Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 19;70(Pt 8):94–97. doi: 10.1107/S1600536814015426

Crystal structures of ethyl (2S*,2′R*)-1′-methyl-2′′,3-dioxo-2,3-di­hydro­dispiro­[1-benzo­thio­phene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate and ethyl (2S*,2′R*)-5′′-chloro-1′-methyl-2′′,3-dioxo-2,3-di­hydro­dispiro­[1-benzo­thio­phene-2,3′-pyrrolidine-2′,3′′-indoline]-4′-carboxyl­ate

M P Savithri a, M Suresh b, R Raghunathan b, G Vimala c, R Raja c, A SubbiahPandi c,*
PMCID: PMC4158536  PMID: 25249864

The title compounds, (I) and (II), are di­spiro-indole-pyrrolidine-benzo­thio­phene derivatives, with (II) having a chlorine substituent on the oxo­indole unit. As a result, the conformation of the two mol­ecules differs in the angle of inclination of the indole moiety with respect to the benzo­thio­phene ring system, with a dihedral angle of 71.59 (5) in (I) and 82.27 (7)° in (II).

Keywords: di­spiro, pyrrolidine-indole, benzo­thio­phene, crystal structure

Abstract

In the title compounds, C22H20N2O4S, (I), and C22H19ClN2O4S, (II), the pyrrolidine rings have twist conformations on the spiro–spiro C—C bonds. In (I), the five-membered ring of the oxindole moiety has an envelope conformation with the spiro C atom as the flap, while in (II) this ring is flat (r.m.s. deviation = 0.042 Å). The mean planes of the pyrrolidine rings are inclined to the mean planes of the indole units [r.m.s deviations = 0.073 and 0.069 Å for (I) and (II), respectively] and the benzo­thio­phene ring systems (r.m.s. deviations = 0.019 and 0.034 Å for (I) and (II), respectively) by 79.57 (8) and 88.61 (7)° for (I), and by 81.99 (10) and 88.79 (10)° for (II). In both compounds, the eth­oxy­carbonyl group occupies an equatorial position with an extended conformation. The overall conformation of the two mol­ecules differs in the angle of inclination of the indole unit with respect to the benzo­thio­phene ring system, with a dihedral angle between the planes of 71.59 (5) in (I) and 82.27 (7)° in (II). In the crystal of (I), mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing R 2 2(14) loops. The dimers are linked via C—H⋯O and bifurcated C—H⋯O(O) hydrogen bonds, forming sheets lying parallel to (100). In the crystal of (II), mol­ecules are again linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers but enclosing smaller R 2 2(8) loops. Here, the dimers are linked by C—H⋯O hydrogen bonds, forming ribbons propagating along [010].

Chemical context  

The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, such as vincrinstine, vinblastine and spiro­typostatins (Cordell, 1981). Highly functionalized pyrrolidines have gained much inter­est in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the title compounds were synthesized and we report herein on their mol­ecular and crystal structures.graphic file with name e-70-00094-scheme1.jpg

Structural commentary  

The mol­ecular structure of mol­ecule (I) is shown in Fig. 1. The pyrrolidine ring (N2/C8–C11) exhibits a twist conformation on bond C8—C11. The five-membered ring (N1/C11–C14) of the oxindole moiety adopts an envelope conformation with C11 as the flap atom. The C12=O2 bond length of 1.213 (1) Å confirms the presence of a keto group in the indoline moiety. The benzo­thio­phene ring system (S1/C1–C8; r.m.s. deviation = 0.019 Å) and the mean plane of the indole ring system (N1/C11–C18; r.m.s. deviation = 0.073 Å) are inclined to one another by 71.59 (5)°, and are both almost normal to the mean plane of the pyrrolidine ring (N2/C8–C11) with dihedral angles of 88.61 (17) and 79.57 (8)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of mol­ecule (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The mol­ecular structure of the compound (II) is illustrated in Fig. 2. The overall geometry of the mol­ecule is similar to that of (II). The pyrrolidine ring (N2/C8–C11) also adopts a twist conformation on the C8—C11 bond, and the five-membered ring (N1/C11–C14) of the oxindole moiety has an r.m.s. deviation = 0.042 Å. The mean plane of the benzo­thio­phene ring system (S1/C1–C8; r.m.s. deviation = 0.034 Å) and the mean plane of the indole ring system (N1/C11–C18; r.m.s. deviation = 0.069 Å) are inclined to one another by 82.27 (7)°, and are both almost normal to the mean plane of the pyrrol­idine ring (N2/C8–C11) with dihedral angles of 88.79 (10) and 81.99 (10)°, respectively.

Figure 2.

Figure 2

The mol­ecular structure of mol­ecule (II), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Mol­ecules (I) and (II) differ only in the presence of a chloride atom at position 5 in the oxo­indole unit in (II). The conformation of the two mol­ecules differ in the angle of inclination of the indole moiety with respect to the benzo­thio­phene ring system, with a dihedral angle of 71.59 (5) in (I) and 82.27 (7)° in (II). This is illustrated in Fig. 3, which shows a view of the superposition of the two mol­ecules (Mercury; Macrae et al., 2008). There is also a small difference in the orientation of the ester function, the C20—O4—C21—C22 torsion angle being 173.44 (19) in (I) and 162.3 (3)° in (II).

Figure 3.

Figure 3

A view of the mol­ecular superposition of mol­ecules (I) and (II) [red (I); blue (II); Cl atom in (II) is shown as a blue ball (Mercury; Macrae et al., 2008)].

Supra­molecular features  

In the crystal of (I), mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing Inline graphic(14) loops (Table 1 and Fig. 4). The dimers are linked via C—H⋯O and bifurcated C—H⋯O(O) hydrogen bonds, forming sheets lying parallel to (100).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.09 (2) 2.890 (2) 164 (2)
C3—H3⋯O2ii 0.93 2.56 3.385 (2) 148
C18—H18⋯O3iii 0.93 2.56 3.299 (2) 136
C21—H21B⋯O2iv 0.97 2.59 3.560 (2) 174
C2—H2⋯Cg v 0.93 2.81 3.649 (2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 4.

Figure 4

The crystal packing of compound (I), viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

In the crystal of (II), mol­ecules are again linked via pairs of N—-H⋯O hydrogen bonds, forming inversion dimers but enclosing smaller Inline graphic(8) loops (Table 2 and Fig. 5). Here the dimers are linked by C—H⋯O hydrogen bonds, forming double-stranded chains propagating along [010].

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.81 (2) 2.03 (2) 2.842 (2) 172 (2)
C18—H18⋯O3ii 0.93 2.57 3.496 (3) 171
C2—H2⋯Cg iii 0.93 2.83 3.649 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 5.

Figure 5

A partial view along the a axis of the crystal packing of compound (II). The hydrogen bonds are shown as dashed lines (see Table 2 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Database survey  

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002) revealed that the title compounds are the first examples of di­spiro-indole-pyrrolidine derivatives with a benzo­thio­phene substituent on the pyrrolidine ring creating the second spiro C atom. There are a large number of indole-spiro-pyrrolidine compounds but there was only one hit for a di­spiro-indole-pyrrolidine-‘cyclo­pentane-type’ compound, namely 4′-(p-meth­oxy­phenyl)-1′-methyl-1H-indole-3-spiro-2′-pyrrolidine-3′-spiro-1′′-cyclo­pentane-2(3H),2′′-dione (refcode: ILIMUL; Govind et al., 2003). The geometry of the pyrrolidine and oxindole ring systems of the two mol­ecules compare well with those reported for similar structures, for example, ethyl 1′′-benzyl-2′′-oxo-2′,3′,5′,6′,7′,7a′-hexa­hydro-1′H-di­spiro­[indeno[1,2-b]-quinoxaline-11,2′-pyrrolizine-3′,3′′-indoline]-1′-carboxyl­ate monohydrate (refcode: IFOVUW; Kannan et al., 2013a ) and methyl 5′′-chloro-1′,1′′-dimethyl-2,2′′-dioxodi­spiro­[indo­line-3,2′-pyrrolidine-3′,3′′-indoline]-4′-carboxyl­ate (refcode: IFOQUR; Kannan et al., 2013b ).

Synthesis and crystallization  

The two compounds were prepared in a similar manner using isatin (1.1 mmol) for (I) and 5-chloro isatin (1.1 mmol) for (II). A mixture of (E)-ethyl 2-(3-oxobenzo[b]thio­phen-2(3H)-yl­idene) acetate (1.0 mmol) and the relevant isatin together with sarcosine (1.1 mmol) was refluxed in methanol (20 ml) until completion of the reaction, as evidenced by TLC analysis. After completion of the reaction, the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in di­chloro­methane (2 × 50 ml) and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. After filtration, the solvent was evaporation under reduced pressure. The product was separated by column chromatography using hexane and ethyl acetate (9:1) as eluent to give a white solid. This was dissolved in chloro­form (3 ml) and heated for 2 min. The resulting solutions were allowed to evaporate slowly at room temperature and yielded colourless block-like crystals of compounds (I) and (II).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For both mol­ecules (I) and (II), the NH H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with U iso(H) = 1.5U eq(C-meth­yl) and = 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C22H20N2O4S C22H19ClN2O4S
M r 408.46 442.90
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c (Å) 8.7196 (4), 10.7874 (5), 11.3488 (5) 10.4678 (5), 10.9074 (5), 11.5652 (5)
α, β, γ (°) 82.624 (2), 82.775 (2), 79.214 (2) 85.973 (2), 65.612 (2), 62.089 (2)
V3) 1034.27 (8) 1050.26 (9)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.31
Crystal size (mm) 0.35 × 0.30 × 0.30 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker AXS kappa APEX2 CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996) Multi-scan (SADABS; Sheldrick, 1996)
T min, T max 0.938, 0.946 0.931, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 18982, 3745, 3389 16876, 3788, 3178
R int 0.024 0.024
(sin θ/λ)max−1) 0.600 0.600
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.087, 1.05 0.036, 0.103, 1.11
No. of reflections 3745 3788
No. of parameters 268 276
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.17 0.29, −0.27

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS97 and SHELXL2013 (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814015426/su2728sup1.cif

e-70-00094-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015426/su2728Isup2.hkl

e-70-00094-Isup2.hkl (205.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814015426/su2728IIsup3.hkl

e-70-00094-IIsup3.hkl (207.9KB, hkl)

CCDC references: 1011623, 1011624

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Crystal data

C22H20N2O4S V = 1034.27 (8) Å3
Mr = 408.46 Z = 2
Triclinic, P1 F(000) = 428
Hall symbol: -P 1 Dx = 1.312 Mg m3
a = 8.7196 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7874 (5) Å θ = 2.4–25.0°
c = 11.3488 (5) Å µ = 0.19 mm1
α = 82.624 (2)° T = 293 K
β = 82.775 (2)° Block, colourless
γ = 79.214 (2)° 0.35 × 0.30 × 0.30 mm

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Data collection

Bruker Kappa APEXII CCD diffractometer 3745 independent reflections
Radiation source: fine-focus sealed tube 3389 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scans θmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.938, Tmax = 0.946 k = −12→12
18982 measured reflections l = −13→13

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2979P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3745 reflections Δρmax = 0.25 e Å3
268 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0099 (17)

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.30889 (4) 0.13663 (3) 0.21159 (3) 0.03693 (12)
O1 −0.05178 (12) 0.36372 (10) 0.34437 (10) 0.0491 (3)
O2 0.15077 (17) 0.58243 (10) 0.29000 (11) 0.0647 (4)
O3 0.2116 (2) 0.32476 (19) −0.07349 (11) 0.1024 (6)
O4 0.01130 (15) 0.28291 (12) 0.05809 (10) 0.0580 (3)
N1 0.18901 (15) 0.47295 (12) 0.47309 (12) 0.0449 (3)
H1N 0.145 (2) 0.5301 (17) 0.5141 (16) 0.054*
N2 0.42620 (15) 0.38340 (12) 0.21313 (10) 0.0452 (3)
C1 −0.11000 (18) 0.09770 (16) 0.37801 (14) 0.0466 (4)
H1 −0.1955 0.1524 0.4109 0.056*
C2 −0.1138 (2) −0.02952 (17) 0.38248 (16) 0.0569 (4)
H2 −0.2027 −0.0613 0.4179 0.068*
C3 0.0142 (2) −0.11030 (16) 0.33441 (16) 0.0556 (4)
H3 0.0100 −0.1962 0.3379 0.067*
C4 0.14759 (19) −0.06681 (14) 0.28153 (14) 0.0448 (4)
H4 0.2334 −0.1225 0.2503 0.054*
C5 0.15164 (16) 0.06238 (12) 0.27566 (11) 0.0337 (3)
C6 0.02306 (15) 0.14358 (13) 0.32381 (11) 0.0343 (3)
C7 0.04308 (15) 0.27552 (13) 0.30944 (11) 0.0333 (3)
C8 0.20210 (16) 0.29422 (12) 0.24261 (11) 0.0326 (3)
C9 0.1918 (2) 0.38436 (14) 0.12494 (12) 0.0447 (4)
H9 0.1131 0.4595 0.1411 0.054*
C10 0.3518 (2) 0.42508 (18) 0.10187 (14) 0.0581 (4)
H10A 0.4142 0.3851 0.0355 0.070*
H10B 0.3404 0.5165 0.0835 0.070*
C11 0.30303 (16) 0.36257 (12) 0.30895 (12) 0.0339 (3)
C12 0.20227 (18) 0.48789 (13) 0.35267 (13) 0.0425 (3)
C13 0.28113 (15) 0.36078 (13) 0.51820 (12) 0.0354 (3)
C14 0.35773 (15) 0.29409 (12) 0.42447 (11) 0.0314 (3)
C15 0.46804 (16) 0.18729 (13) 0.44844 (13) 0.0382 (3)
H15 0.5232 0.1431 0.3867 0.046*
C16 0.49556 (18) 0.14672 (15) 0.56609 (14) 0.0480 (4)
H16 0.5709 0.0755 0.5832 0.058*
C17 0.4122 (2) 0.21104 (16) 0.65801 (14) 0.0504 (4)
H17 0.4297 0.1805 0.7365 0.060*
C18 0.30339 (18) 0.31964 (15) 0.63592 (13) 0.0448 (4)
H18 0.2475 0.3632 0.6978 0.054*
C19 0.5353 (2) 0.4616 (2) 0.23767 (18) 0.0693 (5)
H19A 0.6191 0.4613 0.1741 0.104*
H19B 0.5777 0.4281 0.3116 0.104*
H19C 0.4810 0.5470 0.2435 0.104*
C20 0.1438 (2) 0.32731 (17) 0.02394 (14) 0.0562 (4)
C21 −0.0480 (3) 0.2184 (2) −0.02642 (17) 0.0750 (6)
H21A 0.0326 0.1509 −0.0550 0.090*
H21B −0.0799 0.2776 −0.0944 0.090*
C22 −0.1847 (4) 0.1653 (3) 0.0376 (2) 0.1083 (9)
H22A −0.2277 0.1220 −0.0158 0.162*
H22B −0.2633 0.2329 0.0658 0.162*
H22C −0.1514 0.1066 0.1043 0.162*

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0377 (2) 0.0370 (2) 0.0362 (2) −0.00533 (14) 0.00290 (14) −0.01255 (14)
O1 0.0431 (6) 0.0461 (6) 0.0584 (7) 0.0027 (5) −0.0034 (5) −0.0240 (5)
O2 0.0975 (10) 0.0318 (6) 0.0652 (8) 0.0029 (6) −0.0309 (7) −0.0053 (5)
O3 0.1453 (15) 0.1480 (16) 0.0305 (7) −0.0721 (13) 0.0019 (8) −0.0137 (8)
O4 0.0749 (8) 0.0634 (7) 0.0427 (6) −0.0156 (6) −0.0209 (6) −0.0118 (5)
N1 0.0507 (7) 0.0394 (7) 0.0452 (7) 0.0031 (6) −0.0083 (6) −0.0197 (6)
N2 0.0532 (7) 0.0504 (7) 0.0361 (6) −0.0256 (6) 0.0020 (5) −0.0023 (5)
C1 0.0385 (8) 0.0581 (10) 0.0459 (8) −0.0140 (7) −0.0024 (6) −0.0097 (7)
C2 0.0565 (10) 0.0616 (11) 0.0597 (10) −0.0318 (9) −0.0057 (8) −0.0026 (8)
C3 0.0719 (11) 0.0419 (9) 0.0602 (10) −0.0243 (8) −0.0173 (9) −0.0009 (7)
C4 0.0539 (9) 0.0347 (7) 0.0480 (8) −0.0051 (6) −0.0135 (7) −0.0084 (6)
C5 0.0384 (7) 0.0344 (7) 0.0300 (6) −0.0060 (5) −0.0083 (5) −0.0056 (5)
C6 0.0357 (7) 0.0381 (7) 0.0311 (7) −0.0073 (6) −0.0063 (5) −0.0065 (5)
C7 0.0354 (7) 0.0380 (7) 0.0278 (6) −0.0023 (6) −0.0077 (5) −0.0099 (5)
C8 0.0410 (7) 0.0302 (6) 0.0269 (6) −0.0054 (5) −0.0041 (5) −0.0052 (5)
C9 0.0641 (10) 0.0407 (8) 0.0305 (7) −0.0127 (7) −0.0096 (6) 0.0015 (6)
C10 0.0809 (12) 0.0603 (10) 0.0365 (8) −0.0313 (9) −0.0019 (8) 0.0055 (7)
C11 0.0410 (7) 0.0304 (7) 0.0317 (7) −0.0092 (5) −0.0032 (5) −0.0050 (5)
C12 0.0529 (9) 0.0322 (7) 0.0456 (8) −0.0063 (6) −0.0137 (7) −0.0091 (6)
C13 0.0343 (7) 0.0383 (7) 0.0364 (7) −0.0090 (6) −0.0046 (5) −0.0098 (6)
C14 0.0312 (6) 0.0332 (7) 0.0322 (7) −0.0106 (5) −0.0029 (5) −0.0056 (5)
C15 0.0329 (7) 0.0383 (7) 0.0448 (8) −0.0060 (6) −0.0057 (6) −0.0088 (6)
C16 0.0470 (8) 0.0441 (8) 0.0553 (9) −0.0072 (7) −0.0215 (7) 0.0000 (7)
C17 0.0611 (10) 0.0588 (10) 0.0368 (8) −0.0214 (8) −0.0183 (7) 0.0030 (7)
C18 0.0485 (8) 0.0576 (9) 0.0334 (7) −0.0176 (7) −0.0034 (6) −0.0126 (6)
C19 0.0765 (13) 0.0797 (13) 0.0629 (11) −0.0506 (11) −0.0017 (9) −0.0009 (10)
C20 0.0842 (13) 0.0554 (10) 0.0313 (8) −0.0168 (9) −0.0142 (8) 0.0018 (7)
C21 0.1095 (17) 0.0731 (13) 0.0542 (11) −0.0218 (12) −0.0389 (11) −0.0129 (9)
C22 0.134 (2) 0.125 (2) 0.0921 (18) −0.0653 (19) −0.0405 (17) −0.0196 (16)

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Geometric parameters (Å, º)

S1—C5 1.7496 (14) C9—C20 1.505 (2)
S1—C8 1.8330 (13) C9—C10 1.522 (2)
O1—C7 1.2109 (16) C9—H9 0.9800
O2—C12 1.2125 (18) C10—H10A 0.9700
O3—C20 1.187 (2) C10—H10B 0.9700
O4—C20 1.327 (2) C11—C14 1.5063 (18)
O4—C21 1.450 (2) C11—C12 1.5696 (19)
N1—C12 1.348 (2) C13—C18 1.378 (2)
N1—C13 1.3972 (19) C13—C14 1.3904 (18)
N1—H1N 0.827 (18) C14—C15 1.3773 (19)
N2—C11 1.4561 (17) C15—C16 1.387 (2)
N2—C19 1.457 (2) C15—H15 0.9300
N2—C10 1.473 (2) C16—C17 1.380 (2)
C1—C2 1.373 (2) C16—H16 0.9300
C1—C6 1.388 (2) C17—C18 1.380 (2)
C1—H1 0.9300 C17—H17 0.9300
C2—C3 1.381 (3) C18—H18 0.9300
C2—H2 0.9300 C19—H19A 0.9600
C3—C4 1.375 (2) C19—H19B 0.9600
C3—H3 0.9300 C19—H19C 0.9600
C4—C5 1.394 (2) C21—C22 1.486 (3)
C4—H4 0.9300 C21—H21A 0.9700
C5—C6 1.3871 (19) C21—H21B 0.9700
C6—C7 1.4523 (19) C22—H22A 0.9600
C7—C8 1.5295 (18) C22—H22B 0.9600
C8—C9 1.5495 (18) C22—H22C 0.9600
C8—C11 1.5611 (18)
C5—S1—C8 92.66 (6) N2—C11—C8 99.56 (10)
C20—O4—C21 117.69 (15) C14—C11—C8 116.51 (10)
C12—N1—C13 112.19 (12) N2—C11—C12 114.06 (11)
C12—N1—H1N 122.9 (12) C14—C11—C12 101.21 (10)
C13—N1—H1N 124.0 (12) C8—C11—C12 110.24 (11)
C11—N2—C19 115.58 (13) O2—C12—N1 126.23 (14)
C11—N2—C10 107.91 (12) O2—C12—C11 126.46 (14)
C19—N2—C10 115.00 (13) N1—C12—C11 107.26 (12)
C2—C1—C6 119.16 (15) C18—C13—C14 122.52 (13)
C2—C1—H1 120.4 C18—C13—N1 127.67 (13)
C6—C1—H1 120.4 C14—C13—N1 109.76 (12)
C1—C2—C3 120.05 (15) C15—C14—C13 119.22 (12)
C1—C2—H2 120.0 C15—C14—C11 131.91 (12)
C3—C2—H2 120.0 C13—C14—C11 108.80 (11)
C4—C3—C2 121.62 (15) C14—C15—C16 118.95 (14)
C4—C3—H3 119.2 C14—C15—H15 120.5
C2—C3—H3 119.2 C16—C15—H15 120.5
C3—C4—C5 118.61 (15) C17—C16—C15 120.63 (14)
C3—C4—H4 120.7 C17—C16—H16 119.7
C5—C4—H4 120.7 C15—C16—H16 119.7
C6—C5—C4 119.78 (13) C18—C17—C16 121.38 (14)
C6—C5—S1 114.47 (10) C18—C17—H17 119.3
C4—C5—S1 125.75 (11) C16—C17—H17 119.3
C5—C6—C1 120.77 (13) C13—C18—C17 117.16 (14)
C5—C6—C7 113.66 (12) C13—C18—H18 121.4
C1—C6—C7 125.57 (13) C17—C18—H18 121.4
O1—C7—C6 126.02 (13) N2—C19—H19A 109.5
O1—C7—C8 121.74 (12) N2—C19—H19B 109.5
C6—C7—C8 112.24 (11) H19A—C19—H19B 109.5
C7—C8—C9 114.43 (11) N2—C19—H19C 109.5
C7—C8—C11 115.22 (10) H19A—C19—H19C 109.5
C9—C8—C11 99.72 (10) H19B—C19—H19C 109.5
C7—C8—S1 106.91 (9) O3—C20—O4 124.34 (17)
C9—C8—S1 110.04 (9) O3—C20—C9 125.41 (18)
C11—C8—S1 110.43 (9) O4—C20—C9 110.23 (14)
C20—C9—C10 115.35 (14) O4—C21—C22 107.01 (17)
C20—C9—C8 114.02 (12) O4—C21—H21A 110.3
C10—C9—C8 103.71 (12) C22—C21—H21A 110.3
C20—C9—H9 107.8 O4—C21—H21B 110.3
C10—C9—H9 107.8 C22—C21—H21B 110.3
C8—C9—H9 107.8 H21A—C21—H21B 108.6
N2—C10—C9 105.51 (12) C21—C22—H22A 109.5
N2—C10—H10A 110.6 C21—C22—H22B 109.5
C9—C10—H10A 110.6 H22A—C22—H22B 109.5
N2—C10—H10B 110.6 C21—C22—H22C 109.5
C9—C10—H10B 110.6 H22A—C22—H22C 109.5
H10A—C10—H10B 108.8 H22B—C22—H22C 109.5
N2—C11—C14 115.81 (11)
C6—C1—C2—C3 0.6 (2) C9—C8—C11—N2 −47.31 (12)
C1—C2—C3—C4 0.1 (3) S1—C8—C11—N2 68.47 (11)
C2—C3—C4—C5 −0.7 (2) C7—C8—C11—C14 64.43 (15)
C3—C4—C5—C6 0.6 (2) C9—C8—C11—C14 −172.58 (11)
C3—C4—C5—S1 −179.58 (11) S1—C8—C11—C14 −56.80 (13)
C8—S1—C5—C6 −2.05 (11) C7—C8—C11—C12 −50.11 (14)
C8—S1—C5—C4 178.17 (12) C9—C8—C11—C12 72.88 (13)
C4—C5—C6—C1 0.0 (2) S1—C8—C11—C12 −171.35 (9)
S1—C5—C6—C1 −179.75 (11) C13—N1—C12—O2 −170.75 (15)
C4—C5—C6—C7 −179.06 (12) C13—N1—C12—C11 6.75 (16)
S1—C5—C6—C7 1.15 (15) N2—C11—C12—O2 43.7 (2)
C2—C1—C6—C5 −0.7 (2) C14—C11—C12—O2 168.82 (15)
C2—C1—C6—C7 178.32 (14) C8—C11—C12—O2 −67.27 (19)
C5—C6—C7—O1 −179.54 (13) N2—C11—C12—N1 −133.76 (13)
C1—C6—C7—O1 1.4 (2) C14—C11—C12—N1 −8.68 (14)
C5—C6—C7—C8 0.68 (16) C8—C11—C12—N1 115.23 (13)
C1—C6—C7—C8 −178.36 (13) C12—N1—C13—C18 175.59 (14)
O1—C7—C8—C9 −59.73 (17) C12—N1—C13—C14 −1.69 (17)
C6—C7—C8—C9 120.06 (12) C18—C13—C14—C15 −4.4 (2)
O1—C7—C8—C11 55.04 (17) N1—C13—C14—C15 173.00 (12)
C6—C7—C8—C11 −125.17 (12) C18—C13—C14—C11 178.13 (12)
O1—C7—C8—S1 178.16 (11) N1—C13—C14—C11 −4.43 (15)
C6—C7—C8—S1 −2.05 (12) N2—C11—C14—C15 −45.34 (19)
C5—S1—C8—C7 2.25 (9) C8—C11—C14—C15 71.24 (18)
C5—S1—C8—C9 −122.58 (10) C12—C11—C14—C15 −169.23 (14)
C5—S1—C8—C11 128.30 (9) N2—C11—C14—C13 131.64 (12)
C7—C8—C9—C20 −73.99 (17) C8—C11—C14—C13 −111.78 (12)
C11—C8—C9—C20 162.46 (14) C12—C11—C14—C13 7.76 (13)
S1—C8—C9—C20 46.39 (16) C13—C14—C15—C16 2.27 (19)
C7—C8—C9—C10 159.77 (12) C11—C14—C15—C16 178.99 (13)
C11—C8—C9—C10 36.22 (14) C14—C15—C16—C17 1.0 (2)
S1—C8—C9—C10 −79.85 (13) C15—C16—C17—C18 −2.3 (2)
C11—N2—C10—C9 −19.43 (17) C14—C13—C18—C17 3.1 (2)
C19—N2—C10—C9 −150.08 (15) N1—C13—C18—C17 −173.84 (14)
C20—C9—C10—N2 −137.43 (14) C16—C17—C18—C13 0.3 (2)
C8—C9—C10—N2 −12.03 (16) C21—O4—C20—O3 4.9 (3)
C19—N2—C11—C14 −61.82 (18) C21—O4—C20—C9 −176.82 (15)
C10—N2—C11—C14 167.85 (12) C10—C9—C20—O3 −8.5 (3)
C19—N2—C11—C8 172.43 (14) C8—C9—C20—O3 −128.4 (2)
C10—N2—C11—C8 42.11 (14) C10—C9—C20—O4 173.27 (14)
C19—N2—C11—C12 55.08 (18) C8—C9—C20—O4 53.38 (19)
C10—N2—C11—C12 −75.25 (15) C20—O4—C21—C22 173.44 (19)
C7—C8—C11—N2 −170.30 (11)

(I) Ethyl (2S*,2'R*)-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.83 (2) 2.09 (2) 2.890 (2) 164 (2)
C3—H3···O2ii 0.93 2.56 3.385 (2) 148
C18—H18···O3iii 0.93 2.56 3.299 (2) 136
C21—H21B···O2iv 0.97 2.59 3.560 (2) 174
C2—H2···Cgv 0.93 2.81 3.649 (2) 151

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y−1, z; (iii) x, y, z+1; (iv) −x, −y+1, −z; (v) −x, −y, −z+1.

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Crystal data

C22H19ClN2O4S V = 1050.26 (9) Å3
Mr = 442.90 Z = 2
Triclinic, P1 F(000) = 460
Hall symbol: -P 1 Dx = 1.401 Mg m3
a = 10.4678 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9074 (5) Å θ = 2.0–25.0°
c = 11.5652 (5) Å µ = 0.31 mm1
α = 85.973 (2)° T = 293 K
β = 65.612 (2)° Block, colourless
γ = 62.089 (2)° 0.35 × 0.30 × 0.30 mm

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Data collection

Bruker AXS kappa APEX2 CCD diffractometer Rint = 0.024
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) θmax = 25.3°, θmin = 2.1°
Tmin = 0.931, Tmax = 0.940 h = −12→10
16876 measured reflections k = −13→11
3788 independent reflections l = −13→12
3178 reflections with I > 2σ(I)

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: mixed
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3849P] where P = (Fo2 + 2Fc2)/3
3788 reflections (Δ/σ)max < 0.001
276 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.27 e Å3

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.78453 (7) −0.07384 (7) 0.27294 (5) 0.06115 (18)
S1 0.47022 (6) 0.40379 (5) 0.61542 (4) 0.04426 (15)
O1 0.24464 (18) 0.30234 (17) 0.93183 (14) 0.0622 (4)
O2 0.5511 (2) 0.14387 (16) 0.96174 (13) 0.0596 (4)
O3 0.5065 (3) 0.6187 (2) 0.8095 (3) 0.1135 (8)
O4 0.2715 (3) 0.62165 (17) 0.89290 (19) 0.0794 (5)
N1 0.5579 (2) −0.00867 (18) 0.83019 (16) 0.0476 (4)
H1N 0.534 (3) −0.054 (2) 0.886 (2) 0.057*
N2 0.7301 (2) 0.20503 (19) 0.70036 (16) 0.0493 (4)
C1 0.0252 (3) 0.4697 (2) 0.8114 (2) 0.0612 (6)
H1 −0.0287 0.4448 0.8874 0.073*
C2 −0.0533 (3) 0.5469 (3) 0.7396 (3) 0.0782 (8)
H2 −0.1613 0.5752 0.7672 0.094*
C3 0.0283 (3) 0.5822 (3) 0.6265 (3) 0.0793 (8)
H3 −0.0262 0.6340 0.5788 0.095*
C4 0.1878 (3) 0.5431 (3) 0.5823 (2) 0.0629 (6)
H4 0.2411 0.5676 0.5058 0.075*
C5 0.2670 (2) 0.4661 (2) 0.65526 (19) 0.0444 (4)
C6 0.1862 (2) 0.42945 (19) 0.76880 (18) 0.0443 (4)
C7 0.2853 (2) 0.34936 (19) 0.83467 (17) 0.0420 (4)
C8 0.4562 (2) 0.33081 (19) 0.76494 (16) 0.0378 (4)
C9 0.4971 (3) 0.4035 (2) 0.84540 (19) 0.0498 (5)
H9 0.4533 0.3873 0.9344 0.060*
C10 0.6786 (3) 0.3230 (3) 0.7914 (2) 0.0643 (6)
H10 0.7241 0.3823 0.7485 0.077*
H11 0.7118 0.2898 0.8595 0.077*
C11 0.5959 (2) 0.17760 (19) 0.73600 (16) 0.0378 (4)
C12 0.5630 (2) 0.1056 (2) 0.85934 (18) 0.0448 (4)
C13 0.6002 (2) −0.03474 (19) 0.69931 (17) 0.0396 (4)
C14 0.6242 (2) 0.07240 (18) 0.63836 (16) 0.0358 (4)
C15 0.6818 (2) 0.0617 (2) 0.50663 (17) 0.0394 (4)
H15 0.7009 0.1311 0.4639 0.047*
C16 0.7104 (2) −0.0557 (2) 0.43996 (18) 0.0439 (4)
C17 0.6825 (2) −0.1597 (2) 0.5010 (2) 0.0491 (5)
H17 0.7014 −0.2364 0.4533 0.059*
C18 0.6265 (2) −0.1503 (2) 0.6330 (2) 0.0492 (5)
H18 0.6074 −0.2198 0.6755 0.059*
C19 0.8815 (3) 0.0837 (3) 0.6825 (3) 0.0811 (8)
H22A 0.9067 0.0101 0.6227 0.122*
H22B 0.8732 0.0515 0.7634 0.122*
H19 0.9647 0.1094 0.6496 0.122*
C20 0.4289 (4) 0.5589 (3) 0.8460 (3) 0.0688 (7)
C21 0.1907 (6) 0.7722 (3) 0.8925 (5) 0.1379 (18)
H20A 0.1867 0.8208 0.9620 0.165*
H20B 0.2502 0.7944 0.8122 0.165*
C22 0.0345 (5) 0.8180 (3) 0.9074 (5) 0.1294 (15)
H21A −0.0217 0.9186 0.9177 0.194*
H21B −0.0205 0.7869 0.9820 0.194*
H21C 0.0389 0.7797 0.8328 0.194*

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0577 (3) 0.0831 (4) 0.0385 (3) −0.0329 (3) −0.0163 (2) −0.0048 (2)
S1 0.0478 (3) 0.0544 (3) 0.0399 (3) −0.0309 (2) −0.0221 (2) 0.0220 (2)
O1 0.0585 (9) 0.0682 (10) 0.0430 (8) −0.0321 (8) −0.0069 (7) 0.0171 (7)
O2 0.0964 (12) 0.0631 (9) 0.0399 (8) −0.0478 (9) −0.0388 (8) 0.0224 (7)
O3 0.158 (2) 0.0845 (14) 0.163 (2) −0.0951 (16) −0.0874 (18) 0.0504 (14)
O4 0.1093 (16) 0.0397 (9) 0.0970 (14) −0.0343 (10) −0.0535 (12) 0.0116 (8)
N1 0.0641 (11) 0.0461 (9) 0.0387 (9) −0.0316 (8) −0.0234 (8) 0.0172 (7)
N2 0.0486 (9) 0.0683 (11) 0.0483 (9) −0.0363 (9) −0.0274 (8) 0.0151 (8)
C1 0.0441 (11) 0.0570 (13) 0.0658 (14) −0.0223 (10) −0.0099 (10) −0.0021 (11)
C2 0.0431 (12) 0.0802 (18) 0.101 (2) −0.0206 (12) −0.0317 (14) 0.0097 (16)
C3 0.0645 (16) 0.0875 (19) 0.095 (2) −0.0303 (14) −0.0514 (16) 0.0261 (16)
C4 0.0618 (14) 0.0712 (15) 0.0665 (14) −0.0327 (12) −0.0387 (12) 0.0247 (12)
C5 0.0468 (11) 0.0438 (10) 0.0456 (11) −0.0231 (9) −0.0211 (9) 0.0070 (8)
C6 0.0425 (10) 0.0387 (10) 0.0453 (11) −0.0183 (8) −0.0138 (9) −0.0021 (8)
C7 0.0460 (10) 0.0368 (10) 0.0355 (10) −0.0215 (8) −0.0084 (8) 0.0001 (8)
C8 0.0491 (10) 0.0410 (10) 0.0314 (9) −0.0281 (8) −0.0180 (8) 0.0115 (7)
C9 0.0785 (14) 0.0518 (12) 0.0426 (11) −0.0435 (11) −0.0336 (10) 0.0153 (9)
C10 0.0840 (17) 0.0814 (16) 0.0663 (15) −0.0578 (14) −0.0467 (13) 0.0207 (12)
C11 0.0434 (10) 0.0463 (10) 0.0322 (9) −0.0260 (8) −0.0197 (8) 0.0136 (7)
C12 0.0554 (11) 0.0462 (11) 0.0364 (10) −0.0252 (9) −0.0234 (9) 0.0144 (8)
C13 0.0366 (9) 0.0421 (10) 0.0389 (10) −0.0175 (8) −0.0174 (8) 0.0087 (8)
C14 0.0322 (8) 0.0405 (9) 0.0348 (9) −0.0167 (7) −0.0159 (7) 0.0069 (7)
C15 0.0341 (9) 0.0495 (11) 0.0367 (9) −0.0211 (8) −0.0163 (8) 0.0084 (8)
C16 0.0334 (9) 0.0574 (12) 0.0380 (10) −0.0188 (9) −0.0153 (8) 0.0004 (8)
C17 0.0448 (11) 0.0481 (11) 0.0536 (12) −0.0193 (9) −0.0226 (9) −0.0035 (9)
C18 0.0494 (11) 0.0431 (11) 0.0589 (13) −0.0238 (9) −0.0254 (10) 0.0100 (9)
C19 0.0530 (14) 0.104 (2) 0.091 (2) −0.0317 (14) −0.0412 (14) 0.0100 (16)
C20 0.116 (2) 0.0585 (14) 0.0698 (16) −0.0582 (16) −0.0565 (16) 0.0242 (12)
C21 0.190 (5) 0.0420 (16) 0.224 (5) −0.044 (2) −0.142 (4) 0.033 (2)
C22 0.142 (4) 0.060 (2) 0.162 (4) −0.028 (2) −0.071 (3) 0.034 (2)

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Geometric parameters (Å, º)

Cl1—C16 1.7448 (19) C8—C11 1.559 (3)
S1—C5 1.755 (2) C9—C20 1.499 (3)
S1—C8 1.8308 (17) C9—C10 1.519 (3)
O1—C7 1.198 (2) C9—H9 0.9800
O2—C12 1.221 (2) C10—H10 0.9700
O3—C20 1.199 (3) C10—H11 0.9700
O4—C20 1.318 (3) C11—C14 1.506 (2)
O4—C21 1.454 (3) C11—C12 1.568 (2)
N1—C12 1.344 (3) C13—C18 1.374 (3)
N1—C13 1.399 (2) C13—C14 1.392 (2)
N1—H1N 0.81 (2) C14—C15 1.378 (2)
N2—C19 1.453 (3) C15—C16 1.384 (3)
N2—C10 1.459 (3) C15—H15 0.9300
N2—C11 1.460 (2) C16—C17 1.377 (3)
C1—C2 1.376 (4) C17—C18 1.382 (3)
C1—C6 1.388 (3) C17—H17 0.9300
C1—H1 0.9300 C18—H18 0.9300
C2—C3 1.379 (4) C19—H22A 0.9600
C2—H2 0.9300 C19—H22B 0.9600
C3—C4 1.374 (3) C19—H19 0.9600
C3—H3 0.9300 C21—C22 1.402 (6)
C4—C5 1.390 (3) C21—H20A 0.9700
C4—H4 0.9300 C21—H20B 0.9700
C5—C6 1.388 (3) C22—H21A 0.9600
C6—C7 1.460 (3) C22—H21B 0.9600
C7—C8 1.543 (3) C22—H21C 0.9600
C8—C9 1.558 (3)
C5—S1—C8 93.13 (9) N2—C11—C8 100.04 (14)
C20—O4—C21 116.5 (3) C14—C11—C8 119.28 (14)
C12—N1—C13 111.90 (16) N2—C11—C12 114.02 (14)
C12—N1—H1N 120.4 (16) C14—C11—C12 101.08 (14)
C13—N1—H1N 127.7 (16) C8—C11—C12 109.68 (14)
C19—N2—C10 114.16 (18) O2—C12—N1 126.35 (17)
C19—N2—C11 115.48 (18) O2—C12—C11 125.72 (17)
C10—N2—C11 107.82 (16) N1—C12—C11 107.87 (15)
C2—C1—C6 119.0 (2) C18—C13—C14 122.24 (17)
C2—C1—H1 120.5 C18—C13—N1 127.88 (17)
C6—C1—H1 120.5 C14—C13—N1 109.75 (16)
C1—C2—C3 119.9 (2) C15—C14—C13 119.77 (17)
C1—C2—H2 120.0 C15—C14—C11 130.86 (16)
C3—C2—H2 120.0 C13—C14—C11 109.00 (15)
C4—C3—C2 122.0 (2) C14—C15—C16 117.82 (17)
C4—C3—H3 119.0 C14—C15—H15 121.1
C2—C3—H3 119.0 C16—C15—H15 121.1
C3—C4—C5 118.1 (2) C17—C16—C15 122.18 (18)
C3—C4—H4 120.9 C17—C16—Cl1 118.56 (15)
C5—C4—H4 120.9 C15—C16—Cl1 119.27 (15)
C6—C5—C4 120.30 (19) C16—C17—C18 120.25 (19)
C6—C5—S1 114.19 (14) C16—C17—H17 119.9
C4—C5—S1 125.49 (17) C18—C17—H17 119.9
C5—C6—C1 120.6 (2) C13—C18—C17 117.71 (18)
C5—C6—C7 113.80 (17) C13—C18—H18 121.1
C1—C6—C7 125.61 (19) C17—C18—H18 121.1
O1—C7—C6 126.40 (18) N2—C19—H22A 109.5
O1—C7—C8 121.59 (18) N2—C19—H22B 109.5
C6—C7—C8 112.01 (15) H22A—C19—H22B 109.5
C7—C8—C9 113.63 (15) N2—C19—H19 109.5
C7—C8—C11 115.91 (14) H22A—C19—H19 109.5
C9—C8—C11 100.13 (14) H22B—C19—H19 109.5
C7—C8—S1 106.50 (12) O3—C20—O4 124.3 (3)
C9—C8—S1 110.40 (12) O3—C20—C9 124.8 (3)
C11—C8—S1 110.23 (12) O4—C20—C9 110.9 (2)
C20—C9—C10 114.2 (2) C22—C21—O4 110.4 (3)
C20—C9—C8 114.23 (17) C22—C21—H20A 109.6
C10—C9—C8 104.53 (16) O4—C21—H20A 109.6
C20—C9—H9 107.9 C22—C21—H20B 109.6
C10—C9—H9 107.9 O4—C21—H20B 109.6
C8—C9—H9 107.9 H20A—C21—H20B 108.1
N2—C10—C9 105.75 (16) C21—C22—H21A 109.5
N2—C10—H10 110.6 C21—C22—H21B 109.5
C9—C10—H10 110.6 H21A—C22—H21B 109.5
N2—C10—H11 110.6 C21—C22—H21C 109.5
C9—C10—H11 110.6 H21A—C22—H21C 109.5
H10—C10—H11 108.7 H21B—C22—H21C 109.5
N2—C11—C14 113.34 (15)
C6—C1—C2—C3 0.5 (4) S1—C8—C11—N2 71.69 (14)
C1—C2—C3—C4 −0.3 (5) C7—C8—C11—C14 68.6 (2)
C2—C3—C4—C5 −0.2 (4) C9—C8—C11—C14 −168.71 (15)
C3—C4—C5—C6 0.5 (3) S1—C8—C11—C14 −52.40 (18)
C3—C4—C5—S1 179.1 (2) C7—C8—C11—C12 −47.1 (2)
C8—S1—C5—C6 −4.41 (16) C9—C8—C11—C12 75.54 (16)
C8—S1—C5—C4 177.0 (2) S1—C8—C11—C12 −168.15 (12)
C4—C5—C6—C1 −0.3 (3) C13—N1—C12—O2 −170.6 (2)
S1—C5—C6—C1 −179.02 (16) C13—N1—C12—C11 6.5 (2)
C4—C5—C6—C7 −179.70 (19) N2—C11—C12—O2 49.3 (3)
S1—C5—C6—C7 1.6 (2) C14—C11—C12—O2 171.21 (19)
C2—C1—C6—C5 −0.2 (3) C8—C11—C12—O2 −62.0 (2)
C2—C1—C6—C7 179.1 (2) N2—C11—C12—N1 −127.93 (18)
C5—C6—C7—O1 −177.65 (19) C14—C11—C12—N1 −5.98 (19)
C1—C6—C7—O1 3.0 (3) C8—C11—C12—N1 120.84 (17)
C5—C6—C7—C8 2.9 (2) C12—N1—C13—C18 171.55 (19)
C1—C6—C7—C8 −176.43 (18) C12—N1—C13—C14 −4.3 (2)
O1—C7—C8—C9 −63.4 (2) C18—C13—C14—C15 −2.4 (3)
C6—C7—C8—C9 116.04 (17) N1—C13—C14—C15 173.75 (15)
O1—C7—C8—C11 51.8 (2) C18—C13—C14—C11 −176.13 (16)
C6—C7—C8—C11 −128.75 (16) N1—C13—C14—C11 0.0 (2)
O1—C7—C8—S1 174.81 (16) N2—C11—C14—C15 −46.9 (2)
C6—C7—C8—S1 −5.73 (18) C8—C11—C14—C15 70.5 (2)
C5—S1—C8—C7 5.57 (13) C12—C11—C14—C15 −169.32 (18)
C5—S1—C8—C9 −118.22 (15) N2—C11—C14—C13 125.89 (16)
C5—S1—C8—C11 132.08 (13) C8—C11—C14—C13 −116.74 (16)
C7—C8—C9—C20 −78.9 (2) C12—C11—C14—C13 3.47 (18)
C11—C8—C9—C20 156.84 (19) C13—C14—C15—C16 1.4 (2)
S1—C8—C9—C20 40.7 (2) C11—C14—C15—C16 173.56 (17)
C7—C8—C9—C10 155.62 (16) C14—C15—C16—C17 0.3 (3)
C11—C8—C9—C10 31.38 (17) C14—C15—C16—Cl1 −179.61 (13)
S1—C8—C9—C10 −84.80 (16) C15—C16—C17—C18 −1.0 (3)
C19—N2—C10—C9 −153.17 (19) Cl1—C16—C17—C18 178.82 (14)
C11—N2—C10—C9 −23.4 (2) C14—C13—C18—C17 1.6 (3)
C20—C9—C10—N2 −132.10 (19) N1—C13—C18—C17 −173.82 (18)
C8—C9—C10—N2 −6.6 (2) C16—C17—C18—C13 0.1 (3)
C19—N2—C11—C14 −59.7 (2) C21—O4—C20—O3 3.5 (4)
C10—N2—C11—C14 171.34 (16) C21—O4—C20—C9 −176.8 (3)
C19—N2—C11—C8 172.22 (17) C10—C9—C20—O3 −0.9 (4)
C10—N2—C11—C8 43.22 (18) C8—C9—C20—O3 −121.1 (3)
C19—N2—C11—C12 55.3 (2) C10—C9—C20—O4 179.43 (19)
C10—N2—C11—C12 −73.7 (2) C8—C9—C20—O4 59.2 (3)
C7—C8—C11—N2 −167.27 (14) C20—O4—C21—C22 162.3 (3)
C9—C8—C11—N2 −44.62 (16)

(II) Ethyl (2S*,2'R*)-5''-chloro-1'-methyl-2'',3-dioxo-2,3-dihydrodispiro[1-benzothiophene-2,3'-pyrrolidine-2',3''-indoline]-4'-carboxylate . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.81 (2) 2.03 (2) 2.842 (2) 172 (2)
C18—H18···O3ii 0.93 2.57 3.496 (3) 171
C2—H2···Cgiii 0.93 2.83 3.649 (2) 155

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, y−1, z; (iii) −x, −y, −z+1.

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cordell, G. (1981). In Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.
  4. Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438–o1440.
  5. Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.
  6. Kannan, P. S., Lanka, S., Thennarasu, S., Vimala, G. & SubbiahPandi, A. (2013a). Acta Cryst. E69, o854–o855. [DOI] [PMC free article] [PubMed]
  7. Kannan, P. S., Yuvaraj, P. S., Manivannan, K., Reddy, B. S. R. & SubbiahPandi, A. (2013b). Acta Cryst. E69, o825–o826. [DOI] [PMC free article] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.
  13. Waldmann, H. (1995). Synlett. pp. 133–141.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814015426/su2728sup1.cif

e-70-00094-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015426/su2728Isup2.hkl

e-70-00094-Isup2.hkl (205.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814015426/su2728IIsup3.hkl

e-70-00094-IIsup3.hkl (207.9KB, hkl)

CCDC references: 1011623, 1011624

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES