Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 17;70(Pt 8):o870. doi: 10.1107/S1600536814015943

(2E)-2-Benzyl­idene-9-phenyl-3,4-di­hydro­acridin-1(2H)-one

T Vinuchakkaravarthy a, M Sankaran b, P S Mohan b, D Velmurugan a,*
PMCID: PMC4158519  PMID: 25249917

Abstract

In the title compound, C26H19NO, the plane of the aromatic heterocycle makes a dihedral angle of 75.22 (4)° with that of the attached phenyl ring. In the crystal, mol­ecules are connected by C—H⋯O inter­actions, generating R 2 2(12) dimers. These dimers are further connected by C—H⋯π inter­actions, linking the mol­ecules into chains running along the a-axis direction.

Keywords: crystal structure

Related literature  

For background to acridines, see: Kumar et al. (2012). For the biological activity of acridine derivatives, see: Pigatto et al. (2011); Das et al. (2011); Kumar et al. (2012); Prommier et al. (2006) Denny et al. (1982); Baguley & Ferguson (1998). For the synthesis of acridines, see: Tomar et al. (2010). For related structures, see: Buckleton & Waters (1984); Chantrapromma et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o870-scheme1.jpg

Experimental  

Crystal data  

  • C26H19NO

  • M r = 361.42

  • Monoclinic, Inline graphic

  • a = 9.2222 (3) Å

  • b = 10.7555 (4) Å

  • c = 19.4962 (5) Å

  • β = 95.503 (2)°

  • V = 1924.90 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.662, T max = 0.746

  • 18382 measured reflections

  • 4776 independent reflections

  • 3205 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.131

  • S = 1.00

  • 4776 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015943/bt6954sup1.cif

e-70-0o870-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015943/bt6954Isup2.hkl

e-70-0o870-Isup2.hkl (229.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015943/bt6954Isup3.cml

CCDC reference: 1012814

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.97 2.58 3.2700 (18) 128
C26—H26⋯Cg1ii 0.93 2.71 3.577 (18) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TV and DV also thank the UGC (SAP–CAS) for the facilities to the department.

supplementary crystallographic information

S1. Comment

Acridine is structurally related to anthracene with one of the central CH group replaced by nitrogen. Amsacrine which is an acridine derivative is clinically used for the treatment of cancer (Denny et al., 1982; Baguley & Ferguson, 1998). The strong activity of acridine derivatives is due to their ability to intercalate into DNA base pairs and leading to cell cycle arrest and apoptosis (Prommier et al., 2006).

The phenyl (C21—C26) and benzyl (C14—C20) rings deviate from the plane of the acridine system by 72.48 (6) ° and 49.24 (6) °, respectively. The crystal packing is stabilized by intermolecular C—H···O (C10—H10B···O1) interactions generating a R22(12) ring motif (Bernstein et al., 1995). These dimers are further connected by C—H···π (C26—H26···Cg1) interactions generating chains running along the a-axis.

S2. Experimental

A 1:2 molar mixture of 9-phenyl-3,4-dihydroacridin-1(2H)-one was treated with aromatic aldehydes in the presence of NaOH and allowed to stir at room temperature for 5–7 h. After completion of the reaction as inferred by the TLC, the mixture was poured into 200 g of crushed ice and neutralized with dil HCl. The precipitate thus formed after adding into crushed ice was filtered off and the residue subjected to column chromatography using petroleum ether: ethyl acetate mixture (3:1) v/v as eluent and compound obtained as a pale yellow solid.

S3. Refinement

All H atoms were located in a difference map. Nevertheless, they were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The cystal packing of the title compound showing the intermolecular C—H···O and C—H···π interactions chain running along aaxis, where Cg1 is the centroid of ring atoms C1—C6. Symmetry codes: (i) X,1/2-Y,1/2+Z; (ii) 1-X,-1/2+Y,1/2-Z; (iii) X,3/2-Y,1/2+Z and (iv) 1-X,1/2+Y,1/2-Z.

Crystal data

C26H19NO F(000) = 760
Mr = 361.42 Dx = 1.247 Mg m3Dm = 1.25 Mg m3Dm measured by not measured
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4776 reflections
a = 9.2222 (3) Å θ = 2.1–28.3°
b = 10.7555 (4) Å µ = 0.08 mm1
c = 19.4962 (5) Å T = 293 K
β = 95.503 (2)° Block, white
V = 1924.90 (11) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4776 independent reflections
Radiation source: fine-focus sealed tube 3205 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→10
Tmin = 0.662, Tmax = 0.746 k = −13→14
18382 measured reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3326P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.013
4776 reflections Δρmax = 0.23 e Å3
254 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0041 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.47972 (17) 0.49247 (14) 0.17309 (8) 0.0542 (4)
H1 0.4841 0.4062 0.1757 0.065*
C2 0.5587 (2) 0.56214 (17) 0.22142 (9) 0.0711 (5)
H2 0.6162 0.5233 0.2569 0.085*
C3 0.5539 (2) 0.69204 (17) 0.21798 (10) 0.0811 (6)
H3 0.6089 0.7388 0.2511 0.097*
C4 0.4701 (2) 0.75058 (15) 0.16689 (9) 0.0677 (5)
H4 0.4674 0.8370 0.1655 0.081*
C5 0.38702 (16) 0.68116 (12) 0.11582 (7) 0.0457 (3)
C6 0.39092 (15) 0.54970 (12) 0.11883 (7) 0.0416 (3)
C7 0.30846 (14) 0.48187 (11) 0.06585 (6) 0.0376 (3)
C8 0.23412 (14) 0.54820 (11) 0.01290 (6) 0.0381 (3)
C9 0.23927 (14) 0.68112 (11) 0.01406 (7) 0.0399 (3)
C10 0.15959 (17) 0.75179 (12) −0.04403 (7) 0.0484 (3)
H10A 0.1996 0.8350 −0.0456 0.058*
H10B 0.0577 0.7590 −0.0361 0.058*
C11 0.17193 (18) 0.68716 (12) −0.11266 (7) 0.0502 (4)
H11A 0.1159 0.7328 −0.1490 0.060*
H11B 0.2730 0.6870 −0.1227 0.060*
C12 0.11714 (15) 0.55543 (12) −0.11151 (7) 0.0434 (3)
C13 0.14319 (15) 0.48612 (11) −0.04483 (6) 0.0399 (3)
C14 0.04150 (17) 0.49483 (12) −0.16301 (7) 0.0475 (3)
H14 0.0134 0.4146 −0.1523 0.057*
C15 −0.00427 (18) 0.53472 (12) −0.23384 (7) 0.0488 (3)
C16 0.0762 (2) 0.61459 (14) −0.27197 (8) 0.0565 (4)
H16 0.1647 0.6460 −0.2525 0.068*
C17 0.0255 (2) 0.64745 (16) −0.33848 (8) 0.0688 (5)
H17 0.0809 0.6998 −0.3635 0.083*
C18 −0.1053 (3) 0.60374 (18) −0.36787 (9) 0.0773 (6)
H18 −0.1398 0.6280 −0.4122 0.093*
C19 −0.1857 (2) 0.52368 (18) −0.33150 (9) 0.0739 (5)
H19 −0.2745 0.4935 −0.3515 0.089*
C20 −0.1349 (2) 0.48783 (15) −0.26524 (8) 0.0601 (4)
H20 −0.1886 0.4319 −0.2415 0.072*
C21 0.31014 (14) 0.34287 (11) 0.06809 (6) 0.0398 (3)
C22 0.23121 (16) 0.27801 (12) 0.11307 (7) 0.0486 (3)
H22 0.1776 0.3208 0.1435 0.058*
C23 0.23196 (19) 0.14904 (14) 0.11288 (9) 0.0607 (4)
H23 0.1770 0.1056 0.1425 0.073*
C24 0.3134 (2) 0.08513 (14) 0.06919 (10) 0.0710 (5)
H24 0.3138 −0.0013 0.0691 0.085*
C25 0.3942 (2) 0.14968 (16) 0.02578 (10) 0.0766 (5)
H25 0.4509 0.1068 −0.0033 0.092*
C26 0.39204 (19) 0.27804 (14) 0.02481 (9) 0.0604 (4)
H26 0.4463 0.3209 −0.0053 0.072*
N1 0.31024 (13) 0.74545 (10) 0.06376 (6) 0.0459 (3)
O1 0.09155 (12) 0.38323 (8) −0.03732 (5) 0.0517 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0594 (9) 0.0455 (8) 0.0552 (8) 0.0054 (7) −0.0065 (7) −0.0014 (6)
C2 0.0810 (12) 0.0635 (10) 0.0627 (10) 0.0080 (9) −0.0252 (9) −0.0038 (8)
C3 0.1013 (15) 0.0616 (11) 0.0722 (11) 0.0025 (10) −0.0351 (11) −0.0180 (9)
C4 0.0883 (13) 0.0435 (8) 0.0671 (10) 0.0003 (8) −0.0153 (9) −0.0135 (7)
C5 0.0519 (8) 0.0371 (7) 0.0476 (7) 0.0009 (6) 0.0017 (6) −0.0063 (6)
C6 0.0442 (7) 0.0374 (7) 0.0431 (7) 0.0019 (6) 0.0029 (6) −0.0019 (5)
C7 0.0401 (7) 0.0310 (6) 0.0421 (6) 0.0006 (5) 0.0059 (5) 0.0004 (5)
C8 0.0424 (7) 0.0301 (6) 0.0419 (7) −0.0008 (5) 0.0045 (5) 0.0012 (5)
C9 0.0441 (7) 0.0298 (6) 0.0460 (7) −0.0005 (5) 0.0054 (6) 0.0008 (5)
C10 0.0619 (9) 0.0281 (6) 0.0537 (8) −0.0006 (6) −0.0023 (7) 0.0052 (6)
C11 0.0655 (9) 0.0372 (7) 0.0470 (7) −0.0054 (6) 0.0013 (7) 0.0077 (6)
C12 0.0527 (8) 0.0340 (6) 0.0434 (7) 0.0007 (6) 0.0039 (6) 0.0030 (5)
C13 0.0467 (7) 0.0299 (6) 0.0428 (7) −0.0002 (5) 0.0028 (6) 0.0022 (5)
C14 0.0638 (9) 0.0346 (7) 0.0437 (7) 0.0006 (6) 0.0037 (6) 0.0023 (5)
C15 0.0669 (9) 0.0376 (7) 0.0415 (7) 0.0072 (7) 0.0042 (7) −0.0024 (6)
C16 0.0744 (11) 0.0466 (8) 0.0493 (8) 0.0060 (7) 0.0093 (7) 0.0015 (7)
C17 0.1057 (15) 0.0537 (9) 0.0488 (9) 0.0118 (10) 0.0160 (10) 0.0080 (7)
C18 0.1155 (17) 0.0686 (12) 0.0457 (9) 0.0241 (11) −0.0039 (10) 0.0050 (8)
C19 0.0860 (13) 0.0770 (12) 0.0544 (10) 0.0099 (10) −0.0154 (9) −0.0101 (9)
C20 0.0771 (11) 0.0542 (9) 0.0477 (8) −0.0002 (8) 0.0000 (8) −0.0060 (7)
C21 0.0437 (7) 0.0315 (6) 0.0429 (7) 0.0038 (5) −0.0031 (6) 0.0013 (5)
C22 0.0569 (9) 0.0395 (7) 0.0485 (8) 0.0022 (6) 0.0000 (6) 0.0072 (6)
C23 0.0715 (11) 0.0423 (8) 0.0648 (10) −0.0094 (7) −0.0124 (8) 0.0168 (7)
C24 0.0966 (14) 0.0291 (7) 0.0817 (12) 0.0063 (8) −0.0204 (11) 0.0012 (8)
C25 0.1012 (15) 0.0443 (9) 0.0846 (13) 0.0234 (9) 0.0111 (11) −0.0074 (9)
C26 0.0708 (10) 0.0422 (8) 0.0705 (10) 0.0103 (7) 0.0191 (8) 0.0008 (7)
N1 0.0549 (7) 0.0322 (5) 0.0499 (6) 0.0004 (5) 0.0015 (5) −0.0035 (5)
O1 0.0673 (7) 0.0343 (5) 0.0514 (6) −0.0106 (4) −0.0052 (5) 0.0058 (4)

Geometric parameters (Å, º)

C1—C2 1.359 (2) C13—O1 1.2191 (15)
C1—C6 1.4151 (19) C14—C15 1.4689 (18)
C1—H1 0.9300 C14—H14 0.9300
C2—C3 1.399 (2) C15—C20 1.393 (2)
C2—H2 0.9300 C15—C16 1.395 (2)
C3—C4 1.356 (2) C16—C17 1.381 (2)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.411 (2) C17—C18 1.369 (3)
C4—H4 0.9300 C17—H17 0.9300
C5—N1 1.3682 (17) C18—C19 1.377 (3)
C5—C6 1.4154 (18) C18—H18 0.9300
C6—C7 1.4236 (17) C19—C20 1.386 (2)
C7—C8 1.3818 (17) C19—H19 0.9300
C7—C21 1.4957 (17) C20—H20 0.9300
C8—C9 1.4304 (17) C21—C26 1.3750 (19)
C8—C13 1.4949 (17) C21—C22 1.3813 (19)
C9—N1 1.3132 (16) C22—C23 1.387 (2)
C9—C10 1.4970 (18) C22—H22 0.9300
C10—C11 1.522 (2) C23—C24 1.373 (3)
C10—H10A 0.9700 C23—H23 0.9300
C10—H10B 0.9700 C24—C25 1.369 (3)
C11—C12 1.5051 (18) C24—H24 0.9300
C11—H11A 0.9700 C25—C26 1.381 (2)
C11—H11B 0.9700 C25—H25 0.9300
C12—C14 1.3361 (18) C26—H26 0.9300
C12—C13 1.4978 (17)
C2—C1—C6 120.76 (14) O1—C13—C12 121.60 (12)
C2—C1—H1 119.6 C8—C13—C12 117.57 (11)
C6—C1—H1 119.6 C12—C14—C15 130.26 (13)
C1—C2—C3 120.33 (15) C12—C14—H14 114.9
C1—C2—H2 119.8 C15—C14—H14 114.9
C3—C2—H2 119.8 C20—C15—C16 118.07 (14)
C4—C3—C2 120.80 (15) C20—C15—C14 117.78 (14)
C4—C3—H3 119.6 C16—C15—C14 124.14 (14)
C2—C3—H3 119.6 C17—C16—C15 120.55 (17)
C3—C4—C5 120.37 (15) C17—C16—H16 119.7
C3—C4—H4 119.8 C15—C16—H16 119.7
C5—C4—H4 119.8 C18—C17—C16 120.70 (18)
N1—C5—C4 117.62 (13) C18—C17—H17 119.7
N1—C5—C6 123.01 (12) C16—C17—H17 119.7
C4—C5—C6 119.32 (13) C17—C18—C19 119.74 (16)
C1—C6—C5 118.43 (12) C17—C18—H18 120.1
C1—C6—C7 123.37 (12) C19—C18—H18 120.1
C5—C6—C7 118.18 (12) C18—C19—C20 120.23 (18)
C8—C7—C6 118.02 (11) C18—C19—H19 119.9
C8—C7—C21 122.74 (11) C20—C19—H19 119.9
C6—C7—C21 119.20 (11) C19—C20—C15 120.66 (17)
C7—C8—C9 119.39 (11) C19—C20—H20 119.7
C7—C8—C13 122.29 (11) C15—C20—H20 119.7
C9—C8—C13 118.27 (11) C26—C21—C22 119.17 (13)
N1—C9—C8 123.48 (12) C26—C21—C7 119.59 (12)
N1—C9—C10 117.68 (11) C22—C21—C7 121.24 (12)
C8—C9—C10 118.84 (11) C21—C22—C23 120.02 (14)
C9—C10—C11 111.14 (11) C21—C22—H22 120.0
C9—C10—H10A 109.4 C23—C22—H22 120.0
C11—C10—H10A 109.4 C24—C23—C22 120.35 (16)
C9—C10—H10B 109.4 C24—C23—H23 119.8
C11—C10—H10B 109.4 C22—C23—H23 119.8
H10A—C10—H10B 108.0 C25—C24—C23 119.48 (15)
C12—C11—C10 111.30 (11) C25—C24—H24 120.3
C12—C11—H11A 109.4 C23—C24—H24 120.3
C10—C11—H11A 109.4 C24—C25—C26 120.52 (17)
C12—C11—H11B 109.4 C24—C25—H25 119.7
C10—C11—H11B 109.4 C26—C25—H25 119.7
H11A—C11—H11B 108.0 C21—C26—C25 120.43 (16)
C14—C12—C13 115.98 (12) C21—C26—H26 119.8
C14—C12—C11 126.86 (12) C25—C26—H26 119.8
C13—C12—C11 117.09 (11) C9—N1—C5 117.84 (11)
O1—C13—C8 120.83 (11)
C6—C1—C2—C3 −0.3 (3) C14—C12—C13—O1 −3.7 (2)
C1—C2—C3—C4 0.4 (3) C11—C12—C13—O1 173.38 (13)
C2—C3—C4—C5 −0.5 (3) C14—C12—C13—C8 176.83 (12)
C3—C4—C5—N1 −176.88 (17) C11—C12—C13—C8 −6.04 (18)
C3—C4—C5—C6 0.6 (3) C13—C12—C14—C15 179.30 (14)
C2—C1—C6—C5 0.4 (2) C11—C12—C14—C15 2.5 (3)
C2—C1—C6—C7 178.48 (15) C12—C14—C15—C20 −148.09 (16)
N1—C5—C6—C1 176.83 (13) C12—C14—C15—C16 33.2 (2)
C4—C5—C6—C1 −0.5 (2) C20—C15—C16—C17 1.1 (2)
N1—C5—C6—C7 −1.4 (2) C14—C15—C16—C17 179.87 (14)
C4—C5—C6—C7 −178.70 (14) C15—C16—C17—C18 0.9 (3)
C1—C6—C7—C8 −175.42 (13) C16—C17—C18—C19 −1.6 (3)
C5—C6—C7—C8 2.67 (18) C17—C18—C19—C20 0.3 (3)
C1—C6—C7—C21 2.24 (19) C18—C19—C20—C15 1.8 (3)
C5—C6—C7—C21 −179.67 (12) C16—C15—C20—C19 −2.5 (2)
C6—C7—C8—C9 −1.66 (18) C14—C15—C20—C19 178.72 (14)
C21—C7—C8—C9 −179.24 (12) C8—C7—C21—C26 74.02 (18)
C6—C7—C8—C13 −179.36 (11) C6—C7—C21—C26 −103.53 (15)
C21—C7—C8—C13 3.06 (19) C8—C7—C21—C22 −106.21 (15)
C7—C8—C9—N1 −0.88 (19) C6—C7—C21—C22 76.24 (16)
C13—C8—C9—N1 176.92 (12) C26—C21—C22—C23 −1.8 (2)
C7—C8—C9—C10 179.33 (12) C7—C21—C22—C23 178.44 (13)
C13—C8—C9—C10 −2.87 (18) C21—C22—C23—C24 1.4 (2)
N1—C9—C10—C11 141.67 (13) C22—C23—C24—C25 0.0 (3)
C8—C9—C10—C11 −38.53 (17) C23—C24—C25—C26 −1.2 (3)
C9—C10—C11—C12 56.53 (17) C22—C21—C26—C25 0.7 (2)
C10—C11—C12—C14 142.07 (15) C7—C21—C26—C25 −179.55 (15)
C10—C11—C12—C13 −34.70 (18) C24—C25—C26—C21 0.8 (3)
C7—C8—C13—O1 24.48 (19) C8—C9—N1—C5 2.25 (19)
C9—C8—C13—O1 −153.24 (13) C10—C9—N1—C5 −177.96 (12)
C7—C8—C13—C12 −156.08 (12) C4—C5—N1—C9 176.28 (13)
C9—C8—C13—C12 26.19 (17) C6—C5—N1—C9 −1.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10B···O1i 0.97 2.58 3.2700 (18) 128
C26—H26···Cg1ii 0.93 2.71 3.577 (18) 156

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6954).

References

  1. Baguley, B. C. & Ferguson, L. R. (1998). Biochim. Biophys. Acta, 1400, 213–222. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Buckleton, J. S. & Waters, T. N. (1984). Acta Cryst. C40, 1587–1589.
  5. Chantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o81–o82. [DOI] [PMC free article] [PubMed]
  6. Das, S., Kundu, S. & Suresh, K. G. (2011). DNA Cell Biol. 30, 525–535. [DOI] [PubMed]
  7. Denny, W. A., Cain B. F., Atwell, G. J., Hansch, C. & Panthananickal, A. (1982). J. Med. Chem. 25, 276–315. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Kumar, R., Kaur, M. & Kumari, M. (2012). Acta Pol. Pharm. 69, 3–9. [PubMed]
  10. Pigatto, M. C., Lima, M. C. A., Galdino, S. L., Pitta, I. R., Vessecchi, R., Assis, M. D., Santos, J. S., Costa, T. C. T. D. & Lopes, P. N. (2011). Eur. J. Med. Chem. 1, 4245–4251. [DOI] [PubMed]
  11. Prommier, Y. & Goldwasser, F., Chabner, B. A. & Longo, D. L. (2006). Editors. Cancer Chemother. Biother. pp. 451–475.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Tomar, V., Bhattacharjee, G., Uddin, K., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745–751. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015943/bt6954sup1.cif

e-70-0o870-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015943/bt6954Isup2.hkl

e-70-0o870-Isup2.hkl (229.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015943/bt6954Isup3.cml

CCDC reference: 1012814

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES