Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 11;70(Pt 8):m295. doi: 10.1107/S1600536814015360

Bis(2-amino-4-phenyl-1,3-thia­zol-3-ium) tetra­chlorido­palladate(II)

Reyna Reyes-Martínez a, Rubén M Carballo a, Gonzalo J Mena-Rejón a, Simón Hernández-Ortega b, David Cáceres-Castillo a,*
PMCID: PMC4158524  PMID: 25249879

Abstract

The title compound, (C9H9N2S)2[PdCl4], consists of two monoprotonated 2-amino-4-phenyl-1,3-thia­zole molecules and one tetra­chlorido­palladate anion. The organic molecules exhibit a dihedral angle between the main rings planes of 31.82 (9)°. In the anion, the PdII atom is located on a crystallographic centre of symmetry with a square-planar geometry. In the crystal, the anions and cations are connected through bifurcated N—H⋯Cl hydrogen bonds, and these inter­actions lead to hydrogen-bonded tapes of cations and anions along [100].

Keywords: crystal structure

Related literature  

For the potential biological activity of compounds containing thia­zole rings, see: Annadurai et al. (2012); Alam et al. (2011). For the synthesis of thia­zole compounds, see: Cáceres-Castillo et al. (2012). For similar structures with protonated molecules, see: Form et al. (1974); Jin et al. (2011, 2013). For the crystal structure of non-protonated thia­zole, see: Au-Alvarez et al. (1999).graphic file with name e-70-0m295-scheme1.jpg

Experimental  

Crystal data  

  • (C9H9N2S)2[PdCl4]

  • M r = 602.68

  • Triclinic, Inline graphic

  • a = 7.2880 (2) Å

  • b = 8.9214 (3) Å

  • c = 9.8192 (3) Å

  • α = 66.258 (1)°

  • β = 73.778 (1)°

  • γ = 84.468 (1)°

  • V = 561.04 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 298 K

  • 0.46 × 0.28 × 0.21 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 2012) T min = 0.658, T max = 0.842

  • 4857 measured reflections

  • 2060 independent reflections

  • 1982 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.051

  • S = 1.11

  • 2060 reflections

  • 143 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015360/pj2013sup1.cif

e-70-0m295-sup1.cif (157.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015360/pj2013Isup2.hkl

e-70-0m295-Isup2.hkl (113.3KB, hkl)

CCDC reference: 1011353

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Cl2 0.89 (1) 2.41 (2) 3.237 (2) 155 (2)
N2—H2A⋯Cl2i 0.89 (1) 2.78 (2) 3.3572 (19) 123 (2)
N2—H2A⋯Cl1ii 0.89 (1) 2.44 (1) 3.291 (2) 159 (2)
N1—H1⋯Cl2 0.88 (1) 2.79 (2) 3.4028 (17) 129 (2)
N1—H1⋯Cl1 0.88 (1) 2.49 (2) 3.2593 (17) 147 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors from the Universidad Autónoma de Yucatán are grateful to Dr Leovigildo Quijano for assistance with the X-ray analysis.

supplementary crystallographic information

S1. Introduction

The thia­zole ring system is an important structural motif found in numerous molecules with potential biological activities, for instance; as anti­infective agents (Annadurai et al., 2012; Alam et al., 2011). On the other hand, in recent years there has been a growing inter­est in organic derivatives of transition metals in order to modify the biological properties of these organic compounds. Thus, in this opportunity we would like to report the crystal structure of bis-(2-amino-4-phenyl-1,3-thia­zolium) tetra­chloro­palladate (II).

S2. Experimental

S2.1. Synthesis and crystallization

The compound 2-amino-4-phenyl-1,3-thia­zole was synthesized as reported by our group (Cáceres-Castillo et al., 2012). The PdCl2 (25 mg, 0.14 mmol) was dissolved in 1 mL of concentrated HCl and then diluted with 5 mL of methanol. To the resulting mixture a methanol (5mL) solution of 2-amino-4-phenyl-1,3-thia­zole (50 mg, 0.28 mmol) was added. The reaction mixture was stirred for four hours at room temperature, after which time the resulting solution was allowed to slowly evaporate to produce brown X-ray diffraction quality crystals after few days.

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

All H atoms were included in calculated positions (C—H = 0.93 Å), and refined using a riding model with Uiso(H) = 1.2 Ueq of the carrier atom. H atoms on N were located in a Fourier map and refined isotropically with Uiso(H) = 1.2 × Ueq(N).

13 badly-fitted reflections were omitted from the final refinement.

S3. Results and discussion

The title compound, [C9H9N2S]2[PdCl4], is centrosymmetric and consists of two monoprotonated 2-amino-4-phenyl-1,3-thia­zole molecules and one tetra­chloro­palladate anion. This compound, crystallized in the triclinic P-1 space group. The asymmetric unit is composed of one monoprotaned 2-amino-4-phenyl-1,3-thia­zole and half of the tetra­chloro­palladate anion, the other half is generated by application of an inversion centre. The dihedral angle between the planes of the phenyl and thia­zole rings in the cation is of 31.82 (9)°.This value is larger than those reported in other compounds containing the 2-amino-4-phenyl-1,3-thia­zole molecule, protonated (Form et al., 1974; Jin et al., 2013; Jin et al., 2011) or in the free molecule (Au-Alvarez et al., 1999). The angle C2—N1—C5 (115.25 (17)°) is similar in value other salts reported and is longer than that reported for the neutral compound (110.5 °).

The palladium atom of the anion is in a special position (0.5, 0, 1), Wyckoff site 1d, and exhibits a square-planar geometry with Pd—Cl distances of 2.3031 (5) and 2.3061 (6) Å. The cation and the anion are linked by a bifurcate hydrogen bond between the chloride atoms and the hydrogen of the thia­zole ring (Figure 1). The NH and NH2 groups exhibit N—H···Cl hydrogen bonds with the chloride atoms generating a linear arrangement in the orientation [100] (Figure 2).

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound with displacement ellipsoids at the 40% probability. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Linear arrangement due hydrogen bond patterns in crystal structure of the title compound.

Crystal data

(C9H9N2S)2[PdCl4] Z = 1
Mr = 602.68 F(000) = 300
Triclinic, P1 Dx = 1.784 Mg m3
a = 7.2880 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9214 (3) Å Cell parameters from 4506 reflections
c = 9.8192 (3) Å θ = 2.4–25.4°
α = 66.258 (1)° µ = 1.50 mm1
β = 73.778 (1)° T = 298 K
γ = 84.468 (1)° Prism, brown
V = 561.04 (3) Å3 0.46 × 0.28 × 0.21 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 1982 reflections with I > 2σ(I)
Detector resolution: 0.83 pixels mm-1 Rint = 0.026
ω scans θmax = 25.4°, θmin = 2.4°
Absorption correction: analytical (SADABS; Bruker, 2012) h = −8→8
Tmin = 0.658, Tmax = 0.842 k = −10→10
4857 measured reflections l = −11→11
2060 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.027P)2 + 0.0969P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 0.26 e Å3
2060 reflections Δρmin = −0.30 e Å3
143 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraints Extinction coefficient: 0.015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd 0.5000 0.0000 1.0000 0.03103 (10)
Cl1 0.54163 (7) 0.23160 (6) 0.77534 (6) 0.04971 (15)
Cl2 0.78000 (7) −0.10267 (6) 0.89335 (6) 0.04577 (14)
N1 0.9774 (2) 0.2276 (2) 0.56952 (19) 0.0382 (4)
H1 0.8651 (19) 0.185 (3) 0.628 (2) 0.046*
C2 1.1103 (3) 0.2483 (2) 0.6301 (2) 0.0380 (4)
N2 1.0983 (3) 0.1821 (2) 0.7791 (2) 0.0527 (5)
H2A 1.203 (2) 0.195 (3) 0.804 (3) 0.063*
H2B 1.001 (3) 0.112 (3) 0.837 (3) 0.063*
S3 1.29130 (7) 0.37696 (7) 0.49056 (6) 0.04726 (15)
C4 1.1739 (3) 0.4022 (3) 0.3520 (2) 0.0459 (5)
H4 1.2196 0.4690 0.2481 0.055*
C5 1.0096 (3) 0.3149 (2) 0.4107 (2) 0.0365 (4)
C6 0.8732 (3) 0.3009 (2) 0.3309 (2) 0.0374 (4)
C7 0.8497 (3) 0.4318 (3) 0.2005 (2) 0.0484 (5)
H7 0.9175 0.5291 0.1660 0.058*
C8 0.7259 (4) 0.4194 (3) 0.1206 (3) 0.0572 (6)
H8 0.7096 0.5087 0.0340 0.069*
C9 0.6278 (4) 0.2758 (3) 0.1694 (3) 0.0585 (6)
H9 0.5474 0.2666 0.1143 0.070*
C10 0.6482 (3) 0.1453 (3) 0.2995 (3) 0.0576 (6)
H10 0.5800 0.0484 0.3328 0.069*
C11 0.7696 (3) 0.1563 (3) 0.3820 (3) 0.0475 (5)
H11 0.7815 0.0678 0.4707 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd 0.02640 (13) 0.03439 (14) 0.03019 (13) −0.00791 (8) −0.00582 (8) −0.00981 (9)
Cl1 0.0358 (3) 0.0484 (3) 0.0431 (3) −0.0070 (2) −0.0057 (2) 0.0025 (2)
Cl2 0.0345 (3) 0.0472 (3) 0.0495 (3) −0.0033 (2) −0.0015 (2) −0.0183 (2)
N1 0.0298 (8) 0.0420 (9) 0.0380 (9) −0.0078 (7) −0.0058 (7) −0.0112 (7)
C2 0.0326 (9) 0.0374 (10) 0.0416 (11) −0.0027 (8) −0.0092 (8) −0.0129 (8)
N2 0.0494 (11) 0.0594 (12) 0.0434 (10) −0.0154 (9) −0.0169 (9) −0.0074 (9)
S3 0.0326 (3) 0.0601 (3) 0.0447 (3) −0.0143 (2) −0.0069 (2) −0.0151 (2)
C4 0.0387 (11) 0.0584 (13) 0.0365 (10) −0.0118 (9) −0.0051 (9) −0.0147 (9)
C5 0.0321 (9) 0.0394 (10) 0.0376 (10) −0.0008 (8) −0.0062 (8) −0.0164 (8)
C6 0.0329 (9) 0.0436 (10) 0.0393 (10) 0.0001 (8) −0.0064 (8) −0.0217 (9)
C7 0.0532 (13) 0.0504 (12) 0.0449 (12) −0.0054 (10) −0.0144 (10) −0.0197 (10)
C8 0.0645 (15) 0.0669 (15) 0.0498 (13) 0.0047 (12) −0.0254 (12) −0.0265 (12)
C9 0.0519 (14) 0.0780 (17) 0.0680 (16) 0.0034 (12) −0.0260 (12) −0.0449 (14)
C10 0.0501 (13) 0.0593 (14) 0.0773 (17) −0.0071 (11) −0.0169 (12) −0.0389 (13)
C11 0.0427 (11) 0.0453 (11) 0.0573 (13) −0.0019 (9) −0.0134 (10) −0.0223 (10)

Geometric parameters (Å, º)

Pd—Cl1 2.3031 (5) C4—H4 0.9300
Pd—Cl1i 2.3031 (5) C5—C6 1.468 (3)
Pd—Cl2i 2.3061 (5) C6—C7 1.383 (3)
Pd—Cl2 2.3061 (5) C6—C11 1.393 (3)
N1—C2 1.331 (2) C7—C8 1.388 (3)
N1—C5 1.395 (3) C7—H7 0.9300
N1—H1 0.876 (10) C8—C9 1.369 (4)
C2—N2 1.319 (3) C8—H8 0.9300
C2—S3 1.7179 (19) C9—C10 1.373 (4)
N2—H2A 0.894 (10) C9—H9 0.9300
N2—H2B 0.887 (10) C10—C11 1.389 (3)
S3—C4 1.733 (2) C10—H10 0.9300
C4—C5 1.343 (3) C11—H11 0.9300
Cl1—Pd—Cl1i 180.0 C4—C5—C6 129.09 (18)
Cl1—Pd—Cl2i 90.134 (19) N1—C5—C6 120.10 (17)
Cl1i—Pd—Cl2i 89.866 (19) C7—C6—C11 119.06 (19)
Cl1—Pd—Cl2 89.866 (19) C7—C6—C5 119.70 (18)
Cl1i—Pd—Cl2 90.134 (19) C11—C6—C5 121.22 (19)
Cl2i—Pd—Cl2 180.00 (2) C6—C7—C8 120.7 (2)
C2—N1—C5 115.25 (16) C6—C7—H7 119.7
C2—N1—H1 120.8 (15) C8—C7—H7 119.7
C5—N1—H1 121.9 (15) C9—C8—C7 120.0 (2)
N2—C2—N1 123.49 (18) C9—C8—H8 120.0
N2—C2—S3 125.28 (16) C7—C8—H8 120.0
N1—C2—S3 111.19 (14) C8—C9—C10 120.0 (2)
C2—N2—H2A 114.7 (17) C8—C9—H9 120.0
C2—N2—H2B 115.3 (18) C10—C9—H9 120.0
H2A—N2—H2B 128 (2) C9—C10—C11 120.7 (2)
C2—S3—C4 90.03 (10) C9—C10—H10 119.6
C5—C4—S3 112.71 (16) C11—C10—H10 119.6
C5—C4—H4 123.6 C10—C11—C6 119.5 (2)
S3—C4—H4 123.6 C10—C11—H11 120.2
C4—C5—N1 110.80 (17) C6—C11—H11 120.2

Symmetry code: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2B···Cl2 0.89 (1) 2.41 (2) 3.237 (2) 155 (2)
N2—H2A···Cl2ii 0.89 (1) 2.78 (2) 3.3572 (19) 123 (2)
N2—H2A···Cl1iii 0.89 (1) 2.44 (1) 3.291 (2) 159 (2)
N1—H1···Cl2 0.88 (1) 2.79 (2) 3.4028 (17) 129 (2)
N1—H1···Cl1 0.88 (1) 2.49 (2) 3.2593 (17) 147 (2)

Symmetry codes: (ii) −x+2, −y, −z+2; (iii) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PJ2013).

References

  1. Alam, M. S., Liu, L., Lee, Y.-E. & Lee, D.-U. (2011). Chem. Pharm. Bull. 5, 568–573. [DOI] [PubMed]
  2. Annadurai, S., Martinez, R., Canney, D. J., Eidem, T., Dunman, P. M. & Abou-Gharbia, M. (2012). Bioorg. Med. Chem. Lett. 22, 7719–7725. [DOI] [PubMed]
  3. Au-Alvarez, O., Peterson, R. C., Acosta Crespo, A., Rodríguez Esteva, Y., Marquez Alvarez, H., Plutín Stiven, A. M. & Pomés Hernández, R. (1999). Acta Cryst. C55, 821–823.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2012). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cáceres-Castillo, D., Carballo, R. M., Tzec-Interián, J. A. & Mena-Rejón, G. J. (2012). Tetrahedron Lett. 53, 3934–3936.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Form, G. R., Raper, E. S. & Downie, T. C. (1974). Acta Cryst. B30, 342–348.
  9. Jin, S., Wang, D. & Xu, Y. (2011). J. Chem. Crystallogr. 41, 1876–1883.
  10. Jin, S., Zhu, Q., Wei, S. & Wang, D. (2013). J. Mol. Struct. 1049, 132–148.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015360/pj2013sup1.cif

e-70-0m295-sup1.cif (157.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015360/pj2013Isup2.hkl

e-70-0m295-Isup2.hkl (113.3KB, hkl)

CCDC reference: 1011353

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES