Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 19;70(Pt 8):44–47. doi: 10.1107/S1600536814009556

Crystal structure of 9-(3-bromo-5-chloro-2-hydroxy­phen­yl)-10-(2-hy­droxy­eth­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

Antar A Abdelhamid a, Shaaban K Mohamed b, Jim Simpson c,*
PMCID: PMC4158539  PMID: 25249850

The structure of a hydroacridine with significant pharmaceutical potential is reported. The acridinone ring system is in the shape of a shallow V with the majority of the ring system substituents on its convex surface; a plethora of classical and non-classical hydrogen bonds stack the molecules into interconnected columns.

Keywords: crystal structure, acridine, hydro­acridine

Abstract

The title compound C25H29BrClNO4, comprises a 3,3,6,6-tetra­methyl­tetra­hydro­acridine-1,8-dione ring system that carries a hy­droxy­ethyl substituent on the acridine N atom and a 3-bromo-5-chloro-2-hy­droxy­phenyl ring on the central methine C atom of the di­hydro­pyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 89.84 (6)° and this conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond between the hy­droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. In the crystal, O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds combine to stack mol­ecules in inter­connected columns propagating along the a-axis direction.

Chemical context  

Acridine derivatives occupy an important position in medicinal chemistry due to their wide range of biological applications. They exhibit fungicidal (Misra & Bahel, 1984; Srivastava et al., 1985), anti-cancer (Sondhi et al., 2004; Sugaya et al., 1994; Kimura et al., 1993), anti-parasitic (Ngadi et al., 1993), anti-inflammatory and anti-microbial (Shul’ga et al., 1974; Gaiukevich et al., 1973) activity. They are also components of effective analgesics (Taraporewala & Kauffman, 1990; Gaidukevich et al., 1987). Other pharmaceutically active acridine derivatives (e.g. Mepacrine, Aza­crine, Proflavine, and Aminacrine) also demonstrate anti­malarial and anti­bacterial activity (Denny et al., 1983). graphic file with name e-70-00044-scheme1.jpgRecently hydro­acridine derivatives were found to have significant anti­microbial activity and to act as potassium channel blockers (Shaikh et al., 2010; Miyase et al., 2009). A recent investigation has also shown hydro­acridines to act as inhibitors of sirtuins (class III NAD-dependent de­acetyl­ases) that are considered to be important targets for cancer thera­peutics (Nakhi et al., 2013). In light of this inter­est and as part of our on-going studies of the synthesis and biological assessment of new hydro­acridinone deriv­atives, we report here the synthesis and crystal structure of the title compound, (1).

Structural commentary  

The structure of (1) is shown in Fig. 1. The 3,3,6,6-tetra­methyl-tetra­hydro­acridine-1,8-dione ring system is substituted at the central methine C9 atom by a 3-bromo-5-chloro-2-hy­droxy­phenyl ring and carries a hy­droxy­ethyl substituent on the acridine N atom. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.336 Å for the 13 C atoms and one N atom of the acridine unit. This plane is almost orthogonal to the benzene ring plane [dihedral angle = 89.84 (6)°], a conformation that is stabilized by a strong intra­molecular O92—H92⋯O8 hydrogen bond between the two systems (Table 1). Both the 3-bromo-5-chloro-2-hy­droxy­phenyl and hy­droxy­ethyl substituents point in the same direction with respect to the acridine plane. Furthermore, one methyl group is axial and the other equatorial with respect to the two outer cyclo­hexenone rings of the acridinedione and again, the axial methyl substituents are found on the same face of the acridinedione ring system. Overall this ring system is V-shaped with the substituents mentioned above on the convex surface of the shallow V. The outer cyclo­hexenone rings both adopt flattened chair configurations with the C3 and C6 atoms each 0.646 (4) Å, in the same direction, from the best-fit planes through the remaining five C atoms. In contrast, the central C9/N10/C11–C14 ring can best be described as a flattened boat with C9 and N10 0.423 (4) and 0.154 (4) Å, respectively, from the best-fit plane through the remaining four C atoms. The bond lengths and angles in the mol­ecule of (1) agree reasonably well with those found in closely related mol­ecules (Abdelhamid et al., 2011; Khalilov et al., 2011).

Figure 1.

Figure 1

The structure of (1) with ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O92—H92⋯O8 0.82 (4) 1.81 (4) 2.613 (3) 166 (4)
O102—H102⋯O1i 0.81 (5) 2.01 (5) 2.808 (3) 167 (5)
C61—H61B⋯Br93ii 0.98 2.87 3.720 (3) 146
C31—H31B⋯O92iii 0.98 2.65 3.532 (4) 150
C5—H5B⋯O92iv 0.99 2.71 3.479 (4) 135
C7—H7A⋯O92iv 0.99 2.44 3.346 (4) 151
C4—H4A⋯Cl95iv 0.99 2.88 3.868 (3) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

The crystal structure of (1) features O102—H102⋯O1 hydrogen bonds, which link the mol­ecules into zigzag chains parallel to the b axis (Fig. 2). Weak C4—H4A⋯Cl95 together with C5—H5B⋯O92 and C7—H7A⋯O92 hydrogen bonds to the same acceptor oxygen atom form Inline graphic(15), Inline graphic(13) and Inline graphic(6) rings. These, combined with weaker inversion-related C61—H61B⋯Br93 contacts [which in turn generate Inline graphic(22) motifs], generate sheets of mol­ecules lying parallel to the (Inline graphic21) plane, as shown in Fig. 3. C31—H31B⋯O92 hydrogen bonds form additional chains of mol­ecules along the ac diagonal (Fig. 4). Overall, these inter­actions stack the mol­ecules into inter­connected columns along the a-axis direction (Fig. 5).

Figure 2.

Figure 2

Zigzag chains of (1) parallel to the b axis with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.

Figure 3.

Figure 3

Sheets of mol­ecules of (1) parallel to (Inline graphic21) with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.

Figure 4.

Figure 4

Chains of mol­ecules of (1) along the diagonal of the ac plane with hydrogen bonds drawn as dashed lines and symmetry operations shown in Table 1. For clarity, H atoms bound to atoms not involved in hydrogen bonding are not shown.

Figure 5.

Figure 5

Overall packing for (1) viewed along the a axis with hydrogen bonds drawn as dashed lines.

Database survey  

Numerous structures of acridine and its derivatives have been reported previously, with 373 entries in the current database (Version 5.35, November 2013 with 1 update; Allen, 2002). However, far fewer structures of derivatives of the seminal hydro­acridine, 3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro-1,8(2H,5H)-acridinedione (Natarajan & Mathews, 2011) are found with only 25 unique structures of derivatives with an aryl substituent on the methine C atom and an alkyl or aryl substituent on the N atom. Of these, aromatic substituents on the N atom predominate with 15 entries (see, for example, Nakhi et al. 2013; Shi et al. 2008; Wang et al. 2003). Two structures, 10-(2-hy­droxy­eth­yl)-9-(2-hy­droxy­phen­yl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione (Abdelhamid et al., 2011) and 9-(5-bromo-2-hy­droxy­phen­yl)-10-(2-hy­droxy­prop­yl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione (Khalilov et al., 2011) closely resemble (1), each with 2-hy­droxy substituents on the aromatic rings that form intra­molecular hydrogen bonds to one of the two keto O atoms in each mol­ecule. In the first instance, the 2-hy­droxy­ethyl substituent on the N atom is identical to that for (1), while the 2-hy­droxy­propyl substituent in the second analogue is closely related.

Synthesis and crystallization  

A mixture of 1 mmol (235.5 mg) 3-bromo-5-chloro-2-hy­droxy­benzaldehyde, 2 mmol (280 mg) 5,5-di­methyl­cyclo­hexane-1,3-dione and 1 mmol (61 mg) amino-ethanol in 30 ml of ethanol was refluxed for 12 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting solid product was recrystallized from a mixture of ethanol/acetone (10:1 v:v) to afford yellow needles of the title compound. M.p. 513 K, 82% yield.

IR cm−1: OH phenolic 3400, OH alcoholic 3335, Ar 3001, CH-aliphatic 2882, CO 1694, C=C 1591, C—Br 605, C—Cl 738; 1H NMR: δ 10.01 (s, 1H, OH phenolic), 7.3 (d, 2H, Ar), 6.7 (d, 1H, C9), 5.00 (s, 1H, OH alcoholic), 4.02 (t, 2H, C2), 3.75 (t, 2H, C7), 2.95 (d, 2H, C4), 2.7(d, 2H, C5), 2.2 (m, 4H, ethyl group), 1–1.2 (m, 12H, 4 methyl groups); 13C NMR: δ 199, 200 (C=O, C1, C8), 145, 132 and 130 (C=C Ar), 110, 112 (C=C, in acridine fused rings), 122 (C—N), 62 (C—Br), 73 (C—Cl), 50 (C—OH), 20, 28, 30 and 32 (C—C of CH2CH2 and 4CH3); MS: m/z 522 (100), 523 (30), 524 (100), 525 (30), 443 (56), 363 (39), 271 (42), 175 (29), 94 (74). Analysis calculated for C25H29BrClNO4 (522.85): C 57.43, H 5.59, Br 15.28, Cl 6.78, N 2.68%; found: C 57.41, H 5.60, Br 15.31, Cl 6.81, N 2.71.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the two hy­droxy substituents were located in an electron density map and their coordinates were freely refined with U iso = 1.5U eq (O). All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å U iso = 1.2U eq (C) for aromatic, 0.99 Å, U iso = 1.2U eq (C) for methyl­ene, 1.00 Å, U iso = 1.2U eq (C) for methine, and 0.98 Å, U iso = 1.5U eq (C) for methyl H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C25H29BrClNO4
M r 522.85
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.5373 (3), 17.1597 (3), 13.7278 (4)
β (°) 107.908 (3)
V3) 2361.96 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.67
Crystal size (mm) 0.19 × 0.07 × 0.06
 
Data collection
Diffractometer Agilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.733, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20233, 4922, 4128
R int 0.076
(sin θ/λ)max−1) 0.631
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.108, 1.03
No. of reflections 4922
No. of parameters 299
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.57

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 and SHELXL2013 (Sheldrick, 2008), TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, 1. DOI: 10.1107/S1600536814009556/hb0002sup1.cif

e-70-00044-sup1.cif (698.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009556/hb0002Isup2.hkl

e-70-00044-Isup2.hkl (269.9KB, hkl)

CCDC reference: 1004259

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Manchester Metropolitan University for supporting this study and the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Crystal data

C25H29BrClNO4 F(000) = 1080
Mr = 522.85 Dx = 1.470 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 10.5373 (3) Å Cell parameters from 8397 reflections
b = 17.1597 (3) Å θ = 4.3–76.4°
c = 13.7278 (4) Å µ = 3.67 mm1
β = 107.908 (3)° T = 100 K
V = 2361.96 (10) Å3 Needle, yellow
Z = 4 0.19 × 0.07 × 0.06 mm

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 4922 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 4128 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1 Rint = 0.076
ω scans θmax = 76.7°, θmin = 4.3°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) h = −13→12
Tmin = 0.733, Tmax = 1.000 k = −21→21
20233 measured reflections l = −17→15

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0431P)2 + 3.0935P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
4922 reflections Δρmax = 0.67 e Å3
299 parameters Δρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2756 (3) 0.38420 (16) 0.7425 (2) 0.0165 (5)
O1 0.2646 (2) 0.41046 (12) 0.65603 (15) 0.0220 (4)
C2 0.2254 (3) 0.42807 (16) 0.8181 (2) 0.0183 (6)
H2A 0.1555 0.4653 0.7808 0.022*
H2B 0.2996 0.4584 0.8644 0.022*
C3 0.1680 (3) 0.37339 (17) 0.8817 (2) 0.0182 (6)
C31 0.0446 (3) 0.33120 (18) 0.8117 (2) 0.0218 (6)
H31A −0.0221 0.3697 0.7760 0.033*
H31B 0.0068 0.2973 0.8531 0.033*
H31C 0.0707 0.2997 0.7615 0.033*
C32 0.1278 (3) 0.42057 (18) 0.9624 (2) 0.0224 (6)
H32A 0.2058 0.4486 1.0058 0.034*
H32B 0.0938 0.3852 1.0046 0.034*
H32C 0.0582 0.4580 0.9282 0.034*
C4 0.2757 (3) 0.31371 (16) 0.9365 (2) 0.0169 (5)
H4A 0.3401 0.3394 0.9958 0.020*
H4B 0.2327 0.2709 0.9631 0.020*
C5 0.6375 (3) 0.13867 (17) 0.9129 (2) 0.0187 (6)
H5A 0.5984 0.0944 0.9400 0.022*
H5B 0.6987 0.1665 0.9719 0.022*
C6 0.7183 (3) 0.10665 (17) 0.8456 (2) 0.0199 (6)
C61 0.6375 (3) 0.04386 (18) 0.7733 (2) 0.0272 (7)
H61A 0.6193 0.0006 0.8137 0.041*
H61B 0.6886 0.0247 0.7294 0.041*
H61C 0.5531 0.0661 0.7307 0.041*
C62 0.8489 (3) 0.0709 (2) 0.9150 (3) 0.0284 (7)
H62A 0.8281 0.0300 0.9576 0.043*
H62B 0.9024 0.1115 0.9591 0.043*
H62C 0.8993 0.0483 0.8726 0.043*
C7 0.7509 (3) 0.17336 (18) 0.7830 (2) 0.0210 (6)
H7A 0.8091 0.2117 0.8300 0.025*
H7B 0.8000 0.1525 0.7377 0.025*
C8 0.6261 (3) 0.21319 (16) 0.7195 (2) 0.0179 (5)
O8 0.6181 (2) 0.23890 (12) 0.63285 (15) 0.0211 (4)
C9 0.3948 (3) 0.26576 (16) 0.7015 (2) 0.0146 (5)
H9 0.4202 0.3042 0.6560 0.018*
N10 0.4338 (2) 0.21496 (13) 0.90561 (17) 0.0150 (4)
C101 0.4242 (3) 0.17121 (17) 0.9961 (2) 0.0193 (6)
H10A 0.3974 0.2072 1.0427 0.023*
H10B 0.5128 0.1494 1.0337 0.023*
C102 0.3240 (3) 0.10579 (18) 0.9650 (2) 0.0243 (6)
H10C 0.3186 0.0776 1.0265 0.029*
H10D 0.2347 0.1272 0.9288 0.029*
O102 0.3641 (3) 0.05431 (14) 0.9002 (2) 0.0338 (6)
H102 0.318 (5) 0.015 (3) 0.888 (4) 0.051*
C11 0.3399 (3) 0.30933 (16) 0.7750 (2) 0.0151 (5)
C12 0.3510 (3) 0.27926 (16) 0.8694 (2) 0.0156 (5)
C13 0.5263 (3) 0.19368 (15) 0.8568 (2) 0.0153 (5)
C14 0.5183 (3) 0.22261 (16) 0.7631 (2) 0.0155 (5)
C91 0.2933 (3) 0.20862 (16) 0.6350 (2) 0.0152 (5)
C92 0.2973 (3) 0.18932 (16) 0.5361 (2) 0.0155 (5)
O92 0.3860 (2) 0.22101 (12) 0.49447 (15) 0.0185 (4)
H92 0.453 (4) 0.232 (2) 0.542 (3) 0.028*
C93 0.2039 (3) 0.13599 (17) 0.4773 (2) 0.0167 (5)
Br93 0.20688 (3) 0.10910 (2) 0.34475 (2) 0.01878 (10)
C94 0.1101 (3) 0.10051 (15) 0.5147 (2) 0.0156 (5)
H94 0.0464 0.0652 0.4736 0.019*
C95 0.1116 (3) 0.11794 (16) 0.6140 (2) 0.0165 (5)
Cl95 0.00165 (7) 0.07019 (4) 0.66614 (5) 0.01978 (15)
C96 0.2010 (3) 0.17139 (16) 0.6729 (2) 0.0157 (5)
H96 0.1993 0.1828 0.7402 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0146 (12) 0.0157 (13) 0.0207 (13) −0.0030 (10) 0.0075 (10) −0.0029 (10)
O1 0.0287 (11) 0.0196 (10) 0.0212 (10) 0.0037 (9) 0.0128 (8) 0.0039 (8)
C2 0.0217 (14) 0.0140 (13) 0.0223 (13) −0.0013 (11) 0.0114 (11) −0.0024 (11)
C3 0.0179 (13) 0.0196 (13) 0.0190 (13) −0.0008 (11) 0.0085 (11) −0.0019 (11)
C31 0.0183 (14) 0.0254 (15) 0.0241 (14) −0.0015 (12) 0.0100 (11) −0.0023 (12)
C32 0.0257 (15) 0.0213 (14) 0.0243 (14) 0.0003 (12) 0.0139 (12) −0.0013 (12)
C4 0.0182 (13) 0.0160 (13) 0.0190 (12) −0.0009 (11) 0.0094 (10) −0.0004 (11)
C5 0.0184 (14) 0.0154 (13) 0.0208 (13) 0.0016 (11) 0.0039 (10) 0.0017 (11)
C6 0.0187 (14) 0.0177 (14) 0.0230 (14) 0.0046 (11) 0.0058 (11) −0.0007 (11)
C61 0.0315 (17) 0.0190 (14) 0.0308 (16) 0.0009 (13) 0.0094 (13) −0.0066 (13)
C62 0.0243 (16) 0.0259 (16) 0.0339 (17) 0.0087 (13) 0.0070 (13) 0.0032 (13)
C7 0.0176 (14) 0.0244 (15) 0.0235 (14) 0.0034 (12) 0.0099 (11) −0.0004 (12)
C8 0.0187 (13) 0.0147 (13) 0.0213 (13) −0.0036 (11) 0.0076 (10) −0.0067 (11)
O8 0.0183 (10) 0.0254 (11) 0.0215 (10) −0.0003 (8) 0.0089 (8) −0.0010 (8)
C9 0.0163 (13) 0.0143 (12) 0.0145 (12) 0.0000 (10) 0.0066 (10) 0.0010 (10)
N10 0.0173 (11) 0.0119 (10) 0.0176 (11) −0.0013 (9) 0.0082 (9) 0.0013 (9)
C101 0.0253 (14) 0.0169 (13) 0.0178 (13) −0.0004 (11) 0.0100 (11) 0.0008 (11)
C102 0.0328 (17) 0.0195 (14) 0.0246 (15) −0.0041 (13) 0.0145 (13) 0.0021 (11)
O102 0.0382 (14) 0.0207 (11) 0.0491 (15) −0.0109 (10) 0.0232 (11) −0.0082 (11)
C11 0.0168 (13) 0.0129 (12) 0.0170 (12) −0.0023 (10) 0.0074 (10) −0.0034 (10)
C12 0.0145 (13) 0.0132 (12) 0.0205 (13) −0.0020 (10) 0.0077 (10) −0.0016 (10)
C13 0.0156 (12) 0.0122 (12) 0.0204 (12) −0.0055 (10) 0.0087 (10) −0.0060 (10)
C14 0.0149 (13) 0.0141 (12) 0.0186 (12) −0.0021 (10) 0.0067 (10) −0.0037 (10)
C91 0.0148 (12) 0.0143 (12) 0.0176 (12) 0.0014 (10) 0.0067 (10) −0.0009 (10)
C92 0.0160 (13) 0.0138 (12) 0.0175 (12) 0.0036 (10) 0.0061 (10) 0.0024 (10)
O92 0.0172 (10) 0.0237 (10) 0.0167 (9) −0.0020 (8) 0.0084 (8) −0.0001 (8)
C93 0.0160 (13) 0.0177 (13) 0.0169 (12) 0.0026 (11) 0.0058 (10) −0.0007 (10)
Br93 0.02276 (17) 0.01832 (16) 0.01709 (15) 0.00042 (11) 0.00884 (11) −0.00280 (10)
C94 0.0146 (13) 0.0133 (12) 0.0177 (12) 0.0010 (10) 0.0034 (10) −0.0010 (10)
C95 0.0160 (13) 0.0130 (12) 0.0225 (13) 0.0008 (10) 0.0089 (10) 0.0023 (10)
Cl95 0.0189 (3) 0.0198 (3) 0.0234 (3) −0.0044 (3) 0.0106 (2) −0.0021 (3)
C96 0.0167 (13) 0.0150 (12) 0.0163 (12) 0.0017 (10) 0.0066 (10) 0.0001 (10)

Geometric parameters (Å, º)

C1—O1 1.242 (3) C7—H7A 0.9900
C1—C11 1.457 (4) C7—H7B 0.9900
C1—C2 1.504 (4) C8—O8 1.247 (4)
C2—C3 1.527 (4) C8—C14 1.447 (4)
C2—H2A 0.9900 C9—C11 1.506 (4)
C2—H2B 0.9900 C9—C14 1.510 (4)
C3—C32 1.532 (4) C9—C91 1.529 (4)
C3—C31 1.539 (4) C9—H9 1.0000
C3—C4 1.542 (4) N10—C13 1.392 (3)
C31—H31A 0.9800 N10—C12 1.399 (4)
C31—H31B 0.9800 N10—C101 1.481 (3)
C31—H31C 0.9800 C101—C102 1.510 (4)
C32—H32A 0.9800 C101—H10A 0.9900
C32—H32B 0.9800 C101—H10B 0.9900
C32—H32C 0.9800 C102—O102 1.408 (4)
C4—C12 1.508 (4) C102—H10C 0.9900
C4—H4A 0.9900 C102—H10D 0.9900
C4—H4B 0.9900 O102—H102 0.81 (5)
C5—C13 1.517 (4) C11—C12 1.367 (4)
C5—C6 1.538 (4) C13—C14 1.357 (4)
C5—H5A 0.9900 C91—C96 1.392 (4)
C5—H5B 0.9900 C91—C92 1.410 (4)
C6—C7 1.532 (4) C92—O92 1.351 (3)
C6—C61 1.533 (4) C92—C93 1.403 (4)
C6—C62 1.541 (4) O92—H92 0.82 (4)
C61—H61A 0.9800 C93—C94 1.387 (4)
C61—H61B 0.9800 C93—Br93 1.887 (3)
C61—H61C 0.9800 C94—C95 1.390 (4)
C62—H62A 0.9800 C94—H94 0.9500
C62—H62B 0.9800 C95—C96 1.384 (4)
C62—H62C 0.9800 C95—Cl95 1.742 (3)
C7—C8 1.501 (4) C96—H96 0.9500
O1—C1—C11 120.7 (3) C8—C7—H7B 109.4
O1—C1—C2 121.9 (3) C6—C7—H7B 109.4
C11—C1—C2 117.4 (2) H7A—C7—H7B 108.0
C1—C2—C3 111.8 (2) O8—C8—C14 121.5 (3)
C1—C2—H2A 109.2 O8—C8—C7 120.4 (3)
C3—C2—H2A 109.2 C14—C8—C7 118.0 (2)
C1—C2—H2B 109.2 C11—C9—C14 108.1 (2)
C3—C2—H2B 109.2 C11—C9—C91 112.1 (2)
H2A—C2—H2B 107.9 C14—C9—C91 110.1 (2)
C2—C3—C32 109.5 (2) C11—C9—H9 108.8
C2—C3—C31 109.8 (2) C14—C9—H9 108.8
C32—C3—C31 109.4 (2) C91—C9—H9 108.8
C2—C3—C4 109.0 (2) C13—N10—C12 119.2 (2)
C32—C3—C4 108.9 (2) C13—N10—C101 120.6 (2)
C31—C3—C4 110.2 (2) C12—N10—C101 120.1 (2)
C3—C31—H31A 109.5 N10—C101—C102 111.2 (2)
C3—C31—H31B 109.5 N10—C101—H10A 109.4
H31A—C31—H31B 109.5 C102—C101—H10A 109.4
C3—C31—H31C 109.5 N10—C101—H10B 109.4
H31A—C31—H31C 109.5 C102—C101—H10B 109.4
H31B—C31—H31C 109.5 H10A—C101—H10B 108.0
C3—C32—H32A 109.5 O102—C102—C101 109.0 (3)
C3—C32—H32B 109.5 O102—C102—H10C 109.9
H32A—C32—H32B 109.5 C101—C102—H10C 109.9
C3—C32—H32C 109.5 O102—C102—H10D 109.9
H32A—C32—H32C 109.5 C101—C102—H10D 109.9
H32B—C32—H32C 109.5 H10C—C102—H10D 108.3
C12—C4—C3 114.2 (2) C102—O102—H102 112 (3)
C12—C4—H4A 108.7 C12—C11—C1 121.3 (2)
C3—C4—H4A 108.7 C12—C11—C9 120.6 (2)
C12—C4—H4B 108.7 C1—C11—C9 118.1 (2)
C3—C4—H4B 108.7 C11—C12—N10 119.8 (2)
H4A—C4—H4B 107.6 C11—C12—C4 121.5 (2)
C13—C5—C6 113.6 (2) N10—C12—C4 118.7 (2)
C13—C5—H5A 108.8 C14—C13—N10 120.8 (3)
C6—C5—H5A 108.8 C14—C13—C5 121.5 (3)
C13—C5—H5B 108.8 N10—C13—C5 117.7 (2)
C6—C5—H5B 108.8 C13—C14—C8 121.5 (3)
H5A—C5—H5B 107.7 C13—C14—C9 120.1 (2)
C7—C6—C61 109.8 (2) C8—C14—C9 118.3 (2)
C7—C6—C5 109.3 (2) C96—C91—C92 118.9 (2)
C61—C6—C5 109.9 (2) C96—C91—C9 120.8 (2)
C7—C6—C62 109.4 (3) C92—C91—C9 120.2 (2)
C61—C6—C62 109.4 (2) O92—C92—C93 118.2 (2)
C5—C6—C62 109.0 (2) O92—C92—C91 122.8 (2)
C6—C61—H61A 109.5 C93—C92—C91 118.9 (3)
C6—C61—H61B 109.5 C92—O92—H92 107 (3)
H61A—C61—H61B 109.5 C94—C93—C92 121.8 (3)
C6—C61—H61C 109.5 C94—C93—Br93 118.4 (2)
H61A—C61—H61C 109.5 C92—C93—Br93 119.8 (2)
H61B—C61—H61C 109.5 C93—C94—C95 118.3 (2)
C6—C62—H62A 109.5 C93—C94—H94 120.9
C6—C62—H62B 109.5 C95—C94—H94 120.9
H62A—C62—H62B 109.5 C96—C95—C94 121.1 (3)
C6—C62—H62C 109.5 C96—C95—Cl95 119.4 (2)
H62A—C62—H62C 109.5 C94—C95—Cl95 119.5 (2)
H62B—C62—H62C 109.5 C95—C96—C91 120.9 (3)
C8—C7—C6 111.0 (2) C95—C96—H96 119.5
C8—C7—H7A 109.4 C91—C96—H96 119.5
C6—C7—H7A 109.4
O1—C1—C2—C3 143.8 (3) C101—N10—C13—C14 166.6 (2)
C11—C1—C2—C3 −36.9 (3) C12—N10—C13—C5 164.2 (2)
C1—C2—C3—C32 175.9 (2) C101—N10—C13—C5 −14.7 (4)
C1—C2—C3—C31 −63.9 (3) C6—C5—C13—C14 −12.2 (4)
C1—C2—C3—C4 56.9 (3) C6—C5—C13—N10 169.1 (2)
C2—C3—C4—C12 −44.4 (3) N10—C13—C14—C8 168.2 (2)
C32—C3—C4—C12 −163.8 (2) C5—C13—C14—C8 −10.4 (4)
C31—C3—C4—C12 76.1 (3) N10—C13—C14—C9 −11.8 (4)
C13—C5—C6—C7 45.1 (3) C5—C13—C14—C9 169.5 (2)
C13—C5—C6—C61 −75.5 (3) O8—C8—C14—C13 179.1 (3)
C13—C5—C6—C62 164.6 (2) C7—C8—C14—C13 −2.7 (4)
C61—C6—C7—C8 63.6 (3) O8—C8—C14—C9 −0.9 (4)
C5—C6—C7—C8 −57.0 (3) C7—C8—C14—C9 177.3 (2)
C62—C6—C7—C8 −176.2 (2) C11—C9—C14—C13 33.7 (3)
C6—C7—C8—O8 −144.6 (3) C91—C9—C14—C13 −89.1 (3)
C6—C7—C8—C14 37.2 (3) C11—C9—C14—C8 −146.4 (2)
C13—N10—C101—C102 −91.2 (3) C91—C9—C14—C8 90.8 (3)
C12—N10—C101—C102 89.9 (3) C11—C9—C91—C96 −32.5 (3)
N10—C101—C102—O102 60.0 (3) C14—C9—C91—C96 87.9 (3)
O1—C1—C11—C12 −179.1 (3) C11—C9—C91—C92 151.4 (2)
C2—C1—C11—C12 1.6 (4) C14—C9—C91—C92 −88.2 (3)
O1—C1—C11—C9 1.2 (4) C96—C91—C92—O92 −178.2 (2)
C2—C1—C11—C9 −178.1 (2) C9—C91—C92—O92 −1.9 (4)
C14—C9—C11—C12 −33.5 (3) C96—C91—C92—C93 3.0 (4)
C91—C9—C11—C12 88.1 (3) C9—C91—C92—C93 179.2 (2)
C14—C9—C11—C1 146.2 (2) O92—C92—C93—C94 179.6 (2)
C91—C9—C11—C1 −92.2 (3) C91—C92—C93—C94 −1.5 (4)
C1—C11—C12—N10 −168.3 (2) O92—C92—C93—Br93 1.1 (3)
C9—C11—C12—N10 11.4 (4) C91—C92—C93—Br93 180.0 (2)
C1—C11—C12—C4 11.8 (4) C92—C93—C94—C95 −1.1 (4)
C9—C11—C12—C4 −168.5 (2) Br93—C93—C94—C95 177.4 (2)
C13—N10—C12—C11 14.7 (4) C93—C94—C95—C96 2.3 (4)
C101—N10—C12—C11 −166.4 (2) C93—C94—C95—Cl95 −176.3 (2)
C13—N10—C12—C4 −165.4 (2) C94—C95—C96—C91 −0.8 (4)
C101—N10—C12—C4 13.5 (4) Cl95—C95—C96—C91 177.8 (2)
C3—C4—C12—C11 11.1 (4) C92—C91—C96—C95 −1.9 (4)
C3—C4—C12—N10 −168.8 (2) C9—C91—C96—C95 −178.1 (2)
C12—N10—C13—C14 −14.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O92—H92···O8 0.82 (4) 1.81 (4) 2.613 (3) 166 (4)
O102—H102···O1i 0.81 (5) 2.01 (5) 2.808 (3) 167 (5)
C61—H61B···Br93ii 0.98 2.87 3.720 (3) 146
C31—H31B···O92iii 0.98 2.65 3.532 (4) 150
C5—H5B···O92iv 0.99 2.71 3.479 (4) 135
C7—H7A···O92iv 0.99 2.44 3.346 (4) 151
C4—H4A···Cl95iv 0.99 2.88 3.868 (3) 173

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x−1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z+1/2.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  2. Agilent (2013). CrysAlis PRO Agilent Technologies, Yarnton, England.
  3. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  4. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  5. Denny, W. A., Baguley, B. C., Cain, B. F. & Waring, M. J. (1983). Antitumor acridines in molecular aspects of anticancer drug action, edited by S. Neidle & M. J. Waring, pp. 1–34. London: Macmillan.
  6. Gaidukevich, A. N., Kazakov, G. P., Kravchenko, A. A., Porokhnyak, L. A. & Dinchuk, V. V. (1987). Khim. Farm. Zh. 21, 1067–1070.
  7. Gaiukevich, N. A., Bashura, G. S., Pestsev, I. M., Pimenov, O. A. & Pyatkop, A. I. (1973). Farm. Zh. 28, 50–54.
  8. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  9. Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
  10. Kimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101–1104.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Misra, V. K. & Bahel, S. C. (1984). J. Indian Chem. Soc. 61, 916–918.
  13. Miyase, G. G., Ali, E., Dogan, R. S., Kevser, E. & Cihat, S. (2009). Med. Chem. Res. 18, 317–325.
  14. Nakhi, A., Srinivas, P. T. V. A., Rahman, M. S., Kishore, R., Seerapu, G. P. K., Kumar, K. L., Haldar, D., Rao, M. V. B. & Pal, M. (2013). Bioorg. Med. Chem. Lett. 23, 1828–1833. [DOI] [PubMed]
  15. Natarajan, S. & Mathews, R. (2011). J. Chem. Crystallogr. 41, 678–683.
  16. Ngadi, L., Bisri, N. G., Mahamoud, A., Galy, A. M., Galy, J. P., Soyfer, J. C., Barbe, J. & Placidi, M. (1993). Arzneim. Forsch. 43, 480–483. [PubMed]
  17. Shaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawane, B. S. (2010). Pharma Chem. 2, 25–29.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Shi, D.-Q., Ni, S.-N., Fang-Yang, Shi, J.-W., Dou, G.-L., Li, X.-Y. & Wang, X.-S. (2008). J. Heterocycl. Chem. 45, 653–660.
  20. Shul’ga, I. S., Sukhomlinov, A. K., Goncharov, I. A. & Dikaya, E. M. (1974). Farm. Zh. 29, 27–29. [PubMed]
  21. Sondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1–15.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Srivastava, A., Pathak, R. B. & Bahel, S. C. (1985). J. Indian Chem. Soc. 62, 486–487.
  24. Sugaya, T., Mimura, Y., Shida, Y., Osawa, Y. & Matsukuma, I. (1994). J. Med. Chem. 37, 1028–1032. [DOI] [PubMed]
  25. Taraporewala, I. B. & Kauffman, J. M. (1990). J. Pharm. Sci. 79, 173–178. [DOI] [PubMed]
  26. Wang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, o1139–o1140.
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 1. DOI: 10.1107/S1600536814009556/hb0002sup1.cif

e-70-00044-sup1.cif (698.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009556/hb0002Isup2.hkl

e-70-00044-Isup2.hkl (269.9KB, hkl)

CCDC reference: 1004259

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES