Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 11;70(Pt 8):o860. doi: 10.1107/S1600536814015153

4-Fluoro-N-(4-hy­droxy­benzyl­idene)aniline

L Jothi a, G Anuradha b,*, G Vasuki b,*, R Ramesh Babu c, K Ramamurthi d
PMCID: PMC4158537  PMID: 25249910

Abstract

In the title compound, C13H10FNO, the benzene ring planes are inclined at an angle of 50.52 (8)°. A characteristic of aromatic Schiff bases with N-aryl substituents is that the terminal phenyl rings are twisted relative to the plane of the HC=N link between them. In this case, the HC=N unit makes dihedral angles of 10.6 (2) and 40.5 (2)° with the hy­droxy­benzene and fluro­benzene rings, respectively. In the crystal, O—H⋯N and C—H⋯F hydrogen bonds lead to the formation of chains along the c- and b-axis directions, respectively. C—H⋯π contacts link mol­ecules along a and these contacts combine to generate a three-dimensional network with mol­ecules stacked along the b-axis direction.

Keywords: crystal structure

Related literature  

For manufacturing and pharmaceutical applications of Schiff base compounds, see: Akkurt et al. (2013). For related structures, see: Li et al. (2008); Zhang (2010); Jothi et al., (2012a ,b ). For standard bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o860-scheme1.jpg

Experimental  

Crystal data  

  • C13H10FNO

  • M r = 215.22

  • Orthorhombic, Inline graphic

  • a = 11.0153 (8) Å

  • b = 9.8596 (7) Å

  • c = 9.5476 (6) Å

  • V = 1036.93 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.971, T max = 0.980

  • 6612 measured reflections

  • 1430 independent reflections

  • 1282 reflections with I > 2σ(I)

  • R int = 0.033

  • θmax = 23.4°

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.078

  • S = 1.11

  • 1430 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814015153/sj5413sup1.cif

e-70-0o860-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015153/sj5413Isup2.hkl

e-70-0o860-Isup2.hkl (78.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015153/sj5413Isup3.cml

CCDC reference: 924015

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.94 2.756 (2) 176
C9—H9⋯F1ii 0.93 2.61 3.263 (3) 127
C13—H13⋯Cg iii 0.93 2.83 3.710 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai-36, for the data collection.

supplementary crystallographic information

S1. Comment

Schiff base compounds have been used as fine chemicals and pharmaceutical substrates (Akkurt et al., 2013). They are important ligands in coordination chemistry due to their ease of preparation and ability to be modified both electronically and sterically (Li et al., 2008 and Zhang, 2010). As a part of our study into the co-ordination behaviour of ligands having a 4-hydroxy substituent on the benzylidene fragment, X-ray structural analysis of the title compound was carried out, and the results are reported herein.

The title compound, (I), contains two benzene rings bridged by an HC ═N imine unit, with the planes of the rings inclined at an angle of 50.52 (8)°, showing significant deviation of the molecule from planarity as observed in the related structures 4-bromo-N-(4-hydroxybenzylidene)aniline and 4-[(E)-(4-methylphenyl)iminomethyl]phenol (Jothi et al., 2012a,b). The molecule exists in the solid state in an E-configuration with respect to the C7 ═N1 double bond as indicated by the torsion angle C4–C7–N1–C8= -171.2 (2)°. The C4–C7 [1.456 (3) Å] and N1–C8 [1.430 (3) Å] distances confirm a degree of electron delocalization between the benzene rings, and the molecule can be regarded as a partially delocalized π-electron system. All other bond lengths are within the expected ranges (Allen et al., 1987).

In the crystal, the molecules are linked by O1—H1···N1 hydrogen bonds to form infinite one-dimensional zigzag chains with graph set notation C(8) (Bernstein et al.,, 1995) along the c axis, Fig 2. Weaker C9—H9···F1 contacts also propagate C(5) zigzag chains along b, Fig 3, with molecules in this chain forming a V-shaped stacking motif when viewed along a, Fig 4. Finally C13—H13···π contacts also form chains along a, Fig 5. These contacts combine to stack the molecules in a head to tail zigzag fashion along the b axis direction, Fig 6.

S2. Experimental

4-Fluoro-4-hydroxybenzylideneaniline was prepared by mixing equimolar amounts of 4-hydroxy benzaldehyde and 4-fluoro aniline in ethanol (40 ml). The reaction mixture was refluxed for about 6 h and the resulting solution was slowly evaporated at room temperature. After three days single crystals of the title compound, suitable for X-ray structure analysis were obtained.

S3. Refinement

All the H atoms were positioned geometrically and treated as riding atoms: E—H = 0.93, 0.96, 0.97 and 0.82 Å for CH, CH3, CH2 and OH H atoms, respectively, with Uiso(H) = k × Ueq(C,O), where k = 1.5 for CH3 and OH H atoms and = 1.2 for other H atoms. The best crystal investigated was still of poor quality and very weakly diffracting, with no usable data obtained above θ = 23.5 °. Nonetheless the structure solved readily and refined to give acceptable uncertainties on the metrical data. Because of the very weak data, the final data/parameter ratio is considerably less than an ideal value.

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

: Chains formed along the c axis by O—H···N hydrogen bonds.

Fig. 3.

Fig. 3.

Chains formed along the b axis by C—H···F hydrogen bonds.

Fig. 4.

Fig. 4.

: C—H···F chains viewed along the a axis, showing V shaped stacks.

Fig. 5.

Fig. 5.

Chains formed along the a axis by C—H···π contacts.

Fig. 6.

Fig. 6.

: Overall packing for the compound (I).

Crystal data

C13H10FNO F(000) = 448
Mr = 215.22 Dx = 1.379 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 7057 reflections
a = 11.0153 (8) Å θ = 1.9–23.4°
b = 9.8596 (7) Å µ = 0.10 mm1
c = 9.5476 (6) Å T = 296 K
V = 1036.93 (12) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker KappaCCD APEXII diffractometer 1430 independent reflections
Radiation source: fine-focus sealed tube 1282 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
ω and φ scan θmax = 23.4°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.971, Tmax = 0.980 k = −10→10
6612 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.103P] where P = (Fo2 + 2Fc2)/3
1430 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.13 e Å3
1 restraint Δρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.43955 (18) 0.3194 (2) 0.3175 (2) 0.0396 (6)
C2 0.48448 (17) 0.44366 (19) 0.2735 (3) 0.0385 (5)
H2 0.5578 0.4754 0.3091 0.046*
C3 0.42173 (17) 0.5198 (2) 0.1781 (3) 0.0385 (5)
H3 0.4526 0.6034 0.1502 0.046*
C4 0.31198 (18) 0.4740 (2) 0.1219 (2) 0.0366 (5)
C5 0.26905 (18) 0.3484 (2) 0.1656 (3) 0.0448 (6)
H5 0.1963 0.3159 0.1295 0.054*
C6 0.33162 (18) 0.2716 (2) 0.2608 (3) 0.0467 (6)
H6 0.3018 0.1873 0.2875 0.056*
C7 0.23844 (18) 0.5576 (2) 0.0292 (3) 0.0393 (5)
H7 0.1598 0.5287 0.0100 0.047*
C8 0.18716 (17) 0.7493 (2) −0.1001 (3) 0.0371 (5)
C9 0.2246 (2) 0.8203 (2) −0.2169 (3) 0.0462 (6)
H9 0.3051 0.8148 −0.2457 0.055*
C10 0.1439 (2) 0.8992 (2) −0.2914 (3) 0.0546 (6)
H10 0.1687 0.9455 −0.3713 0.066*
C11 0.0271 (2) 0.9080 (2) −0.2453 (3) 0.0561 (7)
C12 −0.0118 (2) 0.8445 (3) −0.1267 (3) 0.0554 (7)
H12 −0.0913 0.8554 −0.0957 0.067*
C13 0.06838 (18) 0.7641 (2) −0.0534 (3) 0.0470 (6)
H13 0.0430 0.7196 0.0274 0.056*
N1 0.27379 (14) 0.66729 (17) −0.02753 (19) 0.0379 (4)
O1 0.49408 (13) 0.24314 (15) 0.41734 (19) 0.0509 (4)
H1 0.5637 0.2701 0.4294 0.076*
F1 −0.05262 (16) 0.98467 (18) −0.3178 (2) 0.0888 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0291 (11) 0.0482 (13) 0.0415 (15) 0.0067 (10) 0.0037 (9) −0.0017 (10)
C2 0.0253 (10) 0.0462 (12) 0.0441 (14) −0.0021 (9) −0.0006 (10) −0.0035 (11)
C3 0.0299 (11) 0.0417 (11) 0.0438 (14) −0.0023 (9) 0.0012 (11) −0.0019 (10)
C4 0.0284 (11) 0.0433 (12) 0.0380 (14) 0.0013 (9) 0.0023 (9) −0.0036 (10)
C5 0.0280 (11) 0.0515 (12) 0.0547 (16) −0.0028 (9) −0.0059 (10) −0.0035 (12)
C6 0.0328 (12) 0.0468 (12) 0.0606 (17) −0.0038 (9) 0.0004 (11) 0.0034 (12)
C7 0.0273 (10) 0.0473 (12) 0.0432 (14) 0.0004 (10) −0.0030 (9) −0.0087 (12)
C8 0.0312 (10) 0.0407 (11) 0.0395 (13) 0.0008 (9) −0.0042 (10) −0.0055 (10)
C9 0.0421 (12) 0.0463 (12) 0.0503 (16) −0.0015 (10) 0.0065 (11) −0.0027 (12)
C10 0.0680 (17) 0.0474 (13) 0.0483 (17) 0.0061 (11) 0.0002 (13) 0.0047 (12)
C11 0.0619 (16) 0.0514 (14) 0.0549 (18) 0.0215 (12) −0.0119 (13) −0.0033 (13)
C12 0.0403 (12) 0.0686 (16) 0.0574 (18) 0.0146 (12) −0.0034 (12) −0.0081 (14)
C13 0.0367 (12) 0.0595 (14) 0.0447 (16) 0.0075 (11) 0.0020 (10) 0.0027 (11)
N1 0.0297 (8) 0.0458 (9) 0.0383 (11) 0.0018 (8) 0.0003 (8) −0.0037 (9)
O1 0.0353 (7) 0.0614 (9) 0.0561 (11) −0.0015 (8) −0.0049 (7) 0.0140 (9)
F1 0.0971 (12) 0.0911 (11) 0.0781 (12) 0.0487 (10) −0.0175 (10) 0.0104 (10)

Geometric parameters (Å, º)

C1—O1 1.355 (3) C8—C9 1.379 (3)
C1—C2 1.386 (3) C8—C13 1.390 (3)
C1—C6 1.389 (3) C8—N1 1.430 (3)
C2—C3 1.368 (3) C9—C10 1.379 (3)
C2—H2 0.9300 C9—H9 0.9300
C3—C4 1.398 (3) C10—C11 1.362 (3)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.389 (3) C11—F1 1.350 (3)
C4—C7 1.456 (3) C11—C12 1.363 (4)
C5—C6 1.369 (3) C12—C13 1.378 (3)
C5—H5 0.9300 C12—H12 0.9300
C6—H6 0.9300 C13—H13 0.9300
C7—N1 1.270 (3) O1—H1 0.8200
C7—H7 0.9300
O1—C1—C2 123.07 (19) C9—C8—C13 119.2 (2)
O1—C1—C6 117.74 (19) C9—C8—N1 118.62 (18)
C2—C1—C6 119.2 (2) C13—C8—N1 122.1 (2)
C3—C2—C1 120.44 (19) C10—C9—C8 120.7 (2)
C3—C2—H2 119.8 C10—C9—H9 119.7
C1—C2—H2 119.8 C8—C9—H9 119.7
C2—C3—C4 121.00 (19) C11—C10—C9 118.6 (2)
C2—C3—H3 119.5 C11—C10—H10 120.7
C4—C3—H3 119.5 C9—C10—H10 120.7
C5—C4—C3 117.9 (2) F1—C11—C10 119.0 (3)
C5—C4—C7 119.87 (18) F1—C11—C12 118.6 (2)
C3—C4—C7 122.09 (18) C10—C11—C12 122.4 (2)
C6—C5—C4 121.40 (19) C11—C12—C13 119.0 (2)
C6—C5—H5 119.3 C11—C12—H12 120.5
C4—C5—H5 119.3 C13—C12—H12 120.5
C5—C6—C1 120.1 (2) C12—C13—C8 120.1 (2)
C5—C6—H6 119.9 C12—C13—H13 120.0
C1—C6—H6 119.9 C8—C13—H13 120.0
N1—C7—C4 124.80 (18) C7—N1—C8 118.89 (16)
N1—C7—H7 117.6 C1—O1—H1 109.5
C4—C7—H7 117.6
O1—C1—C2—C3 −176.2 (2) N1—C8—C9—C10 179.1 (2)
C6—C1—C2—C3 1.7 (3) C8—C9—C10—C11 1.5 (3)
C1—C2—C3—C4 −0.7 (3) C9—C10—C11—F1 −179.8 (2)
C2—C3—C4—C5 −0.3 (3) C9—C10—C11—C12 1.7 (4)
C2—C3—C4—C7 174.8 (2) F1—C11—C12—C13 178.8 (2)
C3—C4—C5—C6 0.1 (3) C10—C11—C12—C13 −2.6 (4)
C7—C4—C5—C6 −175.1 (2) C11—C12—C13—C8 0.4 (4)
C4—C5—C6—C1 1.0 (4) C9—C8—C13—C12 2.6 (3)
O1—C1—C6—C5 176.2 (2) N1—C8—C13—C12 179.8 (2)
C2—C1—C6—C5 −1.9 (3) C4—C7—N1—C8 −171.2 (2)
C5—C4—C7—N1 −172.8 (2) C9—C8—N1—C7 −145.9 (2)
C3—C4—C7—N1 12.2 (3) C13—C8—N1—C7 36.9 (3)
C13—C8—C9—C10 −3.6 (3)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 1.94 2.756 (2) 176
C9—H9···F1ii 0.93 2.61 3.263 (3) 127
C13—H13···Cgiii 0.93 2.83 3.710 (3) 157

Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) x+1/2, −y+2, z; (iii) x−1/2, −y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5413).

References

  1. Akkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Tahir, M. N. (2013). Acta Cryst. E69, o247. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammeer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Jothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012a). Acta Cryst. E68, o772. [DOI] [PMC free article] [PubMed]
  7. Jothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012b). Acta Cryst. E68, o897. [DOI] [PMC free article] [PubMed]
  8. Li, J., Liang, Z.-P. & Tai, X.-S. (2008). Acta Cryst. E64, o2319. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Zhang, F.-G. (2010). Acta Cryst. E66, o382. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814015153/sj5413sup1.cif

e-70-0o860-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015153/sj5413Isup2.hkl

e-70-0o860-Isup2.hkl (78.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015153/sj5413Isup3.cml

CCDC reference: 924015

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES