Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 5;70(Pt 8):o855. doi: 10.1107/S1600536814015281

(2E)-1-(4-Chloro­phen­yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one

Badiadka Narayana a, Vinutha V Salian a, Balladka K Sarojini b, Jerry P Jasinski c,*
PMCID: PMC4158522  PMID: 25249906

Abstract

In the title compound, C18H17ClO, the dihedral angle between the benzene rings is 53.5 (1)°. The mean plane of the prop-2-en-1-one group is twisted by 24.5 (8) and 33.5 (3)° from the chloro- and propanyl-substituted rings, respectively.

Keywords: crystal structure

Related literature  

For the non-linear optical properties of the chalcones, see: Sarojini et al. (2006); Poornesh et al. (2009) and for their biological activity, see: Nielsen et al. (1998); Mai et al. (2014); Insuasty et al. (2013). For related structures, see: Jasinski et al. (2009, 2012); Butcher et al. (2007); Harrison et al. (2006). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o855-scheme1.jpg

Experimental  

Crystal data  

  • C18H17ClO

  • M r = 284.76

  • Monoclinic, Inline graphic

  • a = 8.8547 (5) Å

  • b = 5.8455 (3) Å

  • c = 28.8034 (17) Å

  • β = 97.396 (6)°

  • V = 1478.46 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.21 mm−1

  • T = 173 K

  • 0.41 × 0.32 × 0.14 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan CrysAlis PRO and CrysAlis RED (Agilent, 2012) T min = 0.370, T max = 1.000

  • 8687 measured reflections

  • 2868 independent reflections

  • 2269 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.093

  • wR(F 2) = 0.286

  • S = 1.04

  • 2868 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015281/zs2302sup1.cif

e-70-0o855-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015281/zs2302Isup2.hkl

e-70-0o855-Isup2.hkl (157.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015281/zs2302Isup3.cml

CCDC reference: 1011011

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. VVS thanks the DST for financial assistance through a PURSE grant. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

S1. Comment

Chalcones are an important class of natural compounds and have been widely applied as synthons in synthetic organic chemistry. The nonlinear optical properties of the different chalcone derivatives have been reported (Sarojini et al., 2006; Poornesh et al., 2009). These α,β-unsaturated ketones also possess a wide variety of biological activities, including anti-leishmanial (Nielsen et al., 1998), anticancer (Mai et al., 2014) and antitumor activity (Insuasty et al., 2013). The crystal structures of some chalcone derivatives viz., a second polymorph of (2E)-1-(4-fluorophenyl)-3-(3, 4, 5-trimethoxyphenyl)prop-2-en- 1-one, (2E)-1-(3,4-dichlorophenyl)-3-(2-hydroxyphenyl)prop-2-en- 1-one (Jasinski et al., 2009, 2012), (2E)-1-(2,4-dichlorophenyl)-3-[4-(methylsulfanyl)phenyl] prop-2-en-1-one (Butcher et al., 2007) and 2-bromo-1-chlorophenyl-3-(4-methoxyphenyl) prop-2-en-1-one (Harrison et al., 2006) have been reported. In view of the importance of chalcone derivatives, we report herein the crystal structure of the title compound, C18H17ClO.

In the title compound, the dihedral angle between the mean planes of the phenyl rings is 53.5 (1)°. The mean plane of the prop-2-en-1-one group (C1/C2/O1/C8) is twisted away from the two phenyl rings by 24.5 (8)° (C2–C7) and 33.5 (3)° (C10–C15) (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). No classical hyrogen bonds are observed.

S2. Experimental

To a mixture of cuminaldehyde (1.5 mL, 0.01 mol) and 4-chloroacetophenone (1.3 mL, 0.01 mol) in ethanol (50 mL), 15 mL of 10 % sodium hydroxide solution was added and stirred at 273–278 K for 3 h (Fig. 2). The precipitate formed was collected by filtration. Single crystals were grown from ethanol by slow the evaporation method (m.p.: 343–345 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H bond lengths of 0.95– 1.00 Å or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. The Me group was refined as an ideally rotating group. No twinning has been observed.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of C18H17ClO, showing the atom labeling scheme, with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Synthesis of C18H17ClO.

Crystal data

C18H17ClO Dx = 1.279 Mg m3
Mr = 284.76 Melting point = 343–345 K
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 8.8547 (5) Å Cell parameters from 2529 reflections
b = 5.8455 (3) Å θ = 4.6–72.0°
c = 28.8034 (17) Å µ = 2.21 mm1
β = 97.396 (6)° T = 173 K
V = 1478.46 (14) Å3 Prism, colourless
Z = 4 0.41 × 0.32 × 0.14 mm
F(000) = 600

Data collection

Agilent Eos Gemini diffractometer 2868 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2269 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 16.0416 pixels mm-1 θmax = 72.1°, θmin = 5.0°
ω scans h = −10→10
Absorption correction: multi-scan CrysAlis PRO and CrysAlis RED (Agilent, 2012) k = −7→6
Tmin = 0.370, Tmax = 1.000 l = −35→29
8687 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.093 H-atom parameters constrained
wR(F2) = 0.286 w = 1/[σ2(Fo2) + (0.1595P)2 + 1.6733P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2868 reflections Δρmax = 0.87 e Å3
183 parameters Δρmin = −0.44 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.25150 (13) 0.8390 (2) 0.33097 (5) 0.0819 (5)
O1 0.2335 (4) 0.2755 (5) 0.48768 (11) 0.0695 (8)
C1 0.2184 (5) 0.4826 (7) 0.48178 (13) 0.0576 (10)
C2 0.1070 (4) 0.5752 (6) 0.44409 (14) 0.0550 (9)
C3 0.0602 (5) 0.4451 (7) 0.40431 (15) 0.0625 (10)
H3 0.1034 0.2981 0.4012 0.075*
C4 −0.0468 (5) 0.5249 (8) 0.36970 (16) 0.0675 (11)
H4 −0.0755 0.4358 0.3424 0.081*
C5 −0.1133 (5) 0.7368 (8) 0.37462 (16) 0.0638 (11)
C6 −0.0724 (5) 0.8693 (8) 0.41294 (17) 0.0691 (12)
H6 −0.1192 1.0137 0.4161 0.083*
C7 0.0386 (5) 0.7896 (7) 0.44713 (16) 0.0677 (12)
H7 0.0696 0.8833 0.4736 0.081*
C8 0.3018 (5) 0.6508 (8) 0.51427 (16) 0.0671 (11)
H8 0.3047 0.8073 0.5055 0.080*
C9 0.3719 (5) 0.5833 (8) 0.55524 (17) 0.0676 (11)
H9 0.3598 0.4270 0.5630 0.081*
C10 0.4664 (5) 0.7227 (8) 0.59013 (16) 0.0652 (11)
C11 0.5252 (5) 0.9341 (8) 0.57874 (15) 0.0676 (11)
H11 0.5026 0.9925 0.5478 0.081*
C12 0.6155 (5) 1.0579 (7) 0.61201 (14) 0.0612 (10)
H12 0.6546 1.2016 0.6038 0.073*
C13 0.6505 (4) 0.9774 (6) 0.65722 (13) 0.0529 (9)
C14 0.5907 (5) 0.7645 (7) 0.66783 (15) 0.0613 (10)
H14 0.6116 0.7055 0.6987 0.074*
C15 0.5034 (5) 0.6414 (7) 0.63453 (17) 0.0694 (12)
H15 0.4671 0.4953 0.6424 0.083*
C16 0.7492 (5) 1.1144 (7) 0.69393 (15) 0.0614 (10)
H16 0.7841 1.2548 0.6786 0.074*
C17 0.6624 (6) 1.1896 (8) 0.73356 (16) 0.0706 (12)
H17A 0.5750 1.2834 0.7209 0.106*
H17B 0.7299 1.2794 0.7563 0.106*
H17C 0.6265 1.0545 0.7490 0.106*
C18 0.8911 (5) 0.9757 (10) 0.7134 (2) 0.0834 (14)
H18A 0.8599 0.8406 0.7299 0.125*
H18B 0.9583 1.0709 0.7351 0.125*
H18C 0.9454 0.9273 0.6875 0.125*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0684 (8) 0.0788 (8) 0.1002 (10) −0.0040 (5) 0.0173 (6) 0.0148 (6)
O1 0.0799 (19) 0.0492 (16) 0.0811 (19) −0.0082 (14) 0.0161 (15) −0.0158 (14)
C1 0.064 (2) 0.053 (2) 0.061 (2) −0.0177 (17) 0.0283 (18) −0.0123 (17)
C2 0.059 (2) 0.0465 (19) 0.065 (2) −0.0154 (16) 0.0298 (18) −0.0121 (16)
C3 0.073 (3) 0.047 (2) 0.071 (2) −0.0081 (18) 0.022 (2) −0.0150 (18)
C4 0.081 (3) 0.055 (2) 0.068 (2) −0.010 (2) 0.016 (2) −0.0130 (19)
C5 0.059 (2) 0.058 (2) 0.079 (3) −0.0136 (18) 0.029 (2) −0.001 (2)
C6 0.066 (3) 0.053 (2) 0.092 (3) −0.0027 (19) 0.027 (2) −0.011 (2)
C7 0.077 (3) 0.053 (2) 0.078 (3) −0.013 (2) 0.028 (2) −0.022 (2)
C8 0.071 (3) 0.061 (2) 0.073 (3) −0.011 (2) 0.022 (2) −0.010 (2)
C9 0.067 (2) 0.059 (2) 0.081 (3) −0.009 (2) 0.027 (2) −0.013 (2)
C10 0.065 (2) 0.057 (2) 0.076 (3) −0.0096 (19) 0.016 (2) −0.0076 (19)
C11 0.076 (3) 0.064 (3) 0.065 (2) −0.021 (2) 0.015 (2) 0.0024 (19)
C12 0.066 (2) 0.055 (2) 0.065 (2) −0.0173 (18) 0.0215 (19) 0.0001 (18)
C13 0.0468 (18) 0.0501 (19) 0.066 (2) −0.0054 (15) 0.0211 (16) −0.0031 (16)
C14 0.060 (2) 0.053 (2) 0.071 (2) −0.0070 (18) 0.0101 (18) 0.0066 (18)
C15 0.072 (3) 0.050 (2) 0.086 (3) −0.0152 (19) 0.006 (2) 0.013 (2)
C16 0.060 (2) 0.057 (2) 0.069 (2) −0.0092 (18) 0.0171 (19) −0.0049 (18)
C17 0.079 (3) 0.066 (3) 0.069 (3) 0.002 (2) 0.020 (2) −0.008 (2)
C18 0.053 (2) 0.092 (4) 0.105 (4) −0.004 (2) 0.010 (2) −0.021 (3)

Geometric parameters (Å, º)

Cl1—C5 1.743 (5) C10—C15 1.364 (6)
O1—C1 1.228 (5) C11—H11 0.9500
C1—C2 1.472 (6) C11—C12 1.372 (6)
C1—C8 1.486 (6) C12—H12 0.9500
C2—C3 1.393 (5) C12—C13 1.382 (6)
C2—C7 1.400 (6) C13—C14 1.401 (5)
C3—H3 0.9500 C13—C16 1.512 (5)
C3—C4 1.366 (6) C14—H14 0.9500
C4—H4 0.9500 C14—C15 1.358 (6)
C4—C5 1.386 (6) C15—H15 0.9500
C5—C6 1.359 (6) C16—H16 1.0000
C6—H6 0.9500 C16—C17 1.521 (6)
C6—C7 1.379 (7) C16—C18 1.538 (7)
C7—H7 0.9500 C17—H17A 0.9800
C8—H8 0.9500 C17—H17B 0.9800
C8—C9 1.321 (7) C17—H17C 0.9800
C9—H9 0.9500 C18—H18A 0.9800
C9—C10 1.469 (6) C18—H18B 0.9800
C10—C11 1.396 (6) C18—H18C 0.9800
O1—C1—C2 121.0 (3) C12—C11—H11 119.9
O1—C1—C8 121.9 (4) C11—C12—H12 119.4
C2—C1—C8 116.9 (4) C11—C12—C13 121.2 (4)
C3—C2—C1 120.4 (4) C13—C12—H12 119.4
C3—C2—C7 117.0 (4) C12—C13—C14 117.6 (4)
C7—C2—C1 122.5 (4) C12—C13—C16 121.2 (3)
C2—C3—H3 119.4 C14—C13—C16 121.2 (4)
C4—C3—C2 121.3 (4) C13—C14—H14 119.6
C4—C3—H3 119.4 C15—C14—C13 120.9 (4)
C3—C4—H4 120.2 C15—C14—H14 119.6
C3—C4—C5 119.6 (4) C10—C15—H15 119.2
C5—C4—H4 120.2 C14—C15—C10 121.6 (4)
C4—C5—Cl1 120.0 (4) C14—C15—H15 119.2
C6—C5—Cl1 118.7 (4) C13—C16—H16 108.0
C6—C5—C4 121.3 (4) C13—C16—C17 112.1 (3)
C5—C6—H6 120.7 C13—C16—C18 110.3 (4)
C5—C6—C7 118.6 (4) C17—C16—H16 108.0
C7—C6—H6 120.7 C17—C16—C18 110.3 (4)
C2—C7—H7 118.9 C18—C16—H16 108.0
C6—C7—C2 122.1 (4) C16—C17—H17A 109.5
C6—C7—H7 118.9 C16—C17—H17B 109.5
C1—C8—H8 119.9 C16—C17—H17C 109.5
C9—C8—C1 120.2 (4) H17A—C17—H17B 109.5
C9—C8—H8 119.9 H17A—C17—H17C 109.5
C8—C9—H9 116.3 H17B—C17—H17C 109.5
C8—C9—C10 127.3 (4) C16—C18—H18A 109.5
C10—C9—H9 116.3 C16—C18—H18B 109.5
C11—C10—C9 121.8 (4) C16—C18—H18C 109.5
C15—C10—C9 119.7 (4) H18A—C18—H18B 109.5
C15—C10—C11 118.5 (4) H18A—C18—H18C 109.5
C10—C11—H11 119.9 H18B—C18—H18C 109.5
C12—C11—C10 120.3 (4)
Cl1—C5—C6—C7 −179.1 (3) C8—C9—C10—C11 −16.7 (7)
O1—C1—C2—C3 −25.1 (5) C8—C9—C10—C15 165.8 (5)
O1—C1—C2—C7 152.0 (4) C9—C10—C11—C12 −178.8 (4)
O1—C1—C8—C9 −13.1 (6) C9—C10—C15—C14 179.8 (4)
C1—C2—C3—C4 177.8 (4) C10—C11—C12—C13 0.1 (7)
C1—C2—C7—C6 −176.0 (4) C11—C10—C15—C14 2.3 (7)
C1—C8—C9—C10 176.1 (4) C11—C12—C13—C14 0.1 (6)
C2—C1—C8—C9 162.2 (4) C11—C12—C13—C16 −179.6 (4)
C2—C3—C4—C5 −1.7 (6) C12—C13—C14—C15 0.9 (6)
C3—C2—C7—C6 1.1 (6) C12—C13—C16—C17 115.4 (4)
C3—C4—C5—Cl1 −179.3 (3) C12—C13—C16—C18 −121.2 (4)
C3—C4—C5—C6 1.1 (6) C13—C14—C15—C10 −2.1 (7)
C4—C5—C6—C7 0.5 (6) C14—C13—C16—C17 −64.3 (5)
C5—C6—C7—C2 −1.7 (6) C14—C13—C16—C18 59.0 (5)
C7—C2—C3—C4 0.6 (6) C15—C10—C11—C12 −1.3 (7)
C8—C1—C2—C3 159.6 (4) C16—C13—C14—C15 −179.4 (4)
C8—C1—C2—C7 −23.4 (5)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2302).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Butcher, R. J., Yathirajan, H. S., Narayana, B., Mithun, A. & Sarojini, B. K. (2007). Acta Cryst. E63, o30–o32.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.
  6. Insuasty, B., Montoya, A., Becerra, D., Quiroga, J., Abonia, R., Robledo, S., Velez, I. D., Upegui, Y., Nogueras, M. & Cobo, J. (2013). Eur. J. Med. Chem. 67, 252–262. [DOI] [PubMed]
  7. Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965–o1966.
  8. Jasinski, J. P., Golen, J. A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o366. [DOI] [PMC free article] [PubMed]
  9. Mai, C. W., Yaeghoobi, M., Abd-Rahman, N., Kang, Y. B. & Pichika, M. R. (2014). Eur. J. Med. Chem. 77, 378–387. [DOI] [PubMed]
  10. Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832. [DOI] [PubMed]
  11. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  12. Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Kamath, K. P., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater. 31, 854–859.
  13. Sarojini, B. K., Nrayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015281/zs2302sup1.cif

e-70-0o855-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015281/zs2302Isup2.hkl

e-70-0o855-Isup2.hkl (157.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015281/zs2302Isup3.cml

CCDC reference: 1011011

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES