Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 5;70(Pt 8):o859. doi: 10.1107/S1600536814015438

Bis(2-nitro­phen­yl)methane

Daron E Janzen a,*, Laura E Crepeau a, Benjamin D Hageseth a, James W Wollack a
PMCID: PMC4158535  PMID: 25249909

Abstract

In the title compound, C13H10N2O4, the nitro groups are twisted significantly relative to the benzene rings [dihedral angles = 16.64 (18) and 28.02 (11)°]. The benzene groups are nearly perpendicular to each other [dihedral angle = 87.72 (6)°]. Short inter­molecular N⋯O and C⋯O [2.981 (2) and 3.060 (2) Å, respectively] contacts suggest possible weak π-inter­actions between nitro groups and between benzene and nitro groups. In addition, there are π–π inter­actions between one benzene group and an inversion-related equivalent [inter­planar separation = 3.494 (2) Å].

Keywords: crystal structure

Related literature  

The synthesis of the title compound has been previously reported (Allinger & Youngdale, 1962), although by different methods from the preparation of the sample used for this study [a modification of the method given by Lu et al. (2006)]. For related structures, see: Barnes et al. (1981); Brito et al. (2007); Cousson et al. (1993); Housty (1961).graphic file with name e-70-0o859-scheme1.jpg

Experimental  

Crystal data  

  • C13H10N2O4

  • M r = 258.23

  • Triclinic, Inline graphic

  • a = 7.628 (3) Å

  • b = 8.340 (3) Å

  • c = 9.464 (4) Å

  • α = 103.544 (8)°

  • β = 92.555 (7)°

  • γ = 94.870 (7)°

  • V = 582.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.17 × 0.15 × 0.10 mm

Data collection  

  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998) T min = 0.735, T max = 0.989

  • 6052 measured reflections

  • 2648 independent reflections

  • 1866 reflections with F 2 > 2σ(F 2)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.114

  • S = 1.02

  • 2648 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814015438/pk2528sup1.cif

e-70-0o859-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015438/pk2528Isup2.hkl

e-70-0o859-Isup2.hkl (130KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015438/pk2528Isup3.cml

CCDC reference: 1011567

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Endowed Chair in the Sciences, School of Humanitites, Arts, and Sciences, St Catherine University as well as the NSF–MRI award No. 1125975 "MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility".

supplementary crystallographic information

S1. Comment

4,4'-Methylene dianiline (4,4'-MDA) is principally used to produce 4,4'-methylene dianiline diisocyanate and other polymeric isocyanates, which are used to manufacture polyurethane foams. 4,4'-MDA is also used as a curing agent for epoxy resins and urethane elastomers, as a corrosion preventative for iron, as an antioxidant for lubricating oils, as a rubber processing chemical, and as an intermediate in the manufacture of elastomeric fibers. In the manufacturing process of 4,4'-MDA, by-products including 2,2'-methylene dianiline (2,2'-MDA) are produced. 2,2'-MDA can have hazardous health effects such as irritation to the skin and eyes, liver damage through acute oral or dermal exposure, and is a possible human carcinogen. In an effort to access 2,2'-MDA for use as a standard to measure the by-products created in the manufacturing process to synthesize 4,4'-MDA, we have developed a new synthesis of the intermediate 2,2'-dinitrodiphenylmethane and determined its crystal structure.

2,2'-MDA can be produced in a two-step synthesis from 2-nitrophenyl boronic acid and 2-nitrobenzyl bromide. First, 2-nitrophenyl boronic acid is reacted with 2-nitrobenzyl bromide using a Suzuki reaction to produce 2,2'-dinitrodiphenylmethane. Next, the nitro groups on the 2,2'-dinitrodiphenylmethane can be reduced using a catalytic hydrogenation reaction to produce the compound 2,2'-MDA.

The molecular structure of bis(2-nitrophenyl)methane (Fig. 1) is composed of an asymmetric unit containing one whole molecule. The N-O bond lengths (range 1.227 (2)-1.233 (2) Å) are consistent with a high degree of resonance in the nitro groups. Each nitro group is twisted from the bonded benzene moiety with angles between least-squares planes (N1, O1, O2 and C1-C6; N2, O3, O4 and C8-C13) of 16.64 (18)° and 28.02 (11)°, respectively. The benzene groups are nearly perpendicular with angles between least-squares planes of 87.72 (6)°. The orientation of the nitro groups allows for close intramolecular contacts between the oxygen atoms and methylene H atoms.

Close intermolecular contacts are also present in this structure. A short contact between N1 (x,y,z) and O2 (1 - x,2 - y, 1 - z) with a distance of 2.981 (2) Å (distance -van der Waals sum = -0.089 Å) is consistent with a weak nitro π - nitro π type interaction. These nitro groups, related by inversion, are parallel with an intermolecular distance between least-squares planes of 2.861 (3) Å. Likewise, C1 (x,y,z) and O2 (1-x, 2-y, 1-z) engage in a similar weak benzene π - nitro π type interaction at a distance of 3.060 (2) Å (distance -van der Waals sum = -0.161 Å). Short intermolecular contacts are also present between O4(x,y,z) ···H3(x,y + 1,z + 1) (2.53 Å) and O1(x, y,z)···H5 x - 1,y,z) (2.58 Å).

S2. Experimental

Compound (I) was prepared by a modification of the method used by Lu et al. (2006).

Under nitrogen, a mixture of THF (5.8 ml) and aqueous K2CO3 (2M, 2.3 ml, 9.3 mmol) were added to 2-nitrophenylboronic acid (0.257 g, 3.08 mmol), 2-nitrobenzylbromide (0.514 g, 2.8 mmol) and Pd(PPh3)4 (0.081 g, 0.07 mmol). The reaction mixture was heated under reflux and protected from light for 24h. Aqueous HCl (1M, 50 ml) was added, the reaction mixture was extracted with ethyl acetate (3 x 20 ml), dried using MgSO4, and concentrated to yield a brown oil. The crude product was purified by flash chormatography (silica gel, hexanes/ethyl acetate (12:1)). Yellow X-ray quality crystals were obtained by evaporation of a hexanes/ethyl acetate (12:1) solution. Yield: 0.059 g, 16%. mp 84-85°C.

S3. Refinement

Hydrogen atoms were placed at calculated positions and refined in the riding model approximation with distances of C–H = 0.95 and 0.99 Å for the benzene and methylene groups, respectively, and with Uiso(H) = 1.2×Ueq(C).

Figures

Fig. 1.

Fig. 1.

A thermal ellipsoid plot (50% probability ellipsoids for non-H atoms) of the structure of (I).

Fig. 2.

Fig. 2.

View of two molecules of (I) showing the close N1···O2 and C1···O2 contacts between two molecules related by inversion (symm. code 1 - x, 2 - y, 1 - z).

Fig. 3.

Fig. 3.

Unit cell packing diagram of (I) viewed parallel to the b axis.

Crystal data

C13H10N2O4 Z = 2
Mr = 258.23 F(000) = 268.00
Triclinic, P1 Dx = 1.474 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 7.628 (3) Å Cell parameters from 4826 reflections
b = 8.340 (3) Å θ = 3.4–27.5°
c = 9.464 (4) Å µ = 0.11 mm1
α = 103.544 (8)° T = 173 K
β = 92.555 (7)° Prism, colorless
γ = 94.870 (7)° 0.17 × 0.15 × 0.10 mm
V = 582.0 (4) Å3

Data collection

Rigaku XtaLAB mini diffractometer 1866 reflections with F2 > 2σ(F2)
Detector resolution: 6.849 pixels mm-1 Rint = 0.038
ω scans θmax = 27.5°
Absorption correction: multi-scan (REQAB; Rigaku, 1998) h = −9→9
Tmin = 0.735, Tmax = 0.989 k = −10→10
6052 measured reflections l = −12→12
2648 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1223P] where P = (Fo2 + 2Fc2)/3
2648 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.29405 (17) 0.79051 (18) 0.56711 (16) 0.0471 (4)
O2 0.50674 (17) 0.97856 (16) 0.66006 (14) 0.0363 (4)
O3 0.86890 (18) 1.24938 (16) 0.80274 (14) 0.0382 (4)
O4 0.6835 (2) 1.29123 (18) 0.97055 (17) 0.0530 (5)
N1 0.45029 (19) 0.84465 (19) 0.57775 (16) 0.0301 (4)
N2 0.7777 (2) 1.20163 (18) 0.89199 (16) 0.0309 (4)
C1 0.5742 (2) 0.7451 (2) 0.48873 (18) 0.0249 (4)
C2 0.4972 (3) 0.6214 (3) 0.37138 (19) 0.0310 (4)
C3 0.6030 (3) 0.5236 (3) 0.2806 (2) 0.0343 (5)
C4 0.7836 (3) 0.5484 (3) 0.3085 (2) 0.0356 (5)
C5 0.8591 (3) 0.6726 (3) 0.42590 (19) 0.0317 (4)
C6 0.7571 (3) 0.7774 (2) 0.51854 (18) 0.0257 (4)
C7 0.8516 (3) 0.9162 (3) 0.63788 (18) 0.0280 (4)
C8 0.8178 (2) 0.9011 (2) 0.79215 (18) 0.0249 (4)
C9 0.8194 (3) 0.7458 (3) 0.8234 (2) 0.0307 (4)
C10 0.7870 (3) 0.7201 (3) 0.9604 (2) 0.0348 (5)
C11 0.7497 (3) 0.8504 (3) 1.0715 (2) 0.0358 (5)
C12 0.7464 (3) 1.0059 (3) 1.04560 (19) 0.0317 (4)
C13 0.7820 (2) 1.0299 (2) 0.90776 (18) 0.0258 (4)
H2 0.3726 0.6047 0.3541 0.0372*
H3 0.5520 0.4400 0.1995 0.0412*
H4 0.8570 0.4802 0.2471 0.0428*
H5 0.9837 0.6865 0.4435 0.0381*
H7A 0.8141 1.0231 0.6255 0.0336*
H7B 0.9800 0.9184 0.6259 0.0336*
H9 0.8434 0.6542 0.7483 0.0369*
H10 0.7907 0.6126 0.9777 0.0418*
H11 0.7265 0.8328 1.1648 0.0429*
H12 0.7202 1.0964 1.1208 0.0380*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0241 (8) 0.0549 (10) 0.0606 (10) 0.0036 (7) 0.0085 (7) 0.0093 (8)
O2 0.0407 (8) 0.0371 (8) 0.0293 (7) 0.0118 (6) 0.0025 (6) 0.0016 (6)
O3 0.0466 (8) 0.0319 (7) 0.0369 (8) −0.0007 (6) 0.0079 (7) 0.0107 (6)
O4 0.0715 (11) 0.0364 (8) 0.0522 (10) 0.0200 (8) 0.0250 (8) 0.0041 (7)
N1 0.0284 (9) 0.0365 (9) 0.0280 (9) 0.0084 (7) 0.0023 (7) 0.0115 (7)
N2 0.0344 (9) 0.0282 (8) 0.0279 (9) 0.0024 (7) 0.0002 (7) 0.0032 (7)
C1 0.0254 (9) 0.0278 (9) 0.0235 (9) 0.0059 (7) 0.0040 (7) 0.0085 (7)
C2 0.0279 (10) 0.0350 (10) 0.0298 (10) −0.0004 (8) −0.0030 (8) 0.0096 (8)
C3 0.0399 (11) 0.0310 (10) 0.0281 (10) −0.0000 (8) −0.0001 (8) 0.0008 (8)
C4 0.0409 (11) 0.0337 (10) 0.0314 (10) 0.0088 (8) 0.0078 (9) 0.0030 (8)
C5 0.0272 (10) 0.0388 (11) 0.0285 (10) 0.0045 (8) 0.0037 (8) 0.0059 (8)
C6 0.0282 (9) 0.0278 (9) 0.0220 (9) 0.0020 (7) 0.0027 (7) 0.0078 (7)
C7 0.0242 (9) 0.0291 (9) 0.0288 (10) −0.0008 (7) 0.0032 (7) 0.0039 (8)
C8 0.0198 (9) 0.0276 (9) 0.0259 (9) −0.0006 (7) −0.0016 (7) 0.0052 (7)
C9 0.0283 (10) 0.0282 (10) 0.0331 (10) 0.0025 (8) −0.0032 (8) 0.0031 (8)
C10 0.0366 (11) 0.0317 (10) 0.0374 (11) −0.0006 (8) −0.0042 (9) 0.0133 (9)
C11 0.0367 (11) 0.0430 (12) 0.0294 (10) −0.0021 (9) 0.0002 (8) 0.0146 (9)
C12 0.0312 (10) 0.0371 (11) 0.0246 (10) 0.0004 (8) 0.0003 (8) 0.0043 (8)
C13 0.0227 (9) 0.0255 (9) 0.0281 (9) −0.0001 (7) −0.0010 (7) 0.0055 (7)

Geometric parameters (Å, º)

O1—N1 1.229 (2) C8—C13 1.397 (3)
O2—N1 1.2331 (18) C9—C10 1.393 (3)
O3—N2 1.233 (3) C10—C11 1.382 (3)
O4—N2 1.227 (3) C11—C12 1.378 (3)
N1—C1 1.473 (3) C12—C13 1.400 (3)
N2—C13 1.478 (3) C2—H2 0.950
C1—C2 1.395 (3) C3—H3 0.950
C1—C6 1.401 (3) C4—H4 0.950
C2—C3 1.379 (3) C5—H5 0.950
C3—C4 1.380 (3) C7—H7A 0.990
C4—C5 1.394 (3) C7—H7B 0.990
C5—C6 1.398 (3) C9—H9 0.950
C6—C7 1.519 (3) C10—H10 0.950
C7—C8 1.526 (3) C11—H11 0.950
C8—C9 1.395 (3) C12—H12 0.950
O1···C2 2.688 (3) O3···H2i 2.8392
O1···C6 3.590 (3) O3···H4v 3.0767
O2···O3 3.426 (2) O3···H5v 2.7744
O2···O4 3.566 (2) O3···H9x 3.5525
O2···N2 3.0953 (19) O3···H10x 3.2126
O2···C2 3.532 (3) O3···H10vi 3.2061
O2···C6 2.824 (3) O3···H11vi 3.2348
O2···C7 2.732 (3) O4···H2i 3.4020
O2···C8 2.825 (3) O4···H3vii 2.5274
O2···C13 3.004 (3) O4···H4vii 2.9142
O3···C7 2.840 (3) O4···H10x 2.7197
O3···C8 2.875 (3) O4···H11iv 3.3111
O3···C12 3.512 (3) N1···H3ii 3.5241
O4···C8 3.554 (3) N1···H7Ai 3.1639
O4···C12 2.711 (3) N1···H11iv 3.5821
N1···C7 3.070 (3) N1···H12iv 3.1392
N1···C8 3.319 (3) N2···H2i 3.3447
N2···C7 3.072 (3) N2···H10x 3.3242
C1···C4 2.744 (3) N2···H10vi 3.5553
C1···C8 3.280 (3) C1···H11xi 3.5367
C2···C5 2.764 (3) C2···H9ii 3.2897
C3···C6 2.836 (3) C2···H11xi 3.3744
C5···C8 3.585 (3) C3···H9ii 3.5691
C6···C9 2.979 (3) C3···H10xi 3.4642
C8···C11 2.837 (3) C3···H11xi 3.1208
C9···C12 2.759 (3) C4···H9xii 3.4305
C10···C13 2.747 (3) C4···H10xi 3.2996
O1···O2i 3.518 (3) C4···H11xi 3.0494
O1···O3i 3.592 (3) C5···H7Av 3.5358
O1···C3ii 3.403 (3) C5···H11xi 3.2356
O1···C4ii 3.326 (3) C6···H11xi 3.4859
O1···C5iii 3.492 (3) C7···H7Bv 3.3745
O2···O1i 3.518 (3) C8···H12vi 3.5807
O2···O2i 3.131 (3) C9···H2ii 3.2040
O2···N1i 2.981 (3) C9···H3ii 3.0850
O2···C1i 3.060 (3) C9···H4xii 3.2311
O2···C2i 3.421 (3) C10···H3ii 2.9802
O2···C11iv 3.396 (3) C11···H7Bvi 3.5194
O2···C12iv 3.444 (3) C12···H7Bvi 3.5635
O3···O1i 3.592 (3) H2···O2i 3.5542
O3···C2i 3.551 (3) H2···O3i 2.8392
O3···C4v 3.362 (3) H2···O4i 3.4020
O3···C5v 3.200 (3) H2···N2i 3.3447
O3···C10vi 3.327 (3) H2···C9ii 3.2040
O3···C11vi 3.338 (3) H2···H5iii 3.2056
O4···C3vii 3.231 (3) H2···H7Ai 3.4920
O4···C4vii 3.421 (3) H2···H9ii 2.5672
O4···C11iv 3.387 (3) H2···H10ii 3.3613
N1···O2i 2.981 (3) H3···O1ii 3.4775
N1···N1i 3.318 (3) H3···O4viii 2.5274
N2···C10vi 3.492 (3) H3···N1ii 3.5241
C1···O2i 3.060 (3) H3···C9ii 3.0850
C2···O2i 3.421 (3) H3···C10ii 2.9802
C2···O3i 3.551 (3) H3···H9ii 3.1418
C2···C2ii 3.514 (3) H3···H10xi 3.3329
C3···O1ii 3.403 (3) H3···H10ii 2.9846
C3···O4viii 3.231 (3) H3···H11xi 3.5234
C4···O1ii 3.326 (3) H3···H12viii 3.1816
C4···O3v 3.362 (3) H4···O1ii 3.3339
C4···O4viii 3.421 (3) H4···O3v 3.0767
C5···O1ix 3.492 (3) H4···O4viii 2.9142
C5···O3v 3.200 (3) H4···C9xii 3.2311
C8···C12vi 3.544 (3) H4···H9xii 2.6325
C10···O3vi 3.327 (3) H4···H10xi 3.0462
C10···N2vi 3.492 (3) H4···H10xii 3.5270
C11···O2iv 3.396 (3) H4···H11xi 3.4275
C11···O3vi 3.338 (3) H4···H12viii 3.2087
C11···O4iv 3.387 (3) H5···O1ix 2.5794
C12···O2iv 3.444 (3) H5···O3v 2.7744
C12···C8vi 3.544 (3) H5···H2ix 3.2056
O1···H2 2.3718 H5···H5xii 3.5426
O2···H7A 2.3914 H5···H7Av 2.9778
O3···H7A 2.2068 H5···H7Bv 3.4990
O3···H7B 3.0821 H5···H9xii 3.3980
O4···H12 2.4218 H7A···O1i 2.7985
N1···H2 2.5571 H7A···O2i 3.5612
N1···H7A 2.9988 H7A···N1i 3.1639
N2···H7A 2.6509 H7A···C5v 3.5358
N2···H7B 3.5330 H7A···H2i 3.4920
N2···H12 2.5617 H7A···H5v 2.9778
C1···H3 3.2585 H7A···H7Bv 3.0193
C1···H5 3.2340 H7B···O1ix 2.7316
C1···H7A 2.8396 H7B···C7v 3.3745
C1···H7B 3.3700 H7B···C11vi 3.5194
C1···H9 3.3932 H7B···C12vi 3.5635
C2···H4 3.2392 H7B···H5v 3.4990
C3···H5 3.2571 H7B···H7Av 3.0193
C4···H2 3.2424 H7B···H7Bv 3.0237
C5···H3 3.2674 H7B···H11vi 3.1837
C5···H7A 3.1423 H7B···H12vi 3.2696
C5···H7B 2.5180 H9···O3xiii 3.5525
C5···H9 3.0984 H9···C2ii 3.2897
C6···H2 3.3056 H9···C3ii 3.5691
C6···H4 3.2918 H9···C4xii 3.4305
C6···H9 2.6931 H9···H2ii 2.5672
C7···H5 2.6288 H9···H3ii 3.1418
C7···H9 2.6311 H9···H4xii 2.6325
C8···H10 3.2926 H9···H5xii 3.3980
C8···H12 3.3047 H10···O3xiii 3.2126
C9···H7A 3.3006 H10···O3vi 3.2061
C9···H7B 2.8685 H10···O4xiii 2.7197
C9···H11 3.2653 H10···N2xiii 3.3242
C10···H12 3.2441 H10···N2vi 3.5553
C11···H9 3.2542 H10···C3xiv 3.4642
C12···H10 3.2415 H10···C4xiv 3.2996
C13···H7A 2.6811 H10···H2ii 3.3613
C13···H7B 3.1139 H10···H3xiv 3.3329
C13···H9 3.2263 H10···H3ii 2.9846
C13···H11 3.2625 H10···H4xiv 3.0462
H2···H3 2.3363 H10···H4xii 3.5270
H3···H4 2.3305 H11···O1iv 3.5664
H4···H5 2.3258 H11···O2iv 2.8116
H5···H7A 3.3275 H11···O3vi 3.2348
H5···H7B 2.2737 H11···O4iv 3.3111
H5···H9 3.1830 H11···N1iv 3.5821
H7A···H9 3.5546 H11···C1xiv 3.5367
H7B···H9 2.8626 H11···C2xiv 3.3744
H9···H10 2.3236 H11···C3xiv 3.1208
H10···H11 2.3354 H11···C4xiv 3.0494
H11···H12 2.3352 H11···C5xiv 3.2356
O1···H3ii 3.4775 H11···C6xiv 3.4859
O1···H4ii 3.3339 H11···H3xiv 3.5234
O1···H5iii 2.5794 H11···H4xiv 3.4275
O1···H7Ai 2.7985 H11···H7Bvi 3.1837
O1···H7Biii 2.7316 H12···O1iv 2.8926
O1···H11iv 3.5664 H12···O2iv 2.9037
O1···H12iv 2.8926 H12···N1iv 3.1392
O2···H2i 3.5542 H12···C8vi 3.5807
O2···H7Ai 3.5612 H12···H3vii 3.1816
O2···H11iv 2.8116 H12···H4vii 3.2087
O2···H12iv 2.9037 H12···H7Bvi 3.2696
O1—N1—O2 122.50 (15) N2—C13—C8 121.89 (16)
O1—N1—C1 118.50 (14) N2—C13—C12 115.29 (14)
O2—N1—C1 119.01 (14) C8—C13—C12 122.81 (17)
O3—N2—O4 122.91 (17) C1—C2—H2 120.212
O3—N2—C13 119.29 (15) C3—C2—H2 120.213
O4—N2—C13 117.80 (16) C2—C3—H3 120.313
N1—C1—C2 115.46 (15) C4—C3—H3 120.314
N1—C1—C6 121.63 (13) C3—C4—H4 119.728
C2—C1—C6 122.88 (16) C5—C4—H4 119.739
C1—C2—C3 119.57 (16) C4—C5—H5 118.995
C2—C3—C4 119.37 (16) C6—C5—H5 119.000
C3—C4—C5 120.53 (18) C6—C7—H7A 108.677
C4—C5—C6 122.00 (17) C6—C7—H7B 108.684
C1—C6—C5 115.58 (14) C8—C7—H7A 108.672
C1—C6—C7 126.13 (15) C8—C7—H7B 108.679
C5—C6—C7 118.27 (15) H7A—C7—H7B 107.606
C6—C7—C8 114.32 (15) C8—C9—H9 118.783
C7—C8—C9 118.53 (15) C10—C9—H9 118.770
C7—C8—C13 125.89 (17) C9—C10—H10 119.901
C9—C8—C13 115.57 (17) C11—C10—H10 119.902
C8—C9—C10 122.45 (16) C10—C11—H11 120.303
C9—C10—C11 120.2 (2) C12—C11—H11 120.312
C10—C11—C12 119.39 (19) C11—C12—H12 120.215
C11—C12—C13 119.57 (16) C13—C12—H12 120.219
O1—N1—C1—C2 17.2 (3) C4—C5—C6—C1 2.3 (3)
O1—N1—C1—C6 −164.73 (16) C4—C5—C6—C7 −176.20 (17)
O2—N1—C1—C2 −162.89 (15) C1—C6—C7—C8 65.5 (3)
O2—N1—C1—C6 15.2 (3) C5—C6—C7—C8 −116.10 (18)
O3—N2—C13—C8 −28.6 (2) C6—C7—C8—C9 42.9 (2)
O3—N2—C13—C12 151.93 (13) C6—C7—C8—C13 −136.09 (15)
O4—N2—C13—C8 152.16 (14) C7—C8—C9—C10 −178.93 (13)
O4—N2—C13—C12 −27.3 (2) C7—C8—C13—N2 −1.7 (3)
N1—C1—C2—C3 178.99 (15) C7—C8—C13—C12 177.81 (13)
N1—C1—C6—C5 179.61 (15) C9—C8—C13—N2 179.33 (13)
N1—C1—C6—C7 −2.0 (3) C9—C8—C13—C12 −1.2 (3)
C2—C1—C6—C5 −2.5 (3) C13—C8—C9—C10 0.2 (3)
C2—C1—C6—C7 175.89 (17) C8—C9—C10—C11 0.7 (3)
C6—C1—C2—C3 1.0 (3) C9—C10—C11—C12 −0.6 (3)
C1—C2—C3—C4 0.8 (3) C10—C11—C12—C13 −0.4 (3)
C2—C3—C4—C5 −1.0 (3) C11—C12—C13—N2 −179.15 (14)
C3—C4—C5—C6 −0.7 (3) C11—C12—C13—C8 1.4 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+2, −z+2; (v) −x+2, −y+2, −z+1; (vi) −x+2, −y+2, −z+2; (vii) x, y+1, z+1; (viii) x, y−1, z−1; (ix) x+1, y, z; (x) x, y+1, z; (xi) x, y, z−1; (xii) −x+2, −y+1, −z+1; (xiii) x, y−1, z; (xiv) x, y, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2528).

References

  1. Allinger, N. L. & Youngdale, G. A. (1962). J. Am. Chem. Soc. 84, 1020–1026.
  2. Barnes, J. C., Paton, J. D., Damewood, J. R. Jr & Mislow, K. (1981). J. Org. Chem. 46, 4975–4979.
  3. Brito, I., Mundaca, A., Cárdenas, A., López-Rodríguez, M. & Vargas, D. (2007). Acta Cryst. E63, o3351–o3352.
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  5. Cousson, A., Lelièvre, J., Chatrousse, A. P., Terrier, F. & Farrell, P. G. (1993). Acta Cryst. C49, 609–612.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Housty, M. J. (1961). Acta Cryst. 14, 92.
  8. Lu, F., Chi, S.-W., Kim, D.-H., Han, K.-H., Kuntz, I. D. & Guy, R. K. (2006). J. Comb. Chem. 8, 315-325. [DOI] [PubMed]
  9. Rigaku (1998). REQAB Rigaku Corporation, Tokyo, Japan.
  10. Rigaku (2010). CrystalStructure Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  11. Rigaku (2011). CrystalClear Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814015438/pk2528sup1.cif

e-70-0o859-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015438/pk2528Isup2.hkl

e-70-0o859-Isup2.hkl (130KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015438/pk2528Isup3.cml

CCDC reference: 1011567

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES