 (17) C12—C13—C14 119.61 (19)
C3—N2—H30 129.5 (14) C12—C13—H13 120.2
N1—N2—H30 116.4 (14) C14—C13—H13 120.2
N2—C3—C3A 106.36 (18) O18—C14—C13 125.0 (2)
N2—C3—C8 121.06 (19) O18—C14—C15 114.81 (18)
C3A—C3—C8 132.59 (18) C13—C14—C15 120.19 (18)
C3—C3A—C7A 103.61 (16) C16—C15—O20 120.11 (19)
C3—C3A—C4 133.13 (18) C16—C15—C14 119.79 (17)
C7A—C3A—C4 123.20 (18) O20—C15—C14 120.06 (17)
C3A—C4—C5 106.47 (15) O22—C16—C15 115.96 (17)
C3A—C4—C12 110.49 (15) O22—C16—C17 124.12 (18)
C5—C4—C12 114.14 (14) C15—C16—C17 119.92 (19)
C3A—C4—H4 108.5 C12—C17—C16 119.95 (18)
C5—C4—H4 108.5 C12—C17—H17 120.0
C12—C4—H4 108.5 C16—C17—H17 120.0
C6—C5—C9 117.19 (18) C14—O18—C19 118.08 (18)
C6—C5—C4 125.60 (16) O18—C19—H19A 109.5
C9—C5—C4 117.11 (15) O18—C19—H19B 109.5
N11—C6—C5 127.32 (18) H19A—C19—H19B 109.5
N11—C6—O7 109.26 (16) O18—C19—H19C 109.5
C5—C6—O7 123.42 (19) H19A—C19—H19C 109.5
C6—O7—C7A 115.23 (15) H19B—C19—H19C 109.5
N1—C7A—O7 119.07 (17) C15—O20—C21 114.32 (16)
N1—C7A—C3A 115.30 (18) O20—C21—H21A 109.5
O7—C7A—C3A 125.62 (16) O20—C21—H21B 109.5
C3—C8—H8A 109.5 H21A—C21—H21B 109.5
C3—C8—H8B 109.5 O20—C21—H21C 109.5
H8A—C8—H8B 109.5 H21A—C21—H21C 109.5
C3—C8—H8C 109.5 H21B—C21—H21C 109.5
H8A—C8—H8C 109.5 C16—O22—C23 117.11 (17)
H8B—C8—H8C 109.5 O22—C23—H23A 109.5
N10—C9—C5 179.2 (2) O22—C23—H23B 109.5
C6—N11—H40 122.9 (15) H23A—C23—H23B 109.5
C6—N11—H50 124.7 (13) O22—C23—H23C 109.5
H40—N11—H50 112.3 (19) H23A—C23—H23C 109.5
C13—C12—C17 120.38 (17) H23B—C23—H23C 109.5
C13—C12—C4 120.79 (17)
C7A—N1—N2—C3 0.3 (2) C4—C3A—C7A—O7 1.5 (3)
N1—N2—C3—C3A −0.3 (2) C3A—C4—C12—C13 −69.8 (2)
N1—N2—C3—C8 179.5 (2) C5—C4—C12—C13 50.1 (2)
N2—C3—C3A—C7A 0.2 (2) C3A—C4—C12—C17 106.20 (19)
C8—C3—C3A—C7A −179.6 (2) C5—C4—C12—C17 −133.86 (17)
N2—C3—C3A—C4 177.34 (19) C17—C12—C13—C14 −2.8 (3)
C8—C3—C3A—C4 −2.4 (4) C4—C12—C13—C14 173.21 (16)
C3—C3A—C4—C5 −172.4 (2) C12—C13—C14—O18 179.75 (17)
C7A—C3A—C4—C5 4.2 (2) C12—C13—C14—C15 −0.6 (3)
C3—C3A—C4—C12 −48.0 (3) O18—C14—C15—C16 −176.85 (16)
C7A—C3A—C4—C12 128.68 (19) C13—C14—C15—C16 3.5 (3)
C3A—C4—C5—C6 −5.9 (2) O18—C14—C15—O20 5.5 (3)
C12—C4—C5—C6 −128.09 (19) C13—C14—C15—O20 −174.18 (15)
C3A—C4—C5—C9 177.73 (15) O20—C15—C16—O22 −5.8 (3)
C12—C4—C5—C9 55.6 (2) C14—C15—C16—O22 176.56 (17)
C9—C5—C6—N11 −1.5 (3) O20—C15—C16—C17 174.73 (16)
C4—C5—C6—N11 −177.8 (2) C14—C15—C16—C17 −3.0 (3)
C9—C5—C6—O7 178.23 (17) C13—C12—C17—C16 3.3 (3)
C4—C5—C6—O7 1.9 (3) C4—C12—C17—C16 −172.74 (16)
N11—C6—O7—C7A −175.81 (17) O22—C16—C17—C12 −179.90 (17)
C5—C6—O7—C7A 4.4 (3) C15—C16—C17—C12 −0.4 (3)
N2—N1—C7A—O7 −179.27 (16) C13—C14—O18—C19 −1.1 (3)
N2—N1—C7A—C3A −0.2 (2) C15—C14—O18—C19 179.25 (19)
C6—O7—C7A—N1 172.79 (16) C16—C15—O20—C21 94.3 (2)
C6—O7—C7A—C3A −6.2 (3) C14—C15—O20—C21 −88.0 (2)
C3—C3A—C7A—N1 0.0 (2) C15—C16—O22—C23 −177.29 (19)
C4—C3A—C7A—N1 −177.51 (16) C17—C16—O22—C23 2.2 (3)
C3—C3A—C7A—O7 179.01 (18)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the phenyl ring.

D—H···A D—H H···A D···A D—H···A
N2—H30···O20i 0.94 (2) 1.96 (2) 2.882 (2) 165 (2)
N11—H40···N1ii 0.95 (2) 2.11 (2) 3.030 (3) 163 (2)
N11—H50···N10iii 0.91 (2) 2.25 (2) 3.156 (3) 172 (2)
C8—H8C···O18i 0.96 2.52 3.305 (3) 139
C19—H19B···N1iv 0.96 2.52 3.455 (4) 165
C21—H21A···Cg3v 0.96 2.85 3.55 130

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z+2; (iv) −x, −y, −z+1; (v) −x+1, −y, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2612).

References

  1. Abdelrazek, F. M., Metz, P., Kataeva, O., Jager, A. & El-Mahrouky, S. F. (2007). Arch. Pharm. 340, 543–548. [DOI] [PubMed]
  2. Bhavanarushi, S., Kanakaiah, V., Yakaiah, E., Saddanapu, V., Addlagatta, A. & Rani, V. J. (2013). Med. Chem. Res. 22, 2446–2454.
  3. Brahmachari, G. & Banerjee, B. (2014). ACS Sustainable Chem. Eng. 2, 411–422.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Low, J. N., Cobo, J., Portilla, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. E60, o1034–o1037. [DOI] [PubMed]
  6. Mohamed, N. R., Khaireldin, N. Y., Fahmy, A. F. & El-Sayed, A. A. (2010). Der Pharma Chem 2, 400–417.
  7. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Zaki, M. E. A., Soliman, H. A., Hiekal, O. A. & Rashad, A. E. Z. (2006). Z. Naturforsch. Teil C, 61, 1–5. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814015670/gk2612sup1.cif

e-70-0o875-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015670/gk2612Isup2.hkl

e-70-0o875-Isup2.hkl (160.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015670/gk2612Isup3.cml

CCDC reference: 973484

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES