Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 5;70(Pt 8):o856. doi: 10.1107/S160053681401530X

Ethyl 2,6-bis­(4-bromo­phen­yl)-1-iso­cyano-4-oxo­cyclo­hexa­necarboxyl­ate

Dawei Zhang a, Linlin Hao a, Jing Li b,*
PMCID: PMC4158533  PMID: 25249907

Abstract

In the title compound, C22H19Br2NO3, the central oxo­cyclo­hexane ring is in a twist-boat conformation; all the substituents (one eth­oxy­carbonyl and two aryl groups) are located in equatorial orientations. One of the –CH2– groups and the opposite –CH– group bearing a bromo­benzene substituent form the flagpoles of the twist-boat. The dihedral angle between the aromatic rings is 76.4 (4)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into C(5) chains propagating in the [010] direction. A short Br⋯O contact of 3.254 (4) Å is observed.

Keywords: crystal structure

Related literature  

For further details of the synthesis, see: Tan et al. (2009); Zhang et al. (2010). For more [5 + 1] annulation reactions, see: Bi et al. (2005); Dong et al. (2005); Hu et al. (2008); Zhao et al. (2006); Fu et al. (2009); Xu et al. (2012).graphic file with name e-70-0o856-scheme1.jpg

Experimental  

Crystal data  

  • C22H19Br2NO3

  • M r = 505.20

  • Monoclinic, Inline graphic

  • a = 21.9920 (17) Å

  • b = 11.0750 (19) Å

  • c = 17.648 (3) Å

  • β = 103.560 (2)°

  • V = 4178.6 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.90 mm−1

  • T = 293 K

  • 0.17 × 0.16 × 0.13 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.557, T max = 0.631

  • 10763 measured reflections

  • 3904 independent reflections

  • 2578 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.113

  • S = 1.03

  • 3904 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401530X/hb7238sup1.cif

e-70-0o856-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401530X/hb7238Isup2.hkl

e-70-0o856-Isup2.hkl (191.5KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401530X/hb7238Isup3.cml

CCDC reference: 1011009

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.98 2.58 3.226 (5) 123

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support of this research by the Science and Technology Development Program Foundation of Jilin Province (No. 20140204022NY), the Inter­disciplinary Innovation Fund of Jilin University (No. 450060481143) and the PhD Fund of Jilin University (No. 20140402) is gratefully acknowledged

supplementary crystallographic information

S1. Introduction

S2. Experimental

S2.1. Synthesis and crystallization

To a mixture of (1E,4E)-1,5-bis­(4-bromo­phenyl)­penta-1,4-dien-3-one (392 mg, 1.0 mmol) and ethyl iso­cyano­acetate (0.132 mL, 1.2 mmol) in DMF (5 ml) was added 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) (0.015 mL, 0.1 mmol) in one portion at room temperature. The reaction mixture was stirred at room temperature, and the reaction mixture was monitored by TLC. After the substrate (1E, 4E)-1,5-bis­(4-bromo­phenyl)­penta-1,4-dien-3-one was consumed, the resulting mixture was poured into ice-water (30 ml) under stirring. The precipitated solid was collected by filtration, washed with water (3 × 10 ml), and dried under vacuum to afford the crude product which was purified by flash chromatography (silica gel, petroleum ether : di­ethyl ether = 3:1, v/v) to give the title compound (460 mg, 91%). The material was recrystallized from a mixture of petroleum ether and di­ethyl ether to provide colourless blocks. For further synthesis details, see: Tan et al. (2009); Zhang et al. (2010).

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Hydrogen atoms were generated in idealized positions (according to the sp2 or sp3 geometries of their parent carbon), and then refined using a riding model with fixed C—H distances (C—H = 0.95–1.00 Å) and with Uiso(H) = 1.2Ueq(C).

S3. Results and discussion

Comment

In the process of strategies developing of [5+1] annulation for the construction of six-membered cyclic compounds, we have found that ethyl iso­cyano­acetate is an active carbon nucleophile that can react with di­vinyl ketone through a tandem double Michael-addition cyclization. This one-step annulation can regiospecificly forms highly constrained cyclo­hexane analogues of phenyl­analine (Phe) which are precursors for the synthesis of peptide analogues with controlled fold in the backbone. The constrained ring systems play important roles in restricting torsional angle χ1 and in peptide receptor recognition processes, thus the [5+1] annulation reactions have drew much attentions and both the five-carbon 1,5-bielectrophiles and the one-atom nucleophiles been explored extensively (Bi et al., 2005; Dong et al., 2005; Hu et al., 2008; Zhao et al., 2006; Fu et al., 2009; Xu et al., 2012).

The title compound, a phenyl substituted highly constrained cyclo­hexane analogue of Phe, is one of the products obtained during the study of [5+1] annulation of di­vinyl ketone and iso­cyano­acetate. In the crystal, the central six-member oxo­cyclo­hexane ring adopts a twist-boat conformation (Fig. 1), and all of the ethoxyl carbonyl and two aryl groups are located in equatorial positions. The aryl groups are trans to each other and the dihedral angle between two aromatic rings is 76.45 (4) °. In this molecular, C11 with axial hydrogen and C8 (CH2) are on the flagpole positions of the boat conformation, which give the least torsional strain. C12 and C7 are on one side of the boat conformation, and their equatorial substituents, ethoxyl carbonyl and aryl groups, fit in with the formation boat conformation of this compound.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C22H19Br2NO3 F(000) = 2016
Mr = 505.20 Dx = 1.606 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2yc Cell parameters from 78 reflections
a = 21.9920 (17) Å θ = 1.3–26.0°
b = 11.0750 (19) Å µ = 3.90 mm1
c = 17.648 (3) Å T = 293 K
β = 103.560 (2)° BLOCK, colorless
V = 4178.6 (11) Å3 0.17 × 0.16 × 0.13 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer 3904 independent reflections
Radiation source: fine-focus sealed tube 2578 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω scans θmax = 25.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −26→25
Tmin = 0.557, Tmax = 0.631 k = −13→13
10763 measured reflections l = −21→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 7.9699P] where P = (Fo2 + 2Fc2)/3
3904 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 1.11 e Å3
0 restraints Δρmin = −0.92 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br2 −0.01743 (2) 0.57808 (4) 0.12001 (3) 0.06681 (18)
Br1 0.59543 (3) 0.56713 (6) 0.49860 (4) 0.0979 (2)
O2 0.30729 (12) 0.7231 (2) 0.34697 (15) 0.0512 (7)
C17 0.19183 (17) 0.6993 (3) 0.1672 (2) 0.0406 (9)
C11 0.25738 (17) 0.7509 (3) 0.1820 (2) 0.0401 (8)
H11 0.2588 0.8177 0.2188 0.048*
N1 0.30420 (15) 0.5508 (3) 0.1772 (2) 0.0505 (8)
C10 0.27366 (18) 0.8048 (4) 0.1094 (2) 0.0468 (9)
H10A 0.2798 0.7402 0.0749 0.056*
H10B 0.2392 0.8544 0.0818 0.056*
C12 0.30963 (17) 0.6605 (3) 0.2217 (2) 0.0409 (9)
O3 0.28934 (16) 0.5274 (3) 0.32118 (18) 0.0754 (10)
C13 0.30092 (17) 0.6265 (4) 0.3028 (2) 0.0453 (9)
C9 0.33168 (19) 0.8799 (4) 0.1308 (2) 0.0523 (10)
C7 0.37673 (17) 0.7151 (3) 0.2243 (2) 0.0443 (9)
H7 0.3893 0.6799 0.1794 0.053*
O1 0.34440 (16) 0.9555 (3) 0.08779 (19) 0.0795 (10)
C18 0.16493 (18) 0.6331 (4) 0.1019 (2) 0.0495 (10)
H18 0.1885 0.6140 0.0661 0.059*
C22 0.15553 (18) 0.7240 (4) 0.2200 (2) 0.0521 (10)
H22 0.1731 0.7666 0.2653 0.062*
C4 0.42738 (17) 0.6782 (4) 0.2946 (2) 0.0470 (9)
C5 0.4465 (2) 0.5596 (4) 0.3050 (3) 0.0652 (12)
H5 0.4261 0.5013 0.2703 0.078*
C1 0.5261 (2) 0.6100 (5) 0.4171 (3) 0.0622 (12)
C19 0.10326 (19) 0.5942 (4) 0.0883 (2) 0.0512 (10)
H19 0.0859 0.5486 0.0443 0.061*
C20 0.06841 (17) 0.6234 (3) 0.1403 (2) 0.0475 (9)
C14 0.2992 (2) 0.7071 (5) 0.4265 (2) 0.0679 (13)
H14A 0.2574 0.7320 0.4290 0.082*
H14B 0.3043 0.6226 0.4411 0.082*
C8 0.37386 (18) 0.8521 (4) 0.2093 (2) 0.0518 (10)
H8A 0.3582 0.8925 0.2497 0.062*
H8B 0.4156 0.8824 0.2112 0.062*
C21 0.09395 (19) 0.6872 (4) 0.2070 (3) 0.0584 (11)
H21 0.0702 0.7052 0.2428 0.070*
C2 0.5071 (2) 0.7263 (5) 0.4093 (3) 0.0709 (13)
H2 0.5272 0.7839 0.4448 0.085*
C3 0.4580 (2) 0.7598 (4) 0.3488 (3) 0.0653 (12)
H3 0.4453 0.8401 0.3446 0.078*
C16 0.3003 (3) 0.4647 (5) 0.1399 (3) 0.0748 (14)
C6 0.4956 (2) 0.5251 (5) 0.3664 (3) 0.0748 (14)
H6 0.5076 0.4445 0.3727 0.090*
C15 0.3453 (3) 0.7792 (6) 0.4799 (3) 0.109 (2)
H15A 0.3401 0.7688 0.5320 0.163*
H15B 0.3398 0.8628 0.4655 0.163*
H15C 0.3866 0.7537 0.4775 0.163*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br2 0.0384 (2) 0.0767 (3) 0.0818 (3) −0.0098 (2) 0.0069 (2) −0.0024 (3)
Br1 0.0605 (4) 0.1272 (5) 0.0961 (4) 0.0137 (3) −0.0018 (3) 0.0346 (4)
O2 0.0579 (18) 0.0531 (17) 0.0452 (16) −0.0035 (13) 0.0171 (13) 0.0031 (13)
C17 0.038 (2) 0.041 (2) 0.042 (2) −0.0016 (16) 0.0067 (16) −0.0005 (17)
C11 0.040 (2) 0.036 (2) 0.044 (2) −0.0041 (16) 0.0086 (16) −0.0025 (16)
N1 0.048 (2) 0.0387 (19) 0.064 (2) 0.0000 (15) 0.0124 (16) −0.0055 (17)
C10 0.045 (2) 0.049 (2) 0.046 (2) −0.0029 (18) 0.0093 (18) 0.0037 (18)
C12 0.039 (2) 0.036 (2) 0.049 (2) −0.0044 (16) 0.0121 (17) −0.0028 (17)
O3 0.105 (3) 0.0497 (19) 0.079 (2) −0.0167 (18) 0.037 (2) 0.0120 (16)
C13 0.036 (2) 0.047 (2) 0.054 (2) −0.0041 (17) 0.0122 (18) 0.004 (2)
C9 0.056 (3) 0.048 (2) 0.057 (3) −0.006 (2) 0.021 (2) 0.006 (2)
C7 0.039 (2) 0.045 (2) 0.052 (2) −0.0061 (17) 0.0164 (18) −0.0018 (18)
O1 0.076 (2) 0.087 (2) 0.073 (2) −0.0251 (19) 0.0141 (17) 0.0293 (19)
C18 0.046 (2) 0.055 (2) 0.049 (2) −0.0012 (19) 0.0135 (19) −0.002 (2)
C22 0.046 (2) 0.056 (3) 0.054 (2) −0.0102 (19) 0.0110 (19) −0.015 (2)
C4 0.037 (2) 0.050 (2) 0.059 (3) −0.0004 (18) 0.0198 (19) 0.005 (2)
C5 0.064 (3) 0.055 (3) 0.075 (3) −0.002 (2) 0.012 (2) −0.001 (2)
C1 0.038 (2) 0.080 (3) 0.068 (3) 0.002 (2) 0.012 (2) 0.014 (3)
C19 0.046 (2) 0.053 (2) 0.050 (2) −0.0054 (19) 0.0004 (19) −0.0075 (19)
C20 0.036 (2) 0.047 (2) 0.057 (3) −0.0054 (17) 0.0056 (18) 0.0036 (19)
C14 0.070 (3) 0.086 (3) 0.050 (3) 0.005 (3) 0.019 (2) 0.010 (2)
C8 0.044 (2) 0.051 (2) 0.060 (3) −0.0136 (19) 0.0130 (19) 0.003 (2)
C21 0.044 (2) 0.072 (3) 0.063 (3) −0.008 (2) 0.021 (2) −0.010 (2)
C2 0.049 (3) 0.076 (3) 0.078 (3) −0.005 (2) −0.004 (2) −0.007 (3)
C3 0.052 (3) 0.057 (3) 0.079 (3) 0.004 (2) 0.000 (2) −0.001 (2)
C16 0.079 (4) 0.055 (3) 0.088 (4) 0.002 (3) 0.015 (3) −0.008 (3)
C6 0.067 (3) 0.062 (3) 0.094 (4) 0.018 (3) 0.015 (3) 0.017 (3)
C15 0.137 (6) 0.129 (5) 0.063 (3) −0.042 (5) 0.028 (4) −0.023 (3)

Geometric parameters (Å, º)

Br2—C20 1.904 (4) C22—C21 1.381 (5)
Br1—C1 1.896 (4) C22—H22 0.9300
O2—C13 1.312 (5) C4—C3 1.373 (6)
O2—C14 1.466 (5) C4—C5 1.378 (6)
C17—C18 1.378 (5) C5—C6 1.392 (7)
C17—C22 1.388 (5) C5—H5 0.9300
C17—C11 1.515 (5) C1—C2 1.351 (7)
C11—C10 1.530 (5) C1—C6 1.361 (7)
C11—C12 1.560 (5) C19—C20 1.365 (5)
C11—H11 0.9800 C19—H19 0.9300
N1—C16 1.150 (5) C20—C21 1.375 (5)
N1—C12 1.437 (5) C14—C15 1.451 (7)
C10—C9 1.495 (5) C14—H14A 0.9700
C10—H10A 0.9700 C14—H14B 0.9700
C10—H10B 0.9700 C8—H8A 0.9700
C12—C13 1.534 (5) C8—H8B 0.9700
C12—C7 1.585 (5) C21—H21 0.9300
O3—C13 1.190 (5) C2—C3 1.380 (6)
C9—O1 1.206 (4) C2—H2 0.9300
C9—C8 1.507 (6) C3—H3 0.9300
C7—C4 1.516 (5) C6—H6 0.9300
C7—C8 1.539 (5) C15—H15A 0.9600
C7—H7 0.9800 C15—H15B 0.9600
C18—C19 1.389 (5) C15—H15C 0.9600
C18—H18 0.9300
C13—O2—C14 116.8 (3) C5—C4—C7 120.6 (4)
C18—C17—C22 117.7 (3) C4—C5—C6 121.5 (5)
C18—C17—C11 123.3 (3) C4—C5—H5 119.2
C22—C17—C11 118.9 (3) C6—C5—H5 119.2
C17—C11—C10 113.7 (3) C2—C1—C6 120.0 (4)
C17—C11—C12 114.0 (3) C2—C1—Br1 119.3 (4)
C10—C11—C12 109.5 (3) C6—C1—Br1 120.6 (4)
C17—C11—H11 106.3 C20—C19—C18 119.4 (4)
C10—C11—H11 106.3 C20—C19—H19 120.3
C12—C11—H11 106.3 C18—C19—H19 120.3
C16—N1—C12 178.1 (4) C19—C20—C21 121.1 (4)
C9—C10—C11 111.1 (3) C19—C20—Br2 119.9 (3)
C9—C10—H10A 109.4 C21—C20—Br2 119.0 (3)
C11—C10—H10A 109.4 C15—C14—O2 109.4 (4)
C9—C10—H10B 109.4 C15—C14—H14A 109.8
C11—C10—H10B 109.4 O2—C14—H14A 109.8
H10A—C10—H10B 108.0 C15—C14—H14B 109.8
N1—C12—C13 106.9 (3) O2—C14—H14B 109.8
N1—C12—C11 109.8 (3) H14A—C14—H14B 108.2
C13—C12—C11 109.6 (3) C9—C8—C7 110.5 (3)
N1—C12—C7 107.2 (3) C9—C8—H8A 109.5
C13—C12—C7 112.7 (3) C7—C8—H8A 109.5
C11—C12—C7 110.6 (3) C9—C8—H8B 109.5
O3—C13—O2 126.2 (4) C7—C8—H8B 109.5
O3—C13—C12 124.2 (4) H8A—C8—H8B 108.1
O2—C13—C12 109.6 (3) C20—C21—C22 118.8 (4)
O1—C9—C10 122.5 (4) C20—C21—H21 120.6
O1—C9—C8 122.4 (4) C22—C21—H21 120.6
C10—C9—C8 115.0 (3) C1—C2—C3 120.1 (5)
C4—C7—C8 113.6 (3) C1—C2—H2 119.9
C4—C7—C12 114.9 (3) C3—C2—H2 119.9
C8—C7—C12 111.8 (3) C4—C3—C2 122.0 (4)
C4—C7—H7 105.2 C4—C3—H3 119.0
C8—C7—H7 105.2 C2—C3—H3 119.0
C12—C7—H7 105.2 C1—C6—C5 119.6 (5)
C17—C18—C19 121.3 (4) C1—C6—H6 120.2
C17—C18—H18 119.4 C5—C6—H6 120.2
C19—C18—H18 119.4 C14—C15—H15A 109.5
C21—C22—C17 121.8 (4) C14—C15—H15B 109.5
C21—C22—H22 119.1 H15A—C15—H15B 109.5
C17—C22—H22 119.1 C14—C15—H15C 109.5
C3—C4—C5 116.7 (4) H15A—C15—H15C 109.5
C3—C4—C7 122.6 (4) H15B—C15—H15C 109.5
C18—C17—C11—C10 41.2 (5) C11—C12—C7—C8 16.0 (4)
C22—C17—C11—C10 −135.7 (4) C22—C17—C18—C19 1.2 (6)
C18—C17—C11—C12 −85.3 (4) C11—C17—C18—C19 −175.8 (4)
C22—C17—C11—C12 97.8 (4) C18—C17—C22—C21 −1.9 (6)
C17—C11—C10—C9 166.2 (3) C11—C17—C22—C21 175.2 (4)
C12—C11—C10—C9 −65.0 (4) C8—C7—C4—C3 13.6 (5)
C16—N1—C12—C13 −174 (100) C12—C7—C4—C3 −116.9 (4)
C16—N1—C12—C11 67 (14) C8—C7—C4—C5 −163.9 (4)
C16—N1—C12—C7 −53 (14) C12—C7—C4—C5 65.7 (5)
C17—C11—C12—N1 54.1 (4) C3—C4—C5—C6 −1.7 (7)
C10—C11—C12—N1 −74.6 (4) C7—C4—C5—C6 175.9 (4)
C17—C11—C12—C13 −63.0 (4) C17—C18—C19—C20 0.8 (6)
C10—C11—C12—C13 168.3 (3) C18—C19—C20—C21 −2.2 (6)
C17—C11—C12—C7 172.1 (3) C18—C19—C20—Br2 176.7 (3)
C10—C11—C12—C7 43.5 (4) C13—O2—C14—C15 140.1 (5)
C14—O2—C13—O3 −0.2 (6) O1—C9—C8—C7 −139.2 (4)
C14—O2—C13—C12 178.9 (3) C10—C9—C8—C7 39.5 (5)
N1—C12—C13—O3 −2.8 (5) C4—C7—C8—C9 168.9 (3)
C11—C12—C13—O3 116.1 (4) C12—C7—C8—C9 −59.1 (4)
C7—C12—C13—O3 −120.3 (4) C19—C20—C21—C22 1.5 (6)
N1—C12—C13—O2 178.1 (3) Br2—C20—C21—C22 −177.4 (3)
C11—C12—C13—O2 −62.9 (4) C17—C22—C21—C20 0.6 (7)
C7—C12—C13—O2 60.6 (4) C6—C1—C2—C3 −1.7 (8)
C11—C10—C9—O1 −159.9 (4) Br1—C1—C2—C3 177.9 (4)
C11—C10—C9—C8 21.4 (5) C5—C4—C3—C2 2.4 (7)
N1—C12—C7—C4 −93.0 (4) C7—C4—C3—C2 −175.2 (4)
C13—C12—C7—C4 24.3 (4) C1—C2—C3—C4 −0.7 (8)
C11—C12—C7—C4 147.3 (3) C2—C1—C6—C5 2.4 (7)
N1—C12—C7—C8 135.7 (3) Br1—C1—C6—C5 −177.3 (4)
C13—C12—C7—C8 −107.0 (4) C4—C5—C6—C1 −0.6 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···O3i 0.98 2.58 3.226 (5) 123

Symmetry code: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7238).

References

  1. Bi, X., Dong, D., Li, Y., Liu, Q. & Zhang, Q. (2005). J. Org. Chem. 70, 10886–10889. [DOI] [PubMed]
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dong, D., Bi, X., Liu, Q. & Cong, F. (2005). Chem. Commun. pp. 3580–3582. [DOI] [PubMed]
  4. Fu, Z., Wang, M., Dong, Y., Liu, J. & Liu, Q. (2009). J. Org. Chem. 74, 6105–6110. [DOI] [PubMed]
  5. Hu, J., Zhang, Q., Yuan, H. & Liu, Q. (2008). J. Org. Chem. 73, 2442–2445. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tan, J., Xu, X., Zhang, L., Li, Y. & Liu, Q. (2009). Angew. Chem. Int. Ed. 48, 2868–2872. [DOI] [PubMed]
  8. Xu, X., Liu, Y. & Park, C. M. (2012). Angew. Chem. Int. Ed. 51, 9372–9376. [DOI] [PubMed]
  9. Zhang, D. W., Xu, X. X. & Liu, Q. (2010). Synlett, 6, 917–920.
  10. Zhao, L., Liang, F., Bi, X., Sun, S. & Liu, Q. (2006). J. Org. Chem. 71, 1094–1098. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401530X/hb7238sup1.cif

e-70-0o856-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401530X/hb7238Isup2.hkl

e-70-0o856-Isup2.hkl (191.5KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401530X/hb7238Isup3.cml

CCDC reference: 1011009

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES