Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 19;70(Pt 8):91–93. doi: 10.1107/S160053681401544X

Crystal structure of [3-(4,5-di­hydro-1,3-thia­zolin-2-yl-κN)-1,3-thia­zolidine-2-thione-κS 2](1,3-thia­zol­idine-2-thione-κS 2)copper(I) nitrate

Saowanit Saithong a,*, Pirawan Klongkleaw a, Chaveng Pakawatchai a, Jedsada Mokakul a
PMCID: PMC4158518  PMID: 25249863

In the mononuclear complex title salt, all of the non-H atoms of the cation lie on a mirror plane, as do the N and one O atom of the nitrate anion, such that the planes of the cation and anion are mutually orthogonal. In the crystal, layers parallel to (010) are generated by N—H⋯O hydrogen bonds, supported by short S⋯O [3.196 (4) and 3.038 (3) Å] and S⋯S contacts [3.4392 (13) Å].

Keywords: copper(II) complex; 1,3-thia­zolidine-2-thione; 3-(2-thia­zolin-2-yl)thia­zolidine-2-thione; crystal structure

Abstract

The mononuclear complex salt, [Cu(C3H5NS2)(C6H8N2S3)]NO3, contains a [C9H13CuN3S5]+ cation and an NO3 anion. All of the non-H atoms of the cation lie on a mirror plane, as do the N and one O atom of the nitrate anion, such that the planes of the cation and anion are mutually orthogonal. The cationic complex adopts a slightly distorted trigonal–planar geometry about the CuI cation. In the crystal, layers parallel to (010) are generated by N—H⋯O hydrogen bonds, supported by short S⋯O [3.196 (4) and 3.038 (3) Å] and S⋯S contacts [3.4392 (13) Å]. Adjacent layers are linked by C—H⋯O hydrogen bonds and weak π–π stacking inter­actions [centroid–centroid distance = 4.0045 (10) Å] between the thia­zoline rings, forming a three-dimensional network. This stacking also imposes a close contact, of approximately 3.678 Å, between the CuI cations and the centroids of the six-membered chelate rings of mol­ecules in adjacent layers.

Chemical context  

1,3-Thia­zolidine-2-thione (tzdSH: C3H5NS2), is a well known heterocyclic thione/thiol ligand. Crystallographic studies and investigations of its modes of coordination have been reported (Raper et al., 1998; Ainscough et al., 1985; Kubiak & Głowiak, 1987; Cowie & Sielisch, 1988; Ballester et al., 1992; Fackler et al., 1992; Saithong et al., 2007). We are inter­ested in the coordination behaviour and structure of tzdSH complexes with CuII cations. We have normally used Cu(NO3)2·3H2O as the starting material with the possibility that the NO3 anions could function as simple counter-ions to balance the charge on the metal or alternatively act as a ligand to the metal ion (Ferrer et al., 2000; Pal et al., 2005; Khavasi et al., 2011). However, the tzdSH ligand could also act as a reducing agent during the reaction, converting CuII to CuI and forming 3-(2-thia­zolin-2-yl)thia­zolidine-2-thione [tztzdt or C6H8N2S3] in the process. A similar reduction reaction was described previously by Ainscough et al. (1985). Complexation of the resulting CuI cation to both the tztzdt ligand thus formed, and to tzdSH generates the title compound.graphic file with name e-70-00091-scheme1.jpg

Structural commentary  

The title compound is a mononuclear CuI complex and its structure is shown in Fig. 1. The CuI atom has a distorted trigonal–planar coordination geometry and is chelated by the exocyclic S3 atom and the N3 atom of the thia­zolidine ring of the tztzdt ligand, forming a six-membered chelate ring. The trigonal coordination sphere is completed by the exocyclic S1 atom of the tzdSH ligand. The NO3 acts solely as counter-ion. The complex mol­ecule is strictly planar as all non-hydrogen atoms of the complex lie on a mirror plane. Atoms N4 and O1 of the nitrate counter-ion also lie on a mirror plane, such that the mirror plane of the cationic complex is perpendicular to that of the NO3 anion. The Cu1—S1 [2.1774 (9) Å], and Cu1—N3 [1.956 (3) Å] bond lengths are not unusual in comparison with the mean values [Cu—S = 2.21 (3) and Cu—N = 1.99 (3) Å] found in the Cambridge Structural Database. In contrast, the Cu1—S1 distance of 2.1774 (9) Å is somewhat shorter than those previously reported for other CuI complexes of tzdSH [mean Cu—S = 2.33 (1) Å].

Figure 1.

Figure 1

Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) x, −y + ½, z.]

Supra­molecular features  

In the crystal, layers are generated parallel to (010) by classical N1—H1⋯O1 hydrogen bonds (Table 1) supported by short S2⋯O2 [3.038 (3) Å], S5⋯O2 [3.196 (4) Å] and S1⋯S4 [3.4392 (13) Å] contacts (Fig. 2). Adjacent layers are linked by C5—H5A⋯O1 hydrogen bonds and weak π–π stacking inter­actions [centroid–centroid distance 4.0045 (10) Å] between the thia­zoline rings of a tzdSH ligand with those of tztzdt ligands in adjacent layers, forming a three-dimensional network. This stacking also imposes a close contact, of approximately 3.678 Å, between the copper cations and the centroids of the six-membered Cu1, S3, C4, N2, C7, N3 chelate rings of the mol­ecules in the adjacent layers (Fig. 3). The three-dimensional network of stacked layers is shown in Fig. 4.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (2) 2.25 (2) 2.981 (4) 146 (2)
N1—H1⋯O1ii 0.84 (2) 2.25 (2) 2.981 (4) 146 (2)
C5—H5A⋯O1iii 0.97 2.62 3.388 (4) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Two-dimensional sheets of mol­ecules parallel to (010). Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 3.

Figure 3

π–π stacking inter­actions between mol­ecules. Centroid–centroid and unusual Cu1–centroid contacts are drawn as dotted lines with the centroids shown as coloured spheres. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 4.

Figure 4

The overall packing of the title compound. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

Only four discrete reports are given of transition-metal complexes with the metal atom chelated by the tztzdt ligand. All are copper complexes, three of CuI (Lobana et al., 2013) and the fourth a CuII coordination polymer (Ainscough et al., 1985). Complexes of tzdSH are more plentiful with 29 unique entries, ten of which involve CuI cations (see, for example: Lobana et al., 2013; Raper et al., 1998).

Synthesis and crystallization  

1,3-Thia­zolidine-2-thione (0.1 g, 0.084 mmol) was added to a solution of Cu(NO3)2·3H2O (0.07 g, 0.039 mmol) in an MeOH: EtOH solvent mixture (1/1 v/v) at 340 K. The mixture was refluxed for 5 h. Rod-like yellow crystals appeared after the light-brown filtrate had been kept at room temperature for a day (yield 10%). The crystals melt and decompose at 434–436 K.

Refinement  

The N1—H1 hydrogen atom was located in a difference map and its coordinates were refined with U iso(H) = 1.2U eq(N). The hydrogen atoms of the methyl­ene groups were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.97 Å and U iso = 1.2U eq(C). Experimental details are given in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu(C3H5NS2)(C6H8N2S3)]NO3
M r 449.13
Crystal system, space group Monoclinic, P21/m
Temperature (K) 293
a, b, c (Å) 9.8937 (6), 6.9932 (5), 11.8054 (7)
β (°) 102.078 (1)
V3) 798.72 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.04
Crystal size (mm) 0.35 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.814, 1.000
No. of measured, independent and observed [I > 2s(I)] reflections 8700, 1534, 1402
R int 0.026
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.080, 1.07
No. of reflections 1534
No. of parameters 133
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), ShelXle (Hübschle et al., 2011), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, pk030-p21-m. DOI: 10.1107/S160053681401544X/sj5420sup1.cif

e-70-00091-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401544X/sj5420Isup2.hkl

e-70-00091-Isup2.hkl (75.7KB, hkl)

CCDC reference: 1011568

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, and the Department of Chemistry, Faculty of Science, Prince of Songkla University, for financial support. We also thank Professor Dr Brian Hodgson, Faculty of Science, Prince of Songkla University, for reading the manuscript and providing valuable comments.

supplementary crystallographic information

Crystal data

[Cu(C3H5NS2)(C6H8N2S3)]NO3 F(000) = 456
Mr = 449.13 Dx = 1.867 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 3943 reflections
a = 9.8937 (6) Å θ = 2.5–28.0°
b = 6.9932 (5) Å µ = 2.04 mm1
c = 11.8054 (7) Å T = 293 K
β = 102.078 (1)° Block, yellow
V = 798.72 (9) Å3 0.35 × 0.12 × 0.06 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer 1534 independent reflections
Radiation source: fine-focus sealed tube 1402 reflections with I > 2s(I)
Graphite monochromator Rint = 0.026
Frames, each covering 0.3 ° in ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −11→11
Tmin = 0.814, Tmax = 1.000 k = −8→8
8700 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3435P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
1534 reflections Δρmax = 0.37 e Å3
133 parameters Δρmin = −0.27 e Å3
1 restraint Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0074 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on al data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.53707 (4) 0.2500 0.52014 (4) 0.05377 (19)
S1 0.75417 (8) 0.2500 0.60684 (7) 0.0471 (2)
S2 0.61224 (9) 0.2500 0.80799 (8) 0.0494 (2)
S3 0.34723 (10) 0.2500 0.58878 (8) 0.0641 (3)
S4 0.05567 (9) 0.2500 0.50537 (9) 0.0571 (3)
S5 0.28736 (10) 0.2500 0.15159 (7) 0.0527 (3)
N1 0.8731 (3) 0.2500 0.8311 (3) 0.0509 (7)
H1 0.951 (3) 0.2500 0.813 (3) 0.061*
N2 0.2147 (3) 0.2500 0.3586 (2) 0.0404 (6)
N3 0.4543 (3) 0.2500 0.3544 (2) 0.0446 (6)
C1 0.7591 (3) 0.2500 0.7514 (3) 0.0408 (7)
C2 0.7099 (4) 0.2500 0.9567 (3) 0.0565 (9)
H2A 0.6879 0.3626 0.9973 0.068* 0.50
H2B 0.6879 0.1374 0.9973 0.068* 0.50
C3 0.8615 (4) 0.2500 0.9509 (3) 0.0654 (11)
H3A 0.9066 0.3624 0.9897 0.079* 0.50
H3B 0.9066 0.1376 0.9897 0.079* 0.50
C4 0.2171 (3) 0.2500 0.4737 (3) 0.0434 (7)
C5 −0.0321 (4) 0.2500 0.3563 (4) 0.0737 (12)
H5A −0.0901 0.1375 0.3396 0.088* 0.50
H5B −0.0901 0.3625 0.3396 0.088* 0.50
C6 0.0736 (3) 0.2500 0.2847 (3) 0.0592 (10)
H6A 0.0618 0.3623 0.2354 0.071* 0.50
H6B 0.0618 0.1377 0.2354 0.071* 0.50
C7 0.3273 (3) 0.2500 0.3040 (3) 0.0392 (7)
C8 0.4694 (4) 0.2500 0.1485 (3) 0.0577 (9)
H8A 0.4926 0.1374 0.1085 0.069* 0.50
H8B 0.4926 0.3626 0.1085 0.069* 0.50
C9 0.5473 (4) 0.2500 0.2725 (3) 0.0542 (9)
H9A 0.6062 0.1379 0.2861 0.065* 0.50
H9B 0.6062 0.3621 0.2861 0.065* 0.50
N4 0.2237 (3) 0.2500 0.8549 (2) 0.0596 (9)
O1 0.1564 (3) 0.1019 (4) 0.8343 (2) 0.1071 (8)
O2 0.3440 (3) 0.2500 0.8948 (3) 0.1254 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0365 (3) 0.0762 (4) 0.0445 (3) 0.000 −0.00081 (18) 0.000
S1 0.0334 (4) 0.0643 (5) 0.0435 (5) 0.000 0.0076 (3) 0.000
S2 0.0366 (4) 0.0644 (5) 0.0474 (5) 0.000 0.0093 (4) 0.000
S3 0.0403 (5) 0.1106 (8) 0.0396 (5) 0.000 0.0045 (4) 0.000
S4 0.0369 (5) 0.0729 (6) 0.0632 (6) 0.000 0.0145 (4) 0.000
S5 0.0501 (5) 0.0668 (6) 0.0383 (4) 0.000 0.0025 (4) 0.000
N1 0.0345 (15) 0.0683 (19) 0.0471 (16) 0.000 0.0020 (12) 0.000
N2 0.0313 (13) 0.0443 (14) 0.0427 (15) 0.000 0.0010 (11) 0.000
N3 0.0350 (14) 0.0541 (16) 0.0438 (15) 0.000 0.0059 (11) 0.000
C1 0.0339 (16) 0.0407 (16) 0.0461 (18) 0.000 0.0046 (13) 0.000
C2 0.060 (2) 0.066 (2) 0.0425 (18) 0.000 0.0085 (16) 0.000
C3 0.053 (2) 0.091 (3) 0.047 (2) 0.000 −0.0020 (17) 0.000
C4 0.0358 (16) 0.0442 (17) 0.0495 (18) 0.000 0.0076 (14) 0.000
C5 0.039 (2) 0.110 (4) 0.068 (3) 0.000 0.0015 (18) 0.000
C6 0.0361 (18) 0.080 (3) 0.055 (2) 0.000 −0.0037 (16) 0.000
C7 0.0390 (17) 0.0391 (16) 0.0380 (16) 0.000 0.0044 (13) 0.000
C8 0.055 (2) 0.069 (2) 0.052 (2) 0.000 0.0168 (17) 0.000
C9 0.0401 (18) 0.072 (2) 0.052 (2) 0.000 0.0131 (15) 0.000
N4 0.0409 (17) 0.101 (3) 0.0340 (15) 0.000 0.0022 (12) 0.000
O1 0.110 (2) 0.0932 (18) 0.122 (2) −0.0237 (16) 0.0328 (17) −0.0061 (17)
O2 0.0409 (16) 0.273 (6) 0.0588 (18) 0.000 0.0021 (14) 0.000

Geometric parameters (Å, º)

Cu1—N3 1.956 (3) C2—C3 1.516 (5)
Cu1—S1 2.1774 (9) C2—H2A 0.9700
Cu1—S3 2.1957 (10) C2—H2B 0.9700
S1—C1 1.698 (3) C3—H3A 0.9700
S2—C1 1.721 (3) C3—H3B 0.9700
S2—C2 1.818 (4) C5—C6 1.475 (6)
S3—C4 1.665 (3) C5—H5A 0.9700
S4—C4 1.715 (3) C5—H5B 0.9700
S4—C5 1.792 (4) C6—H6A 0.9700
S5—C7 1.760 (3) C6—H6B 0.9700
S5—C8 1.810 (4) C8—C9 1.505 (5)
N1—C1 1.308 (4) C8—H8A 0.9700
N1—C3 1.443 (5) C8—H8B 0.9700
N1—H1 0.841 (19) C9—H9A 0.9700
N2—C4 1.354 (4) C9—H9B 0.9700
N2—C7 1.398 (4) N4—O2 1.185 (4)
N2—C6 1.483 (4) N4—O1 1.228 (3)
N3—C7 1.273 (4) N4—O1i 1.228 (3)
N3—C9 1.468 (4)
N3—Cu1—S1 129.45 (8) N2—C4—S4 113.4 (2)
N3—Cu1—S3 99.07 (8) S3—C4—S4 114.7 (2)
S1—Cu1—S3 131.48 (4) C6—C5—S4 107.9 (3)
C1—S1—Cu1 106.90 (11) C6—C5—H5A 110.1
C1—S2—C2 93.06 (16) S4—C5—H5A 110.1
C4—S3—Cu1 105.89 (12) C6—C5—H5B 110.1
C4—S4—C5 93.88 (18) S4—C5—H5B 110.1
C7—S5—C8 90.55 (16) H5A—C5—H5B 108.4
C1—N1—C3 118.1 (3) C5—C6—N2 110.9 (3)
C1—N1—H1 121 (3) C5—C6—H6A 109.5
C3—N1—H1 121 (3) N2—C6—H6A 109.5
C4—N2—C7 127.9 (3) C5—C6—H6B 109.5
C4—N2—C6 114.0 (3) N2—C6—H6B 109.5
C7—N2—C6 118.1 (3) H6A—C6—H6B 108.1
C7—N3—C9 112.7 (3) N3—C7—N2 126.0 (3)
C7—N3—Cu1 129.3 (2) N3—C7—S5 117.8 (2)
C9—N3—Cu1 118.0 (2) N2—C7—S5 116.2 (2)
N1—C1—S1 124.2 (3) C9—C8—S5 106.8 (2)
N1—C1—S2 113.1 (2) C9—C8—H8A 110.4
S1—C1—S2 122.75 (18) S5—C8—H8A 110.4
C3—C2—S2 106.7 (3) C9—C8—H8B 110.4
C3—C2—H2A 110.4 S5—C8—H8B 110.4
S2—C2—H2A 110.4 H8A—C8—H8B 108.6
C3—C2—H2B 110.4 N3—C9—C8 112.1 (3)
S2—C2—H2B 110.4 N3—C9—H9A 109.2
H2A—C2—H2B 108.6 C8—C9—H9A 109.2
N1—C3—C2 109.0 (3) N3—C9—H9B 109.2
N1—C3—H3A 109.9 C8—C9—H9B 109.2
C2—C3—H3A 109.9 H9A—C9—H9B 107.9
N1—C3—H3B 109.9 O2—N4—O1 122.47 (18)
C2—C3—H3B 109.9 O2—N4—O1i 122.47 (18)
H3A—C3—H3B 108.3 O1—N4—O1i 115.0 (4)
N2—C4—S3 131.9 (3)
N3—Cu1—S1—C1 180.0 Cu1—S3—C4—S4 180.0
S3—Cu1—S1—C1 0.0 C5—S4—C4—N2 0.0
N3—Cu1—S3—C4 0.0 C5—S4—C4—S3 180.0
S1—Cu1—S3—C4 180.0 C4—S4—C5—C6 0.0
S1—Cu1—N3—C7 180.0 S4—C5—C6—N2 0.0
S3—Cu1—N3—C7 0.0 C4—N2—C6—C5 0.0
S1—Cu1—N3—C9 0.0 C7—N2—C6—C5 180.0
S3—Cu1—N3—C9 180.0 C9—N3—C7—N2 180.0
C3—N1—C1—S1 180.0 Cu1—N3—C7—N2 0.0
C3—N1—C1—S2 0.0 C9—N3—C7—S5 0.0
Cu1—S1—C1—N1 180.0 Cu1—N3—C7—S5 180.0
Cu1—S1—C1—S2 0.0 C4—N2—C7—N3 0.0
C2—S2—C1—N1 0.0 C6—N2—C7—N3 180.0
C2—S2—C1—S1 180.0 C4—N2—C7—S5 180.0
C1—S2—C2—C3 0.0 C6—N2—C7—S5 0.0
C1—N1—C3—C2 0.000 (1) C8—S5—C7—N3 0.0
S2—C2—C3—N1 0.000 (1) C8—S5—C7—N2 180.0
C7—N2—C4—S3 0.0 C7—S5—C8—C9 0.0
C6—N2—C4—S3 180.0 C7—N3—C9—C8 0.0
C7—N2—C4—S4 180.0 Cu1—N3—C9—C8 180.0
C6—N2—C4—S4 0.0 S5—C8—C9—N3 0.0
Cu1—S3—C4—N2 0.0

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1ii 0.84 (2) 2.25 (2) 2.981 (4) 146 (2)
N1—H1···O1iii 0.84 (2) 2.25 (2) 2.981 (4) 146 (2)
C5—H5A···O1iv 0.97 2.62 3.388 (4) 136

Symmetry codes: (ii) x+1, y, z; (iii) x+1, −y+1/2, z; (iv) −x, −y, −z+1.

References

  1. Ainscough, E. W., Anderson, B. F., Baker, E. N., Bingham, A. G., Brader, M. L. & Brodie, A. M. (1985). Inorg. Chim. Acta, 105, L5–L7.
  2. Ballester, L., Coronado, E., Gutierrez, A., Mange, A., Perpifitin, M. F., Pinilla, E. & Ricot, T. (1992). Inorg. Chem. 31, 2053–2056.
  3. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cowie, M. & Sielisch, T. (1988). J. Organomet. Chem. 34, 241–254.
  6. Fackler, J. P., Lopez, C. A., Staples, R. J., Wang, S., Winpenny, R. E. P. & Lattimer, R. P. (1992). J. Chem. Soc. Chem. Commun. pp. 146–148.
  7. Ferrer, S., Haasnoot, J. G., Reedijk, J., Müller, E., Cingi, M. B., Lanfranchi, M., Lanfredi, A. M. M. & Ribas, J. (2000). Inorg. Chem. 39, 1859–1867. [DOI] [PubMed]
  8. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  9. Khavasi, H. R., Sasan, K., Hashjin, S. S. & Zahedi, M. (2011). C. R. Chim. 14, 563–567.
  10. Kubiak, M. & Głowiak, T. (1987). Acta Cryst. C43, 641–643.
  11. Lobana, T. S., Sultana, R., Butcher, R. J., Castineiras, A., Akitsu, T., Fernandez, F. J. & Cristina Vega, M. (2013). Eur. J. Inorg. Chem. pp. 5161–5170.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., Fallah, M. S. E. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889. [DOI] [PubMed]
  14. Raper, E. S., Creighton, J. R., Clegg, W., Cucurull-Sanchez, L., Hill, M. N. S. & Akrivos, P. D. (1998). Inorg. Chim. Acta, 271, 57–64.
  15. Saithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857–m858.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, pk030-p21-m. DOI: 10.1107/S160053681401544X/sj5420sup1.cif

e-70-00091-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401544X/sj5420Isup2.hkl

e-70-00091-Isup2.hkl (75.7KB, hkl)

CCDC reference: 1011568

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES