Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 2;70(Pt 8):o847. doi: 10.1107/S1600536814015128

2,3-Diphenyl-1,3-thia­zolidin-4-one

Hemant P Yennawar a, John Tierney b, Lee J Silverberg c,*
PMCID: PMC4158525  PMID: 25249899

Abstract

The title compound, C15H13NOS, is a chiral mol­ecule crystallized as a racemate, with two molecules in the asymmetric unit. In each of the mol­ecules, the five-membered thia­zine ring has an envelope conformation, with the S atom forming the flap. In one mol­ecule, the angle between the two phenyl-ring planes is 82.77 (7)°, while in the other it is 89.12 (6)°. In the crystal, mol­ecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds.

Keywords: crystal structure

Related literature  

For the preparation of the title compound, see: Tierney (1989). For the crystal structure of a tin complex of the title compound, see: Smith et al. (1995). For the synthesis and crystal structures of related compounds, see: Yennawar & Silverberg (2013, 2014); Fun et al. (2011). For reviews on 1,3-thia­zolidin-4-ones, see: Brown (1961); Singh et al. (1981); Metally et al. (2006); Abhishek et al. (2012).graphic file with name e-70-0o847-scheme1.jpg

Experimental  

Crystal data  

  • C15H13NOS

  • M r = 255.32

  • Monoclinic, Inline graphic

  • a = 32.413 (13) Å

  • b = 6.196 (3) Å

  • c = 25.964 (11) Å

  • β = 100.258 (7)°

  • V = 5131 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.14 × 0.12 × 0.08 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.807, T max = 0.981

  • 23146 measured reflections

  • 6334 independent reflections

  • 5015 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.147

  • S = 1.01

  • 6334 reflections

  • 325 parameters

  • H-atom parameters not refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2001) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015128/fy2114sup1.cif

e-70-0o847-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015128/fy2114Isup2.hkl

e-70-0o847-Isup2.hkl (310.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015128/fy2114Isup3.mol

Supporting information file. DOI: 10.1107/S1600536814015128/fy2114Isup4.cml

CCDC reference: 1010627

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.58 3.470 (2) 160
C1—H1⋯O1i 0.98 2.49 3.466 (2) 172
C16—H16⋯O2ii 0.98 2.34 3.301 (3) 168
C17—H17B⋯O2iii 0.97 2.41 3.313 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer.

supplementary crystallographic information

S1. Comment

We have recently reported the syntheses and crystal structures of 6,7-diphenyl-5-thia-7-azaspiro[2.6]nonan-8-one, a seven-membered heterocycle (Yennawar and Silverberg, 2013), and 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one, a similar six-membered heterocycle (Yennawar and Silverberg, 2014). We report here the crystal structure of 2,3-diphenyl-1,3-thiazolidin-4-one (Tierney, 1989), the analogous five-membered heterocycle. The crystal structure of a tin complex of the title compound has been previously reported (Smith et al., 1995), but the structure of the title compound has not. The crystal structure of similar compound 3-benzyl-2-phenyl-1,3-thiazolidin-4-one has been reported (Fun et al., 2011). The 1,3-thiazolidin-4-ones are an important class of compounds with a wide range of biological activity (Brown, 1961; Singh, et al., 1981; Metally et al., 2006; Abhishek et al., 2012).

S2. Experimental

A sample of the title compound, prepared according to Tierney (1989), was recrystallized from ethanol. Rf = 0.54 (50% EtOAc/hexanes). m.p.: 131–133°C (lit. 131–132°C). Crystals for X-ray crystallography were grown by slow evaporation from toluene.

S3. Refinement

The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title comound. Thermal ellipsoids are drawn at 50% probability.

Fig. 2.

Fig. 2.

View of b-c plane with C—H···O interactions shown as dashed lines.

Fig. 3.

Fig. 3.

Unit-cell contents.

Crystal data

C15H13NOS F(000) = 2144
Mr = 255.32 Dx = 1.322 Mg m3
Monoclinic, C2/c Melting point: 405(1) K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 32.413 (13) Å Cell parameters from 7831 reflections
b = 6.196 (3) Å θ = 2.2–28.3°
c = 25.964 (11) Å µ = 0.24 mm1
β = 100.258 (7)° T = 298 K
V = 5131 (4) Å3 Block, colorless
Z = 16 0.14 × 0.12 × 0.08 mm

Data collection

Bruker SMART APEX CCD diffractometer 6334 independent reflections
Radiation source: fine-focus sealed tube 5015 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 8.34 pixels mm-1 θmax = 28.3°, θmin = 1.6°
phi and ω scans h = −42→42
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −8→8
Tmin = 0.807, Tmax = 0.981 l = −34→30
23146 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0897P)2 + 1.5154P] where P = (Fo2 + 2Fc2)/3
6334 reflections (Δ/σ)max < 0.001
325 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.16111 (4) 0.4561 (2) 0.38426 (6) 0.0375 (3)
H1 0.1730 0.5960 0.3771 0.045*
C2 0.18453 (7) 0.1206 (3) 0.44221 (7) 0.0596 (5)
H2A 0.2083 0.0676 0.4671 0.072*
H2B 0.1601 0.0348 0.4455 0.072*
C3 0.19346 (5) 0.1053 (3) 0.38717 (6) 0.0426 (3)
C4 0.11402 (4) 0.4644 (2) 0.36653 (6) 0.0384 (3)
C5 0.09284 (6) 0.6505 (3) 0.37624 (7) 0.0524 (4)
H5 0.1078 0.7693 0.3913 0.063*
C6 0.04944 (6) 0.6605 (4) 0.36362 (8) 0.0656 (5)
H6 0.0355 0.7856 0.3706 0.079*
C7 0.02702 (6) 0.4875 (4) 0.34099 (8) 0.0682 (6)
H7 −0.0021 0.4951 0.3324 0.082*
C8 0.04765 (6) 0.3011 (4) 0.33086 (8) 0.0651 (5)
H8 0.0325 0.1834 0.3154 0.078*
C9 0.09108 (5) 0.2897 (3) 0.34371 (7) 0.0514 (4)
H9 0.1048 0.1639 0.3370 0.062*
C10 0.18622 (4) 0.3123 (3) 0.30503 (5) 0.0373 (3)
C11 0.17313 (5) 0.1509 (3) 0.26884 (7) 0.0511 (4)
H11 0.1613 0.0246 0.2790 0.061*
C12 0.17791 (7) 0.1806 (4) 0.21694 (8) 0.0693 (6)
H12 0.1690 0.0736 0.1923 0.083*
C13 0.19558 (7) 0.3659 (4) 0.20187 (8) 0.0704 (6)
H13 0.1989 0.3836 0.1673 0.084*
C14 0.20842 (6) 0.5253 (4) 0.23787 (7) 0.0629 (5)
H14 0.2203 0.6510 0.2275 0.075*
C15 0.20371 (5) 0.4996 (3) 0.28963 (6) 0.0471 (4)
H15 0.2123 0.6083 0.3139 0.057*
C16 0.08432 (5) 0.0210 (3) 0.54421 (6) 0.0402 (3)
H16 0.0716 −0.1127 0.5541 0.048*
C17 0.05773 (6) 0.3511 (3) 0.48483 (7) 0.0577 (5)
H17A 0.0809 0.4348 0.4764 0.069*
H17B 0.0321 0.3998 0.4628 0.069*
C18 0.05479 (5) 0.3792 (3) 0.54178 (6) 0.0426 (3)
C19 0.13159 (4) −0.0004 (2) 0.55810 (5) 0.0371 (3)
C20 0.14969 (5) −0.1974 (3) 0.55010 (6) 0.0455 (4)
H20 0.1327 −0.3128 0.5370 0.055*
C21 0.19270 (5) −0.2246 (3) 0.56134 (7) 0.0513 (4)
H21 0.2044 −0.3573 0.5554 0.062*
C22 0.21819 (5) −0.0559 (3) 0.58124 (7) 0.0521 (4)
H22 0.2471 −0.0746 0.5890 0.063*
C23 0.20071 (5) 0.1409 (3) 0.58958 (7) 0.0536 (4)
H23 0.2179 0.2552 0.6031 0.064*
C24 0.15749 (5) 0.1688 (3) 0.57782 (7) 0.0469 (4)
H24 0.1459 0.3024 0.5833 0.056*
C25 0.07029 (4) 0.1912 (3) 0.62627 (6) 0.0406 (3)
C26 0.08743 (5) 0.3596 (3) 0.65831 (7) 0.0531 (4)
H26 0.0975 0.4818 0.6439 0.064*
C27 0.08940 (6) 0.3447 (4) 0.71192 (8) 0.0694 (6)
H27 0.1007 0.4575 0.7336 0.083*
C28 0.07459 (7) 0.1627 (5) 0.73317 (8) 0.0745 (6)
H28 0.0758 0.1535 0.7692 0.089*
C29 0.05807 (7) −0.0052 (4) 0.70153 (8) 0.0704 (6)
H29 0.0485 −0.1283 0.7162 0.084*
C30 0.05565 (5) 0.0088 (3) 0.64786 (7) 0.0537 (4)
H30 0.0442 −0.1042 0.6264 0.064*
N1 0.18173 (3) 0.28663 (19) 0.35879 (4) 0.0351 (3)
N2 0.06799 (4) 0.2018 (2) 0.57083 (5) 0.0397 (3)
O1 0.20931 (4) −0.0527 (2) 0.37092 (5) 0.0597 (3)
O2 0.04255 (4) 0.54461 (19) 0.55954 (5) 0.0579 (3)
S1 0.175220 (14) 0.39920 (8) 0.454463 (16) 0.05330 (15)
S2 0.065806 (16) 0.06983 (9) 0.474346 (18) 0.06317 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0426 (7) 0.0352 (7) 0.0370 (7) −0.0009 (6) 0.0132 (6) −0.0069 (6)
C2 0.0781 (12) 0.0579 (11) 0.0449 (9) 0.0001 (9) 0.0168 (9) 0.0069 (8)
C3 0.0441 (8) 0.0392 (8) 0.0443 (8) −0.0014 (6) 0.0074 (6) 0.0008 (6)
C4 0.0418 (7) 0.0411 (8) 0.0348 (7) 0.0036 (6) 0.0132 (6) 0.0014 (6)
C5 0.0591 (10) 0.0454 (9) 0.0545 (10) 0.0119 (8) 0.0146 (8) −0.0003 (8)
C6 0.0604 (11) 0.0722 (13) 0.0668 (12) 0.0306 (10) 0.0180 (9) 0.0060 (10)
C7 0.0427 (9) 0.1013 (17) 0.0607 (11) 0.0169 (10) 0.0097 (8) 0.0031 (11)
C8 0.0455 (9) 0.0795 (14) 0.0704 (13) −0.0051 (9) 0.0104 (8) −0.0143 (11)
C9 0.0426 (8) 0.0533 (10) 0.0592 (10) 0.0017 (7) 0.0114 (7) −0.0104 (8)
C10 0.0342 (6) 0.0433 (8) 0.0352 (7) 0.0057 (6) 0.0079 (5) −0.0031 (6)
C11 0.0538 (9) 0.0532 (10) 0.0463 (9) −0.0014 (7) 0.0085 (7) −0.0137 (8)
C12 0.0784 (13) 0.0829 (15) 0.0450 (10) 0.0099 (11) 0.0065 (9) −0.0251 (10)
C13 0.0863 (14) 0.0896 (16) 0.0386 (9) 0.0114 (12) 0.0202 (9) 0.0010 (10)
C14 0.0737 (12) 0.0718 (13) 0.0473 (10) −0.0001 (10) 0.0222 (9) 0.0105 (9)
C15 0.0515 (9) 0.0504 (9) 0.0408 (8) −0.0016 (7) 0.0122 (7) −0.0012 (7)
C16 0.0413 (7) 0.0379 (8) 0.0423 (8) −0.0002 (6) 0.0096 (6) −0.0062 (6)
C17 0.0537 (9) 0.0693 (12) 0.0489 (10) 0.0055 (9) 0.0055 (8) 0.0070 (9)
C18 0.0365 (7) 0.0410 (8) 0.0500 (9) −0.0020 (6) 0.0067 (6) −0.0005 (7)
C19 0.0411 (7) 0.0376 (8) 0.0336 (7) 0.0021 (6) 0.0093 (5) 0.0006 (6)
C20 0.0508 (8) 0.0392 (8) 0.0456 (8) 0.0029 (6) 0.0065 (7) −0.0051 (7)
C21 0.0535 (9) 0.0496 (10) 0.0504 (9) 0.0174 (7) 0.0079 (7) 0.0010 (8)
C22 0.0414 (8) 0.0668 (11) 0.0474 (9) 0.0074 (8) 0.0057 (7) 0.0061 (8)
C23 0.0443 (8) 0.0546 (10) 0.0611 (11) −0.0075 (7) 0.0073 (7) −0.0021 (8)
C24 0.0471 (8) 0.0391 (8) 0.0553 (10) 0.0004 (6) 0.0116 (7) −0.0029 (7)
C25 0.0351 (6) 0.0466 (9) 0.0405 (8) 0.0064 (6) 0.0079 (6) −0.0038 (6)
C26 0.0509 (9) 0.0543 (10) 0.0531 (10) 0.0032 (7) 0.0069 (7) −0.0110 (8)
C27 0.0635 (11) 0.0880 (15) 0.0518 (11) 0.0155 (11) −0.0033 (9) −0.0251 (11)
C28 0.0700 (12) 0.1132 (19) 0.0399 (10) 0.0204 (13) 0.0089 (9) 0.0033 (11)
C29 0.0716 (13) 0.0898 (16) 0.0521 (11) 0.0036 (11) 0.0171 (9) 0.0159 (11)
C30 0.0528 (9) 0.0592 (11) 0.0500 (10) −0.0004 (8) 0.0114 (7) 0.0029 (8)
N1 0.0375 (6) 0.0343 (6) 0.0348 (6) 0.0018 (5) 0.0099 (5) −0.0036 (5)
N2 0.0405 (6) 0.0379 (7) 0.0413 (7) 0.0023 (5) 0.0094 (5) −0.0027 (5)
O1 0.0756 (8) 0.0412 (7) 0.0634 (8) 0.0151 (6) 0.0151 (6) 0.0017 (6)
O2 0.0582 (7) 0.0416 (7) 0.0725 (9) 0.0086 (5) 0.0076 (6) 0.0006 (6)
S1 0.0549 (2) 0.0697 (3) 0.0357 (2) 0.0024 (2) 0.00903 (17) −0.01146 (19)
S2 0.0619 (3) 0.0795 (4) 0.0439 (3) 0.0126 (2) −0.0019 (2) −0.0167 (2)

Geometric parameters (Å, º)

C1—N1 1.4641 (18) C16—N2 1.4638 (19)
C1—C4 1.515 (2) C16—C19 1.516 (2)
C1—S1 1.8328 (17) C16—S2 1.8315 (17)
C1—H1 0.9800 C16—H16 0.9800
C2—C3 1.511 (2) C17—C18 1.509 (2)
C2—S1 1.791 (2) C17—S2 1.790 (2)
C2—H2A 0.9700 C17—H17A 0.9700
C2—H2B 0.9700 C17—H17B 0.9700
C3—O1 1.216 (2) C18—O2 1.219 (2)
C3—N1 1.360 (2) C18—N2 1.359 (2)
C4—C5 1.387 (2) C19—C24 1.383 (2)
C4—C9 1.386 (2) C19—C20 1.386 (2)
C5—C6 1.388 (3) C20—C21 1.383 (2)
C5—H5 0.9300 C20—H20 0.9300
C6—C7 1.368 (3) C21—C22 1.375 (3)
C6—H6 0.9300 C21—H21 0.9300
C7—C8 1.383 (3) C22—C23 1.378 (3)
C7—H7 0.9300 C22—H22 0.9300
C8—C9 1.389 (2) C23—C24 1.391 (2)
C8—H8 0.9300 C23—H23 0.9300
C9—H9 0.9300 C24—H24 0.9300
C10—C11 1.386 (2) C25—C30 1.382 (2)
C10—C15 1.382 (2) C25—C26 1.387 (2)
C10—N1 1.4378 (18) C25—N2 1.430 (2)
C11—C12 1.396 (3) C26—C27 1.385 (3)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.371 (3) C27—C28 1.379 (4)
C12—H12 0.9300 C27—H27 0.9300
C13—C14 1.373 (3) C28—C29 1.374 (4)
C13—H13 0.9300 C28—H28 0.9300
C14—C15 1.389 (2) C29—C30 1.384 (3)
C14—H14 0.9300 C29—H29 0.9300
C15—H15 0.9300 C30—H30 0.9300
N1—C1—C4 113.81 (12) C19—C16—H16 108.6
N1—C1—S1 104.96 (10) S2—C16—H16 108.6
C4—C1—S1 111.61 (10) C18—C17—S2 107.33 (13)
N1—C1—H1 108.8 C18—C17—H17A 110.2
C4—C1—H1 108.8 S2—C17—H17A 110.2
S1—C1—H1 108.8 C18—C17—H17B 110.2
C3—C2—S1 107.19 (12) S2—C17—H17B 110.2
C3—C2—H2A 110.3 H17A—C17—H17B 108.5
S1—C2—H2A 110.3 O2—C18—N2 124.19 (16)
C3—C2—H2B 110.3 O2—C18—C17 123.34 (16)
S1—C2—H2B 110.3 N2—C18—C17 112.46 (14)
H2A—C2—H2B 108.5 C24—C19—C20 118.54 (14)
O1—C3—N1 124.89 (15) C24—C19—C16 122.89 (14)
O1—C3—C2 122.89 (15) C20—C19—C16 118.57 (14)
N1—C3—C2 112.22 (14) C21—C20—C19 120.90 (15)
C5—C4—C9 118.82 (15) C21—C20—H20 119.5
C5—C4—C1 118.53 (14) C19—C20—H20 119.5
C9—C4—C1 122.56 (13) C20—C21—C22 120.17 (15)
C4—C5—C6 120.52 (18) C20—C21—H21 119.9
C4—C5—H5 119.7 C22—C21—H21 119.9
C6—C5—H5 119.7 C23—C22—C21 119.70 (15)
C7—C6—C5 120.33 (18) C23—C22—H22 120.2
C7—C6—H6 119.8 C21—C22—H22 120.2
C5—C6—H6 119.8 C22—C23—C24 120.14 (16)
C6—C7—C8 119.88 (17) C22—C23—H23 119.9
C6—C7—H7 120.1 C24—C23—H23 119.9
C8—C7—H7 120.1 C19—C24—C23 120.55 (15)
C7—C8—C9 120.04 (19) C19—C24—H24 119.7
C7—C8—H8 120.0 C23—C24—H24 119.7
C9—C8—H8 120.0 C30—C25—C26 120.09 (16)
C4—C9—C8 120.41 (17) C30—C25—N2 119.07 (14)
C4—C9—H9 119.8 C26—C25—N2 120.84 (15)
C8—C9—H9 119.8 C27—C26—C25 119.63 (19)
C11—C10—C15 120.12 (15) C27—C26—H26 120.2
C11—C10—N1 120.44 (15) C25—C26—H26 120.2
C15—C10—N1 119.43 (13) C28—C27—C26 120.0 (2)
C10—C11—C12 119.10 (18) C28—C27—H27 120.0
C10—C11—H11 120.5 C26—C27—H27 120.0
C12—C11—H11 120.5 C29—C28—C27 120.43 (19)
C13—C12—C11 120.64 (18) C29—C28—H28 119.8
C13—C12—H12 119.7 C27—C28—H28 119.8
C11—C12—H12 119.7 C28—C29—C30 120.0 (2)
C12—C13—C14 119.99 (18) C28—C29—H29 120.0
C12—C13—H13 120.0 C30—C29—H29 120.0
C14—C13—H13 120.0 C25—C30—C29 119.84 (19)
C13—C14—C15 120.30 (19) C25—C30—H30 120.1
C13—C14—H14 119.9 C29—C30—H30 120.1
C15—C14—H14 119.9 C3—N1—C10 123.39 (12)
C10—C15—C14 119.85 (16) C3—N1—C1 116.99 (12)
C10—C15—H15 120.1 C10—N1—C1 119.50 (12)
C14—C15—H15 120.1 C18—N2—C25 123.43 (13)
N2—C16—C19 112.93 (12) C18—N2—C16 117.51 (13)
N2—C16—S2 105.00 (10) C25—N2—C16 118.80 (12)
C19—C16—S2 112.89 (10) C2—S1—C1 91.65 (8)
N2—C16—H16 108.6 C17—S2—C16 92.37 (8)
S1—C2—C3—O1 164.39 (14) N2—C25—C26—C27 −179.78 (15)
S1—C2—C3—N1 −15.65 (18) C25—C26—C27—C28 0.4 (3)
N1—C1—C4—C5 −162.23 (14) C26—C27—C28—C29 0.4 (3)
S1—C1—C4—C5 79.20 (16) C27—C28—C29—C30 −0.9 (3)
N1—C1—C4—C9 21.5 (2) C26—C25—C30—C29 0.1 (3)
S1—C1—C4—C9 −97.08 (15) N2—C25—C30—C29 179.28 (16)
C9—C4—C5—C6 0.4 (3) C28—C29—C30—C25 0.7 (3)
C1—C4—C5—C6 −176.01 (16) O1—C3—N1—C10 0.9 (2)
C4—C5—C6—C7 −0.6 (3) C2—C3—N1—C10 −179.02 (14)
C5—C6—C7—C8 0.3 (3) O1—C3—N1—C1 176.89 (15)
C6—C7—C8—C9 0.1 (3) C2—C3—N1—C1 −3.07 (19)
C5—C4—C9—C8 0.0 (3) C11—C10—N1—C3 47.6 (2)
C1—C4—C9—C8 176.27 (17) C15—C10—N1—C3 −132.45 (15)
C7—C8—C9—C4 −0.3 (3) C11—C10—N1—C1 −128.26 (15)
C15—C10—C11—C12 0.1 (2) C15—C10—N1—C1 51.69 (18)
N1—C10—C11—C12 −179.99 (15) C4—C1—N1—C3 −102.68 (15)
C10—C11—C12—C13 0.5 (3) S1—C1—N1—C3 19.64 (15)
C11—C12—C13—C14 −0.6 (3) C4—C1—N1—C10 73.44 (16)
C12—C13—C14—C15 0.2 (3) S1—C1—N1—C10 −164.24 (10)
C11—C10—C15—C14 −0.5 (2) O2—C18—N2—C25 −2.1 (2)
N1—C10—C15—C14 179.58 (15) C17—C18—N2—C25 176.81 (13)
C13—C14—C15—C10 0.4 (3) O2—C18—N2—C16 −176.11 (14)
S2—C17—C18—O2 −167.49 (13) C17—C18—N2—C16 2.75 (19)
S2—C17—C18—N2 13.64 (17) C30—C25—N2—C18 135.69 (16)
N2—C16—C19—C24 −21.5 (2) C26—C25—N2—C18 −45.1 (2)
S2—C16—C19—C24 97.45 (16) C30—C25—N2—C16 −50.32 (19)
N2—C16—C19—C20 159.33 (14) C26—C25—N2—C16 128.84 (15)
S2—C16—C19—C20 −81.74 (16) C19—C16—N2—C18 106.20 (15)
C24—C19—C20—C21 −0.2 (2) S2—C16—N2—C18 −17.21 (15)
C16—C19—C20—C21 178.98 (15) C19—C16—N2—C25 −68.14 (17)
C19—C20—C21—C22 0.7 (3) S2—C16—N2—C25 168.44 (10)
C20—C21—C22—C23 −0.5 (3) C3—C2—S1—C1 22.65 (14)
C21—C22—C23—C24 −0.1 (3) N1—C1—S1—C2 −23.76 (11)
C20—C19—C24—C23 −0.4 (2) C4—C1—S1—C2 99.98 (12)
C16—C19—C24—C23 −179.55 (15) C18—C17—S2—C16 −19.83 (12)
C22—C23—C24—C19 0.5 (3) N2—C16—S2—C17 20.77 (11)
C30—C25—C26—C27 −0.6 (2) C19—C16—S2—C17 −102.66 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···O1i 0.93 2.58 3.470 (2) 160
C1—H1···O1i 0.98 2.49 3.466 (2) 172
C16—H16···O2ii 0.98 2.34 3.301 (3) 168
C17—H17B···O2iii 0.97 2.41 3.313 (3) 155

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FY2114).

References

  1. Abhishek, K. J., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395. [DOI] [PubMed]
  2. Brown, F. C. (1961). Chem. Rev. 61, 463–521.
  3. Bruker (2001). SMART, SAINT, XSHELL and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706. [DOI] [PMC free article] [PubMed]
  6. Metally, M. A., Etman, H. A., Keshk, E. M. & Fekry, A. (2006). Phosphorus, Sulfur Silicon Relat. Elem. 181, 1039–1058.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.
  9. Smith, F. E., Hynes, R. C., Tierney, J., Zhang, Y. Z. & Eng, G. (1995). Can. J. Chem. 73, 95–99.
  10. Tierney, J. (1989). J. Heterocycl. Chem. 26, 997–1001.
  11. Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659. [DOI] [PMC free article] [PubMed]
  12. Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814015128/fy2114sup1.cif

e-70-0o847-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015128/fy2114Isup2.hkl

e-70-0o847-Isup2.hkl (310.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015128/fy2114Isup3.mol

Supporting information file. DOI: 10.1107/S1600536814015128/fy2114Isup4.cml

CCDC reference: 1010627

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES