The structure of a hydroacridine with significant pharmaceutical potential is reported. The acridinone ring system is in the shape of a shallow V with the majority of the ring system substituents on its convex surface; a plethora of classical and non-classical hydrogen bonds stack the molecules into interconnected columns.
Keywords: crystal structure, acridine, hydroacridine
Abstract
The title compound C25H29BrClNO4, comprises a 3,3,6,6-tetramethyltetrahydroacridine-1,8-dione ring system that carries a hydroxyethyl substituent on the acridine N atom and a 3-bromo-5-chloro-2-hydroxyphenyl ring on the central methine C atom of the dihydropyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 89.84 (6)° and this conformation is stabilized by an intramolecular O—H⋯O hydrogen bond between the hydroxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. In the crystal, O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds combine to stack molecules in interconnected columns propagating along the a-axis direction.
Chemical context
Acridine derivatives occupy an important position in medicinal chemistry due to their wide range of biological applications. They exhibit fungicidal (Misra & Bahel, 1984 ▶; Srivastava et al., 1985 ▶), anti-cancer (Sondhi et al., 2004 ▶; Sugaya et al., 1994 ▶; Kimura et al., 1993 ▶), anti-parasitic (Ngadi et al., 1993 ▶), anti-inflammatory and anti-microbial (Shul’ga et al., 1974 ▶; Gaiukevich et al., 1973 ▶) activity. They are also components of effective analgesics (Taraporewala & Kauffman, 1990 ▶; Gaidukevich et al., 1987 ▶). Other pharmaceutically active acridine derivatives (e.g. Mepacrine, Azacrine, Proflavine, and Aminacrine) also demonstrate antimalarial and antibacterial activity (Denny et al., 1983 ▶).
Recently hydroacridine derivatives were found to have significant antimicrobial activity and to act as potassium channel blockers (Shaikh et al., 2010 ▶; Miyase et al., 2009 ▶). A recent investigation has also shown hydroacridines to act as inhibitors of sirtuins (class III NAD-dependent deacetylases) that are considered to be important targets for cancer therapeutics (Nakhi et al., 2013 ▶). In light of this interest and as part of our on-going studies of the synthesis and biological assessment of new hydroacridinone derivatives, we report here the synthesis and crystal structure of the title compound, (1).
Structural commentary
The structure of (1) is shown in Fig. 1 ▶. The 3,3,6,6-tetramethyl-tetrahydroacridine-1,8-dione ring system is substituted at the central methine C9 atom by a 3-bromo-5-chloro-2-hydroxyphenyl ring and carries a hydroxyethyl substituent on the acridine N atom. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.336 Å for the 13 C atoms and one N atom of the acridine unit. This plane is almost orthogonal to the benzene ring plane [dihedral angle = 89.84 (6)°], a conformation that is stabilized by a strong intramolecular O92—H92⋯O8 hydrogen bond between the two systems (Table 1 ▶). Both the 3-bromo-5-chloro-2-hydroxyphenyl and hydroxyethyl substituents point in the same direction with respect to the acridine plane. Furthermore, one methyl group is axial and the other equatorial with respect to the two outer cyclohexenone rings of the acridinedione and again, the axial methyl substituents are found on the same face of the acridinedione ring system. Overall this ring system is V-shaped with the substituents mentioned above on the convex surface of the shallow V. The outer cyclohexenone rings both adopt flattened chair configurations with the C3 and C6 atoms each 0.646 (4) Å, in the same direction, from the best-fit planes through the remaining five C atoms. In contrast, the central C9/N10/C11–C14 ring can best be described as a flattened boat with C9 and N10 0.423 (4) and 0.154 (4) Å, respectively, from the best-fit plane through the remaining four C atoms. The bond lengths and angles in the molecule of (1) agree reasonably well with those found in closely related molecules (Abdelhamid et al., 2011 ▶; Khalilov et al., 2011 ▶).
Figure 1.
The structure of (1) with ellipsoids drawn at the 50% probability level.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O92—H92⋯O8 | 0.82 (4) | 1.81 (4) | 2.613 (3) | 166 (4) |
| O102—H102⋯O1i | 0.81 (5) | 2.01 (5) | 2.808 (3) | 167 (5) |
| C61—H61B⋯Br93ii | 0.98 | 2.87 | 3.720 (3) | 146 |
| C31—H31B⋯O92iii | 0.98 | 2.65 | 3.532 (4) | 150 |
| C5—H5B⋯O92iv | 0.99 | 2.71 | 3.479 (4) | 135 |
| C7—H7A⋯O92iv | 0.99 | 2.44 | 3.346 (4) | 151 |
| C4—H4A⋯Cl95iv | 0.99 | 2.88 | 3.868 (3) | 173 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Supramolecular features
The crystal structure of (1) features O102—H102⋯O1 hydrogen bonds, which link the molecules into zigzag chains parallel to the b axis (Fig. 2 ▶). Weak C4—H4A⋯Cl95 together with C5—H5B⋯O92 and C7—H7A⋯O92 hydrogen bonds to the same acceptor oxygen atom form
(15),
(13) and
(6) rings. These, combined with weaker inversion-related C61—H61B⋯Br93 contacts [which in turn generate
(22) motifs], generate sheets of molecules lying parallel to the (
21) plane, as shown in Fig. 3 ▶. C31—H31B⋯O92 hydrogen bonds form additional chains of molecules along the ac diagonal (Fig. 4 ▶). Overall, these interactions stack the molecules into interconnected columns along the a-axis direction (Fig. 5 ▶).
Figure 2.

Zigzag chains of (1) parallel to the b axis with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1 ▶. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.
Figure 3.
Sheets of molecules of (1) parallel to (
21) with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1 ▶. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.
Figure 4.
Chains of molecules of (1) along the diagonal of the ac plane with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1 ▶. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.
Figure 5.
Overall packing for (1) viewed along the a axis with hydrogen bonds drawn as dashed lines.
Database survey
Numerous structures of acridine and its derivatives have been reported previously, with 373 entries in the current database (Version 5.35, November 2013 with 1 update; Allen, 2002 ▶). However, far fewer structures of derivatives of the seminal hydroacridine, 3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinedione (Natarajan & Mathews, 2011 ▶) are found with only 25 unique structures of derivatives with an aryl substituent on the methine C atom and an alkyl or aryl substituent on the N atom. Of these, aromatic substituents on the N atom predominate with 15 entries (see, for example, Nakhi et al. 2013 ▶; Shi et al. 2008 ▶; Wang et al. 2003 ▶). Two structures, 10-(2-hydroxyethyl)-9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Abdelhamid et al., 2011 ▶) and 9-(5-bromo-2-hydroxyphenyl)-10-(2-hydroxypropyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Khalilov et al., 2011 ▶) closely resemble (1), each with 2-hydroxy substituents on the aromatic rings that form intramolecular hydrogen bonds to one of the two keto O atoms in each molecule. In the first instance, the 2-hydroxyethyl substituent on the N atom is identical to that for (1), while the 2-hydroxypropyl substituent in the second analogue is closely related.
Synthesis and crystallization
A mixture of 1 mmol (235.5 mg) 3-bromo-5-chloro-2-hydroxybenzaldehyde, 2 mmol (280 mg) 5,5-dimethylcyclohexane-1,3-dione and 1 mmol (61 mg) amino-ethanol in 30 ml of ethanol was refluxed for 12 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting solid product was recrystallized from a mixture of ethanol/acetone (10:1 v:v) to afford yellow needles of the title compound. M.p. 513 K, 82% yield.
IR cm−1: OH phenolic 3400, OH alcoholic 3335, Ar 3001, CH-aliphatic 2882, CO 1694, C=C 1591, C—Br 605, C—Cl 738; 1H NMR: δ 10.01 (s, 1H, OH phenolic), 7.3 (d, 2H, Ar), 6.7 (d, 1H, C9), 5.00 (s, 1H, OH alcoholic), 4.02 (t, 2H, C2), 3.75 (t, 2H, C7), 2.95 (d, 2H, C4), 2.7(d, 2H, C5), 2.2 (m, 4H, ethyl group), 1–1.2 (m, 12H, 4 methyl groups); 13C NMR: δ 199, 200 (C=O, C1, C8), 145, 132 and 130 (C=C Ar), 110, 112 (C=C, in acridine fused rings), 122 (C—N), 62 (C—Br), 73 (C—Cl), 50 (C—OH), 20, 28, 30 and 32 (C—C of CH2CH2 and 4CH3); MS: m/z 522 (100), 523 (30), 524 (100), 525 (30), 443 (56), 363 (39), 271 (42), 175 (29), 94 (74). Analysis calculated for C25H29BrClNO4 (522.85): C 57.43, H 5.59, Br 15.28, Cl 6.78, N 2.68%; found: C 57.41, H 5.60, Br 15.31, Cl 6.81, N 2.71.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▶. The H atoms of the two hydroxy substituents were located in an electron density map and their coordinates were freely refined with U iso = 1.5U eq (O). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å U iso = 1.2U eq (C) for aromatic, 0.99 Å, U iso = 1.2U eq (C) for methylene, 1.00 Å, U iso = 1.2U eq (C) for methine, and 0.98 Å, U iso = 1.5U eq (C) for methyl H atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C25H29BrClNO4 |
| M r | 522.85 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 100 |
| a, b, c (Å) | 10.5373 (3), 17.1597 (3), 13.7278 (4) |
| β (°) | 107.908 (3) |
| V (Å3) | 2361.96 (10) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 3.67 |
| Crystal size (mm) | 0.19 × 0.07 × 0.06 |
| Data collection | |
| Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) |
| Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2013 ▶) |
| T min, T max | 0.733, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 20233, 4922, 4128 |
| R int | 0.076 |
| (sin θ/λ)max (Å−1) | 0.631 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.108, 1.03 |
| No. of reflections | 4922 |
| No. of parameters | 299 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.67, −0.57 |
Supplementary Material
Crystal structure: contains datablock(s) global, 1. DOI: 10.1107/S1600536814009556/hb0002sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009556/hb0002Isup2.hkl
CCDC reference: 1004259
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank Manchester Metropolitan University for supporting this study and the University of Otago for the purchase of the diffractometer.
supplementary crystallographic information
Crystal data
| C25H29BrClNO4 | F(000) = 1080 |
| Mr = 522.85 | Dx = 1.470 Mg m−3 |
| Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
| a = 10.5373 (3) Å | Cell parameters from 8397 reflections |
| b = 17.1597 (3) Å | θ = 4.3–76.4° |
| c = 13.7278 (4) Å | µ = 3.67 mm−1 |
| β = 107.908 (3)° | T = 100 K |
| V = 2361.96 (10) Å3 | Needle, yellow |
| Z = 4 | 0.19 × 0.07 × 0.06 mm |
Data collection
| Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 4922 independent reflections |
| Radiation source: SuperNova (Cu) X-ray Source | 4128 reflections with I > 2σ(I) |
| Detector resolution: 5.1725 pixels mm-1 | Rint = 0.076 |
| ω scans | θmax = 76.7°, θmin = 4.3° |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | h = −13→12 |
| Tmin = 0.733, Tmax = 1.000 | k = −21→21 |
| 20233 measured reflections | l = −17→15 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0431P)2 + 3.0935P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.03 | (Δ/σ)max = 0.001 |
| 4922 reflections | Δρmax = 0.67 e Å−3 |
| 299 parameters | Δρmin = −0.57 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.2756 (3) | 0.38420 (16) | 0.7425 (2) | 0.0165 (5) | |
| O1 | 0.2646 (2) | 0.41046 (12) | 0.65603 (15) | 0.0220 (4) | |
| C2 | 0.2254 (3) | 0.42807 (16) | 0.8181 (2) | 0.0183 (6) | |
| H2A | 0.1555 | 0.4653 | 0.7808 | 0.022* | |
| H2B | 0.2996 | 0.4584 | 0.8644 | 0.022* | |
| C3 | 0.1680 (3) | 0.37339 (17) | 0.8817 (2) | 0.0182 (6) | |
| C31 | 0.0446 (3) | 0.33120 (18) | 0.8117 (2) | 0.0218 (6) | |
| H31A | −0.0221 | 0.3697 | 0.7760 | 0.033* | |
| H31B | 0.0068 | 0.2973 | 0.8531 | 0.033* | |
| H31C | 0.0707 | 0.2997 | 0.7615 | 0.033* | |
| C32 | 0.1278 (3) | 0.42057 (18) | 0.9624 (2) | 0.0224 (6) | |
| H32A | 0.2058 | 0.4486 | 1.0058 | 0.034* | |
| H32B | 0.0938 | 0.3852 | 1.0046 | 0.034* | |
| H32C | 0.0582 | 0.4580 | 0.9282 | 0.034* | |
| C4 | 0.2757 (3) | 0.31371 (16) | 0.9365 (2) | 0.0169 (5) | |
| H4A | 0.3401 | 0.3394 | 0.9958 | 0.020* | |
| H4B | 0.2327 | 0.2709 | 0.9631 | 0.020* | |
| C5 | 0.6375 (3) | 0.13867 (17) | 0.9129 (2) | 0.0187 (6) | |
| H5A | 0.5984 | 0.0944 | 0.9400 | 0.022* | |
| H5B | 0.6987 | 0.1665 | 0.9719 | 0.022* | |
| C6 | 0.7183 (3) | 0.10665 (17) | 0.8456 (2) | 0.0199 (6) | |
| C61 | 0.6375 (3) | 0.04386 (18) | 0.7733 (2) | 0.0272 (7) | |
| H61A | 0.6193 | 0.0006 | 0.8137 | 0.041* | |
| H61B | 0.6886 | 0.0247 | 0.7294 | 0.041* | |
| H61C | 0.5531 | 0.0661 | 0.7307 | 0.041* | |
| C62 | 0.8489 (3) | 0.0709 (2) | 0.9150 (3) | 0.0284 (7) | |
| H62A | 0.8281 | 0.0300 | 0.9576 | 0.043* | |
| H62B | 0.9024 | 0.1115 | 0.9591 | 0.043* | |
| H62C | 0.8993 | 0.0483 | 0.8726 | 0.043* | |
| C7 | 0.7509 (3) | 0.17336 (18) | 0.7830 (2) | 0.0210 (6) | |
| H7A | 0.8091 | 0.2117 | 0.8300 | 0.025* | |
| H7B | 0.8000 | 0.1525 | 0.7377 | 0.025* | |
| C8 | 0.6261 (3) | 0.21319 (16) | 0.7195 (2) | 0.0179 (5) | |
| O8 | 0.6181 (2) | 0.23890 (12) | 0.63285 (15) | 0.0211 (4) | |
| C9 | 0.3948 (3) | 0.26576 (16) | 0.7015 (2) | 0.0146 (5) | |
| H9 | 0.4202 | 0.3042 | 0.6560 | 0.018* | |
| N10 | 0.4338 (2) | 0.21496 (13) | 0.90561 (17) | 0.0150 (4) | |
| C101 | 0.4242 (3) | 0.17121 (17) | 0.9961 (2) | 0.0193 (6) | |
| H10A | 0.3974 | 0.2072 | 1.0427 | 0.023* | |
| H10B | 0.5128 | 0.1494 | 1.0337 | 0.023* | |
| C102 | 0.3240 (3) | 0.10579 (18) | 0.9650 (2) | 0.0243 (6) | |
| H10C | 0.3186 | 0.0776 | 1.0265 | 0.029* | |
| H10D | 0.2347 | 0.1272 | 0.9288 | 0.029* | |
| O102 | 0.3641 (3) | 0.05431 (14) | 0.9002 (2) | 0.0338 (6) | |
| H102 | 0.318 (5) | 0.015 (3) | 0.888 (4) | 0.051* | |
| C11 | 0.3399 (3) | 0.30933 (16) | 0.7750 (2) | 0.0151 (5) | |
| C12 | 0.3510 (3) | 0.27926 (16) | 0.8694 (2) | 0.0156 (5) | |
| C13 | 0.5263 (3) | 0.19368 (15) | 0.8568 (2) | 0.0153 (5) | |
| C14 | 0.5183 (3) | 0.22261 (16) | 0.7631 (2) | 0.0155 (5) | |
| C91 | 0.2933 (3) | 0.20862 (16) | 0.6350 (2) | 0.0152 (5) | |
| C92 | 0.2973 (3) | 0.18932 (16) | 0.5361 (2) | 0.0155 (5) | |
| O92 | 0.3860 (2) | 0.22101 (12) | 0.49447 (15) | 0.0185 (4) | |
| H92 | 0.453 (4) | 0.232 (2) | 0.542 (3) | 0.028* | |
| C93 | 0.2039 (3) | 0.13599 (17) | 0.4773 (2) | 0.0167 (5) | |
| Br93 | 0.20688 (3) | 0.10910 (2) | 0.34475 (2) | 0.01878 (10) | |
| C94 | 0.1101 (3) | 0.10051 (15) | 0.5147 (2) | 0.0156 (5) | |
| H94 | 0.0464 | 0.0652 | 0.4736 | 0.019* | |
| C95 | 0.1116 (3) | 0.11794 (16) | 0.6140 (2) | 0.0165 (5) | |
| Cl95 | 0.00165 (7) | 0.07019 (4) | 0.66614 (5) | 0.01978 (15) | |
| C96 | 0.2010 (3) | 0.17139 (16) | 0.6729 (2) | 0.0157 (5) | |
| H96 | 0.1993 | 0.1828 | 0.7402 | 0.019* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0146 (12) | 0.0157 (13) | 0.0207 (13) | −0.0030 (10) | 0.0075 (10) | −0.0029 (10) |
| O1 | 0.0287 (11) | 0.0196 (10) | 0.0212 (10) | 0.0037 (9) | 0.0128 (8) | 0.0039 (8) |
| C2 | 0.0217 (14) | 0.0140 (13) | 0.0223 (13) | −0.0013 (11) | 0.0114 (11) | −0.0024 (11) |
| C3 | 0.0179 (13) | 0.0196 (13) | 0.0190 (13) | −0.0008 (11) | 0.0085 (11) | −0.0019 (11) |
| C31 | 0.0183 (14) | 0.0254 (15) | 0.0241 (14) | −0.0015 (12) | 0.0100 (11) | −0.0023 (12) |
| C32 | 0.0257 (15) | 0.0213 (14) | 0.0243 (14) | 0.0003 (12) | 0.0139 (12) | −0.0013 (12) |
| C4 | 0.0182 (13) | 0.0160 (13) | 0.0190 (12) | −0.0009 (11) | 0.0094 (10) | −0.0004 (11) |
| C5 | 0.0184 (14) | 0.0154 (13) | 0.0208 (13) | 0.0016 (11) | 0.0039 (10) | 0.0017 (11) |
| C6 | 0.0187 (14) | 0.0177 (14) | 0.0230 (14) | 0.0046 (11) | 0.0058 (11) | −0.0007 (11) |
| C61 | 0.0315 (17) | 0.0190 (14) | 0.0308 (16) | 0.0009 (13) | 0.0094 (13) | −0.0066 (13) |
| C62 | 0.0243 (16) | 0.0259 (16) | 0.0339 (17) | 0.0087 (13) | 0.0070 (13) | 0.0032 (13) |
| C7 | 0.0176 (14) | 0.0244 (15) | 0.0235 (14) | 0.0034 (12) | 0.0099 (11) | −0.0004 (12) |
| C8 | 0.0187 (13) | 0.0147 (13) | 0.0213 (13) | −0.0036 (11) | 0.0076 (10) | −0.0067 (11) |
| O8 | 0.0183 (10) | 0.0254 (11) | 0.0215 (10) | −0.0003 (8) | 0.0089 (8) | −0.0010 (8) |
| C9 | 0.0163 (13) | 0.0143 (12) | 0.0145 (12) | 0.0000 (10) | 0.0066 (10) | 0.0010 (10) |
| N10 | 0.0173 (11) | 0.0119 (10) | 0.0176 (11) | −0.0013 (9) | 0.0082 (9) | 0.0013 (9) |
| C101 | 0.0253 (14) | 0.0169 (13) | 0.0178 (13) | −0.0004 (11) | 0.0100 (11) | 0.0008 (11) |
| C102 | 0.0328 (17) | 0.0195 (14) | 0.0246 (15) | −0.0041 (13) | 0.0145 (13) | 0.0021 (11) |
| O102 | 0.0382 (14) | 0.0207 (11) | 0.0491 (15) | −0.0109 (10) | 0.0232 (11) | −0.0082 (11) |
| C11 | 0.0168 (13) | 0.0129 (12) | 0.0170 (12) | −0.0023 (10) | 0.0074 (10) | −0.0034 (10) |
| C12 | 0.0145 (13) | 0.0132 (12) | 0.0205 (13) | −0.0020 (10) | 0.0077 (10) | −0.0016 (10) |
| C13 | 0.0156 (12) | 0.0122 (12) | 0.0204 (12) | −0.0055 (10) | 0.0087 (10) | −0.0060 (10) |
| C14 | 0.0149 (13) | 0.0141 (12) | 0.0186 (12) | −0.0021 (10) | 0.0067 (10) | −0.0037 (10) |
| C91 | 0.0148 (12) | 0.0143 (12) | 0.0176 (12) | 0.0014 (10) | 0.0067 (10) | −0.0009 (10) |
| C92 | 0.0160 (13) | 0.0138 (12) | 0.0175 (12) | 0.0036 (10) | 0.0061 (10) | 0.0024 (10) |
| O92 | 0.0172 (10) | 0.0237 (10) | 0.0167 (9) | −0.0020 (8) | 0.0084 (8) | −0.0001 (8) |
| C93 | 0.0160 (13) | 0.0177 (13) | 0.0169 (12) | 0.0026 (11) | 0.0058 (10) | −0.0007 (10) |
| Br93 | 0.02276 (17) | 0.01832 (16) | 0.01709 (15) | 0.00042 (11) | 0.00884 (11) | −0.00280 (10) |
| C94 | 0.0146 (13) | 0.0133 (12) | 0.0177 (12) | 0.0010 (10) | 0.0034 (10) | −0.0010 (10) |
| C95 | 0.0160 (13) | 0.0130 (12) | 0.0225 (13) | 0.0008 (10) | 0.0089 (10) | 0.0023 (10) |
| Cl95 | 0.0189 (3) | 0.0198 (3) | 0.0234 (3) | −0.0044 (3) | 0.0106 (2) | −0.0021 (3) |
| C96 | 0.0167 (13) | 0.0150 (12) | 0.0163 (12) | 0.0017 (10) | 0.0066 (10) | 0.0001 (10) |
Geometric parameters (Å, º)
| C1—O1 | 1.242 (3) | C7—H7A | 0.9900 |
| C1—C11 | 1.457 (4) | C7—H7B | 0.9900 |
| C1—C2 | 1.504 (4) | C8—O8 | 1.247 (4) |
| C2—C3 | 1.527 (4) | C8—C14 | 1.447 (4) |
| C2—H2A | 0.9900 | C9—C11 | 1.506 (4) |
| C2—H2B | 0.9900 | C9—C14 | 1.510 (4) |
| C3—C32 | 1.532 (4) | C9—C91 | 1.529 (4) |
| C3—C31 | 1.539 (4) | C9—H9 | 1.0000 |
| C3—C4 | 1.542 (4) | N10—C13 | 1.392 (3) |
| C31—H31A | 0.9800 | N10—C12 | 1.399 (4) |
| C31—H31B | 0.9800 | N10—C101 | 1.481 (3) |
| C31—H31C | 0.9800 | C101—C102 | 1.510 (4) |
| C32—H32A | 0.9800 | C101—H10A | 0.9900 |
| C32—H32B | 0.9800 | C101—H10B | 0.9900 |
| C32—H32C | 0.9800 | C102—O102 | 1.408 (4) |
| C4—C12 | 1.508 (4) | C102—H10C | 0.9900 |
| C4—H4A | 0.9900 | C102—H10D | 0.9900 |
| C4—H4B | 0.9900 | O102—H102 | 0.81 (5) |
| C5—C13 | 1.517 (4) | C11—C12 | 1.367 (4) |
| C5—C6 | 1.538 (4) | C13—C14 | 1.357 (4) |
| C5—H5A | 0.9900 | C91—C96 | 1.392 (4) |
| C5—H5B | 0.9900 | C91—C92 | 1.410 (4) |
| C6—C7 | 1.532 (4) | C92—O92 | 1.351 (3) |
| C6—C61 | 1.533 (4) | C92—C93 | 1.403 (4) |
| C6—C62 | 1.541 (4) | O92—H92 | 0.82 (4) |
| C61—H61A | 0.9800 | C93—C94 | 1.387 (4) |
| C61—H61B | 0.9800 | C93—Br93 | 1.887 (3) |
| C61—H61C | 0.9800 | C94—C95 | 1.390 (4) |
| C62—H62A | 0.9800 | C94—H94 | 0.9500 |
| C62—H62B | 0.9800 | C95—C96 | 1.384 (4) |
| C62—H62C | 0.9800 | C95—Cl95 | 1.742 (3) |
| C7—C8 | 1.501 (4) | C96—H96 | 0.9500 |
| O1—C1—C11 | 120.7 (3) | C8—C7—H7B | 109.4 |
| O1—C1—C2 | 121.9 (3) | C6—C7—H7B | 109.4 |
| C11—C1—C2 | 117.4 (2) | H7A—C7—H7B | 108.0 |
| C1—C2—C3 | 111.8 (2) | O8—C8—C14 | 121.5 (3) |
| C1—C2—H2A | 109.2 | O8—C8—C7 | 120.4 (3) |
| C3—C2—H2A | 109.2 | C14—C8—C7 | 118.0 (2) |
| C1—C2—H2B | 109.2 | C11—C9—C14 | 108.1 (2) |
| C3—C2—H2B | 109.2 | C11—C9—C91 | 112.1 (2) |
| H2A—C2—H2B | 107.9 | C14—C9—C91 | 110.1 (2) |
| C2—C3—C32 | 109.5 (2) | C11—C9—H9 | 108.8 |
| C2—C3—C31 | 109.8 (2) | C14—C9—H9 | 108.8 |
| C32—C3—C31 | 109.4 (2) | C91—C9—H9 | 108.8 |
| C2—C3—C4 | 109.0 (2) | C13—N10—C12 | 119.2 (2) |
| C32—C3—C4 | 108.9 (2) | C13—N10—C101 | 120.6 (2) |
| C31—C3—C4 | 110.2 (2) | C12—N10—C101 | 120.1 (2) |
| C3—C31—H31A | 109.5 | N10—C101—C102 | 111.2 (2) |
| C3—C31—H31B | 109.5 | N10—C101—H10A | 109.4 |
| H31A—C31—H31B | 109.5 | C102—C101—H10A | 109.4 |
| C3—C31—H31C | 109.5 | N10—C101—H10B | 109.4 |
| H31A—C31—H31C | 109.5 | C102—C101—H10B | 109.4 |
| H31B—C31—H31C | 109.5 | H10A—C101—H10B | 108.0 |
| C3—C32—H32A | 109.5 | O102—C102—C101 | 109.0 (3) |
| C3—C32—H32B | 109.5 | O102—C102—H10C | 109.9 |
| H32A—C32—H32B | 109.5 | C101—C102—H10C | 109.9 |
| C3—C32—H32C | 109.5 | O102—C102—H10D | 109.9 |
| H32A—C32—H32C | 109.5 | C101—C102—H10D | 109.9 |
| H32B—C32—H32C | 109.5 | H10C—C102—H10D | 108.3 |
| C12—C4—C3 | 114.2 (2) | C102—O102—H102 | 112 (3) |
| C12—C4—H4A | 108.7 | C12—C11—C1 | 121.3 (2) |
| C3—C4—H4A | 108.7 | C12—C11—C9 | 120.6 (2) |
| C12—C4—H4B | 108.7 | C1—C11—C9 | 118.1 (2) |
| C3—C4—H4B | 108.7 | C11—C12—N10 | 119.8 (2) |
| H4A—C4—H4B | 107.6 | C11—C12—C4 | 121.5 (2) |
| C13—C5—C6 | 113.6 (2) | N10—C12—C4 | 118.7 (2) |
| C13—C5—H5A | 108.8 | C14—C13—N10 | 120.8 (3) |
| C6—C5—H5A | 108.8 | C14—C13—C5 | 121.5 (3) |
| C13—C5—H5B | 108.8 | N10—C13—C5 | 117.7 (2) |
| C6—C5—H5B | 108.8 | C13—C14—C8 | 121.5 (3) |
| H5A—C5—H5B | 107.7 | C13—C14—C9 | 120.1 (2) |
| C7—C6—C61 | 109.8 (2) | C8—C14—C9 | 118.3 (2) |
| C7—C6—C5 | 109.3 (2) | C96—C91—C92 | 118.9 (2) |
| C61—C6—C5 | 109.9 (2) | C96—C91—C9 | 120.8 (2) |
| C7—C6—C62 | 109.4 (3) | C92—C91—C9 | 120.2 (2) |
| C61—C6—C62 | 109.4 (2) | O92—C92—C93 | 118.2 (2) |
| C5—C6—C62 | 109.0 (2) | O92—C92—C91 | 122.8 (2) |
| C6—C61—H61A | 109.5 | C93—C92—C91 | 118.9 (3) |
| C6—C61—H61B | 109.5 | C92—O92—H92 | 107 (3) |
| H61A—C61—H61B | 109.5 | C94—C93—C92 | 121.8 (3) |
| C6—C61—H61C | 109.5 | C94—C93—Br93 | 118.4 (2) |
| H61A—C61—H61C | 109.5 | C92—C93—Br93 | 119.8 (2) |
| H61B—C61—H61C | 109.5 | C93—C94—C95 | 118.3 (2) |
| C6—C62—H62A | 109.5 | C93—C94—H94 | 120.9 |
| C6—C62—H62B | 109.5 | C95—C94—H94 | 120.9 |
| H62A—C62—H62B | 109.5 | C96—C95—C94 | 121.1 (3) |
| C6—C62—H62C | 109.5 | C96—C95—Cl95 | 119.4 (2) |
| H62A—C62—H62C | 109.5 | C94—C95—Cl95 | 119.5 (2) |
| H62B—C62—H62C | 109.5 | C95—C96—C91 | 120.9 (3) |
| C8—C7—C6 | 111.0 (2) | C95—C96—H96 | 119.5 |
| C8—C7—H7A | 109.4 | C91—C96—H96 | 119.5 |
| C6—C7—H7A | 109.4 | ||
| O1—C1—C2—C3 | 143.8 (3) | C101—N10—C13—C14 | 166.6 (2) |
| C11—C1—C2—C3 | −36.9 (3) | C12—N10—C13—C5 | 164.2 (2) |
| C1—C2—C3—C32 | 175.9 (2) | C101—N10—C13—C5 | −14.7 (4) |
| C1—C2—C3—C31 | −63.9 (3) | C6—C5—C13—C14 | −12.2 (4) |
| C1—C2—C3—C4 | 56.9 (3) | C6—C5—C13—N10 | 169.1 (2) |
| C2—C3—C4—C12 | −44.4 (3) | N10—C13—C14—C8 | 168.2 (2) |
| C32—C3—C4—C12 | −163.8 (2) | C5—C13—C14—C8 | −10.4 (4) |
| C31—C3—C4—C12 | 76.1 (3) | N10—C13—C14—C9 | −11.8 (4) |
| C13—C5—C6—C7 | 45.1 (3) | C5—C13—C14—C9 | 169.5 (2) |
| C13—C5—C6—C61 | −75.5 (3) | O8—C8—C14—C13 | 179.1 (3) |
| C13—C5—C6—C62 | 164.6 (2) | C7—C8—C14—C13 | −2.7 (4) |
| C61—C6—C7—C8 | 63.6 (3) | O8—C8—C14—C9 | −0.9 (4) |
| C5—C6—C7—C8 | −57.0 (3) | C7—C8—C14—C9 | 177.3 (2) |
| C62—C6—C7—C8 | −176.2 (2) | C11—C9—C14—C13 | 33.7 (3) |
| C6—C7—C8—O8 | −144.6 (3) | C91—C9—C14—C13 | −89.1 (3) |
| C6—C7—C8—C14 | 37.2 (3) | C11—C9—C14—C8 | −146.4 (2) |
| C13—N10—C101—C102 | −91.2 (3) | C91—C9—C14—C8 | 90.8 (3) |
| C12—N10—C101—C102 | 89.9 (3) | C11—C9—C91—C96 | −32.5 (3) |
| N10—C101—C102—O102 | 60.0 (3) | C14—C9—C91—C96 | 87.9 (3) |
| O1—C1—C11—C12 | −179.1 (3) | C11—C9—C91—C92 | 151.4 (2) |
| C2—C1—C11—C12 | 1.6 (4) | C14—C9—C91—C92 | −88.2 (3) |
| O1—C1—C11—C9 | 1.2 (4) | C96—C91—C92—O92 | −178.2 (2) |
| C2—C1—C11—C9 | −178.1 (2) | C9—C91—C92—O92 | −1.9 (4) |
| C14—C9—C11—C12 | −33.5 (3) | C96—C91—C92—C93 | 3.0 (4) |
| C91—C9—C11—C12 | 88.1 (3) | C9—C91—C92—C93 | 179.2 (2) |
| C14—C9—C11—C1 | 146.2 (2) | O92—C92—C93—C94 | 179.6 (2) |
| C91—C9—C11—C1 | −92.2 (3) | C91—C92—C93—C94 | −1.5 (4) |
| C1—C11—C12—N10 | −168.3 (2) | O92—C92—C93—Br93 | 1.1 (3) |
| C9—C11—C12—N10 | 11.4 (4) | C91—C92—C93—Br93 | 180.0 (2) |
| C1—C11—C12—C4 | 11.8 (4) | C92—C93—C94—C95 | −1.1 (4) |
| C9—C11—C12—C4 | −168.5 (2) | Br93—C93—C94—C95 | 177.4 (2) |
| C13—N10—C12—C11 | 14.7 (4) | C93—C94—C95—C96 | 2.3 (4) |
| C101—N10—C12—C11 | −166.4 (2) | C93—C94—C95—Cl95 | −176.3 (2) |
| C13—N10—C12—C4 | −165.4 (2) | C94—C95—C96—C91 | −0.8 (4) |
| C101—N10—C12—C4 | 13.5 (4) | Cl95—C95—C96—C91 | 177.8 (2) |
| C3—C4—C12—C11 | 11.1 (4) | C92—C91—C96—C95 | −1.9 (4) |
| C3—C4—C12—N10 | −168.8 (2) | C9—C91—C96—C95 | −178.1 (2) |
| C12—N10—C13—C14 | −14.5 (4) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O92—H92···O8 | 0.82 (4) | 1.81 (4) | 2.613 (3) | 166 (4) |
| O102—H102···O1i | 0.81 (5) | 2.01 (5) | 2.808 (3) | 167 (5) |
| C61—H61B···Br93ii | 0.98 | 2.87 | 3.720 (3) | 146 |
| C31—H31B···O92iii | 0.98 | 2.65 | 3.532 (4) | 150 |
| C5—H5B···O92iv | 0.99 | 2.71 | 3.479 (4) | 135 |
| C7—H7A···O92iv | 0.99 | 2.44 | 3.346 (4) | 151 |
| C4—H4A···Cl95iv | 0.99 | 2.88 | 3.868 (3) | 173 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z+1/2.
References
- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
- Agilent (2013). CrysAlis PRO Agilent Technologies, Yarnton, England.
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Denny, W. A., Baguley, B. C., Cain, B. F. & Waring, M. J. (1983). Antitumor acridines in molecular aspects of anticancer drug action, edited by S. Neidle & M. J. Waring, pp. 1–34. London: Macmillan.
- Gaidukevich, A. N., Kazakov, G. P., Kravchenko, A. A., Porokhnyak, L. A. & Dinchuk, V. V. (1987). Khim. Farm. Zh. 21, 1067–1070.
- Gaiukevich, N. A., Bashura, G. S., Pestsev, I. M., Pimenov, O. A. & Pyatkop, A. I. (1973). Farm. Zh. 28, 50–54.
- Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
- Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
- Kimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101–1104.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Misra, V. K. & Bahel, S. C. (1984). J. Indian Chem. Soc. 61, 916–918.
- Miyase, G. G., Ali, E., Dogan, R. S., Kevser, E. & Cihat, S. (2009). Med. Chem. Res. 18, 317–325.
- Nakhi, A., Srinivas, P. T. V. A., Rahman, M. S., Kishore, R., Seerapu, G. P. K., Kumar, K. L., Haldar, D., Rao, M. V. B. & Pal, M. (2013). Bioorg. Med. Chem. Lett. 23, 1828–1833. [DOI] [PubMed]
- Natarajan, S. & Mathews, R. (2011). J. Chem. Crystallogr. 41, 678–683.
- Ngadi, L., Bisri, N. G., Mahamoud, A., Galy, A. M., Galy, J. P., Soyfer, J. C., Barbe, J. & Placidi, M. (1993). Arzneim. Forsch. 43, 480–483. [PubMed]
- Shaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawane, B. S. (2010). Pharma Chem. 2, 25–29.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shi, D.-Q., Ni, S.-N., Fang-Yang, Shi, J.-W., Dou, G.-L., Li, X.-Y. & Wang, X.-S. (2008). J. Heterocycl. Chem. 45, 653–660.
- Shul’ga, I. S., Sukhomlinov, A. K., Goncharov, I. A. & Dikaya, E. M. (1974). Farm. Zh. 29, 27–29. [PubMed]
- Sondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1–15.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Srivastava, A., Pathak, R. B. & Bahel, S. C. (1985). J. Indian Chem. Soc. 62, 486–487.
- Sugaya, T., Mimura, Y., Shida, Y., Osawa, Y. & Matsukuma, I. (1994). J. Med. Chem. 37, 1028–1032. [DOI] [PubMed]
- Taraporewala, I. B. & Kauffman, J. M. (1990). J. Pharm. Sci. 79, 173–178. [DOI] [PubMed]
- Wang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, o1139–o1140.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, 1. DOI: 10.1107/S1600536814009556/hb0002sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009556/hb0002Isup2.hkl
CCDC reference: 1004259
Additional supporting information: crystallographic information; 3D view; checkCIF report




