Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 19;70(Pt 8):101–103. doi: 10.1107/S1600536814016079

Crystal structure of cis-bis­[4-phenyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amidato-κ2 N 1,S]nickel(II) monohydrate tetra­hydro­furan disolvate

Adriano Bof de Oliveira a,*, Bárbara Regina Santos Feitosa a, Christian Näther b, Inke Jess b
PMCID: PMC4158541  PMID: 25249866

Crystal structure of a NiII–thio­semicarbazone complex showing an unusual cis arrangement of the N,S-donor ligands and anagostic C—H⋯Ni inter­actions.

Keywords: thio­semicarbazone complex, anagostic inter­actions, crystal structure

Abstract

The reaction of NiII acetate tetra­hydrate with the ligand 4-phenyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide in a 2:1 molar ratio yielded the title compound, [Ni(C16H16N3S)2]·2C4H8O·H2O. The deprotonated ligands act as N,S-donors, forming five-membered metallacycles with the metal ion exhibiting a cis coordination mode unusual for thio­semicarbazone complexes. The NiII ion is four-coordinated in a tetra­hedrally distorted square-planar geometry. Trans-arranged anagostic C—H⋯Ni inter­actions are observed. In the crystal, the complex mol­ecules are linked by water mol­ecules through N—H⋯O and O—H⋯S hydrogen-bonding inter­actions into centrosymmetric dimers stacked along the c axis, forming rings of graph-set R 4 4(12). Classical O—H⋯O hydrogen bonds involving the water and tetra­hydro­furan solvent mol­ecules as well as weak C—H⋯π inter­actions are also present.

Chemical context  

Thio­semicarbazone ligands are N,S-donors that show a wide range of coordination modes (Lobana et al., 2009). As a part of our ongoing project on the synthesis and structures of thio­semicarbazone derivatives and their metal complexes, the crystal structure of an NiII complex of 2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amide is reported. The crystal structure of the free ligand was published recently by our group (de Oliveira et al., 2014), but one of the first reports on the synthesis of thio­semicarbazone deriv­a­tives was done by Freund & Schander (1902). The complex shows a cis coordination mode, which is unusual for this ligands, and two trans-arranged anagostic inter­actions between C—H groups and the metal ion are also observed. These inter­actions are typical for several complexes with catalytic applications (Brookhart et al., 2007).graphic file with name e-70-00101-scheme1.jpg

Structural commentary  

In the crystal structure of the title compound, the NiII cation is four-coordinated by two crystallographically independent deprotonated ligands into discrete complexes that are located in general positions (Fig. 1). The metal displays a remarkable tetra­hedrally distorted square-planar coordination geometry (maximum displacement 0.5049 (13) Å for atom N2) with the ligands showing an uncommon cis N 1,S-coordination mode. The values of the Ni—N and N—S bond lengths (Table 1) and N2—Ni1—S21 and N22—Ni1—S1 bond angles [164.04 (5) and 162.63 (4)°, respectively] confirm the distortion from the ideal coordination geometry. In the complex mol­ecule significant structural changes of the N–N–C–S fragment are observed. For the non-coordinating2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amide ligand, the N—N, N—C and C—S bond lengths amount to 1.385 (2), 1.364 (2) and 1.677 (2) Å. These lengths indicate the double-bond character of the N=N and C=S bonds, and the single-bond character of the N–C bond (de Oliveira et al., 2014). In contrast, in the title complex the acidic hydrogen of the hydrazine fragment is removed and the negative charge is delocalized over the N–N–C–S fragment. Therefore, the N—N, N—C and C—S bond lengths amount to 1.405 (2), 1.304 (2) and 1.757 (2) Å respectively in one ligand and 1.401 (2), 1.298 (3) and 1.761 (2) Å in the other. The N—C bond lengths indicate a considerable double-bond character, while the N—N and C—S bond distances are consistent with an increased single-bond character. It is worth noting that two trans-arranged anagostic inter­actions between aromatic C—H groups and the metal ion are observed (Fig. 2). For a three-centre–two-electron M⋯H—C agostic inter­action, the M⋯H distance should range between 1.8 and 2.3 Å and the M⋯H—C angle should range between 90 and 140°. For an anagostic inter­action these values should range from 2.3 to 2.9 Å and from 110 to 170°, respectively (Brookhart et al., 2007). The title complex shows Ni1⋯H30 and Ni1⋯H10 contacts of 2.61 and 2.45 Å [both values are shorter than the sum of the van der Waals radii for Ni (1.63 Å; Bondi, 1964) and H (1.10 Å; Rowland & Taylor, 1996)], and C30—H30—Ni1 and C10—H10—Ni1 angles of 118 and 121°, in agreement with the presence of anagostic inter­actions.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level.

Table 1. Selected bond lengths (Å).

Ni1—N2 1.9313 (14) Ni1—S21 2.1524 (5)
Ni1—N22 1.9417 (14) Ni1—S1 2.1664 (5)

Figure 2.

Figure 2

Coordination environment of the metal ion showing the C—H⋯M anagostic inter­actions (dashed lines).

Supra­molecular features  

The asymmetric unit of the title complex contains one water and two tetra­hydro­furane solvate mol­ecules. The water mol­ecules bridge the complex mol­ecules through N—H⋯O and O—H⋯S hydrogen bonds (Table 2) into centrosymmetric dimers arranged along the c axis, forming rings of graph-set Inline graphic(12) (Fig. 3). In addition, classical O—H⋯O hydrogen bonds between tetra­hydro­furane and water mol­ecules and weak C—H⋯π inter­actions are observed (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C32–C37 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O1 0.88 2.06 2.934 (2) 172
N23—H2N⋯O51 0.88 2.02 2.895 (2) 171
O1—H1O1⋯S1i 0.84 2.63 3.4609 (16) 170
O1—H2O1⋯O41ii 0.84 2.00 2.836 (2) 173
C27—H27⋯Cg1iii 0.95 2.80 3.595 (2) 142
C54—H54BCg2iv 0.99 2.67 3.633 (2) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

Mol­ecules of the title compound connected through inversion centres via pairs of N—H⋯O and O—H⋯S inter­actions. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds are also shown. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization  

Starting materials were commercially available and were used without further purification. The synthesis of the ligand was adapted from a procedure reported previously (Freund & Schander, 1902) and its structure is already published (de Oliveira et al., 2014). 2-(1,2,3,4-Tetra­hydro­naphthalen-1-ylidene)-4-phenyl-hydrazinecarbo­thio­amide was dissolved in THF (2 mmol/40 ml) with stirring maintained for 30 min until the solution turned yellow. At the same time, a solution of nickel acetate tetra­hydrate (1 mmol/40 ml) in THF was prepared under continuous stirring. A mixture of both solutions was maintained with stirring at room temperature for 6 h. Crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The imine and water H atoms were located in difference Fourier map, and were refined as riding with N—H = 0.88, O—H = 0.84 Å, and with U iso(H) = 1.2 U eq(N) or 1.5 U eq(O). All other H atoms were positioned with idealized geometry and refined using a riding model approximation, with C—H = 0.95-0.99 Å and with U iso(H) = 1.2 U eq(C). An outlier (17 0 20) was omitted in the last cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C16H16N3S)2]·2C4H8O·H2O
M r 809.71
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 20.9248 (13), 8.7872 (5), 21.2833 (15)
β (°) 92.841 (8)
V3) 3908.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.19 × 0.15 × 0.10
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)
T min, T max 0.787, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 40358, 8412, 7107
R int 0.064
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.090, 1.04
No. of reflections 8412
No. of parameters 488
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.48

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536814016079/rz5128sup1.cif

e-70-00101-sup1.cif (42.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016079/rz5128Isup2.hkl

e-70-00101-Isup2.hkl (411.5KB, hkl)

CCDC reference: 1013220

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. BRSF thanks the CNPq/UFS for the award of a PIBIC scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

supplementary crystallographic information

Crystal data

[Ni(C16H16N3S)2]·2C4H8O·H2O F(000) = 1712
Mr = 809.71 Dx = 1.376 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 40358 reflections
a = 20.9248 (13) Å θ = 2.5–27.0°
b = 8.7872 (5) Å µ = 0.65 mm1
c = 21.2833 (15) Å T = 200 K
β = 92.841 (8)° Prism, red
V = 3908.6 (4) Å3 0.19 × 0.15 × 0.10 mm
Z = 4

Data collection

Stoe IPDS-1 diffractometer 8412 independent reflections
Radiation source: fine-focus sealed tube, Stoe IPDS-1 7107 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.064
φ scans θmax = 27.0°, θmin = 2.5°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −26→26
Tmin = 0.787, Tmax = 0.941 k = −11→11
40358 measured reflections l = −27→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0495P)2 + 1.531P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
8412 reflections Δρmax = 0.32 e Å3
488 parameters Δρmin = −0.48 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0043 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.763345 (10) 0.57702 (2) 0.542635 (10) 0.01599 (8)
S1 0.85498 (2) 0.51110 (5) 0.50807 (2) 0.02150 (10)
C1 0.84794 (8) 0.63429 (18) 0.44282 (8) 0.0176 (3)
N1 0.80744 (7) 0.74626 (15) 0.43901 (6) 0.0193 (3)
N2 0.77215 (7) 0.75911 (15) 0.49300 (6) 0.0176 (3)
C2 0.74873 (8) 0.89550 (17) 0.50036 (8) 0.0176 (3)
C3 0.75309 (9) 1.01216 (19) 0.44862 (8) 0.0239 (4)
H3A 0.7289 0.9747 0.4106 0.029*
H3B 0.7984 1.0230 0.4381 0.029*
C4 0.72730 (9) 1.16776 (19) 0.46591 (9) 0.0272 (4)
H4A 0.7214 1.2308 0.4275 0.033*
H4B 0.7585 1.2197 0.4950 0.033*
C5 0.66362 (10) 1.1516 (2) 0.49709 (10) 0.0312 (4)
H5A 0.6470 1.2536 0.5076 0.037*
H5B 0.6320 1.1016 0.4677 0.037*
C6 0.67272 (9) 1.05810 (19) 0.55612 (9) 0.0249 (4)
C7 0.64126 (10) 1.0929 (2) 0.61052 (11) 0.0339 (5)
H7 0.6105 1.1724 0.6094 0.041*
C8 0.65380 (11) 1.0144 (2) 0.66589 (11) 0.0380 (5)
H8 0.6306 1.0376 0.7019 0.046*
C9 0.70038 (11) 0.9014 (2) 0.66901 (10) 0.0334 (4)
H9 0.7103 0.8502 0.7076 0.040*
C10 0.73221 (9) 0.8639 (2) 0.61548 (8) 0.0249 (4)
H10 0.7646 0.7880 0.6177 0.030*
C11 0.71703 (8) 0.93683 (18) 0.55811 (8) 0.0204 (3)
N3 0.88815 (7) 0.60673 (16) 0.39553 (7) 0.0219 (3)
H1N 0.9185 0.5384 0.4020 0.026*
C12 0.88886 (8) 0.67796 (19) 0.33607 (8) 0.0208 (3)
C13 0.84043 (10) 0.7741 (2) 0.31185 (9) 0.0281 (4)
H13 0.8049 0.7976 0.3362 0.034*
C14 0.84464 (12) 0.8354 (2) 0.25151 (9) 0.0358 (5)
H14 0.8116 0.9004 0.2351 0.043*
C15 0.89587 (12) 0.8032 (2) 0.21546 (10) 0.0384 (5)
H15 0.8985 0.8465 0.1748 0.046*
C16 0.94352 (10) 0.7069 (3) 0.23938 (9) 0.0358 (5)
H16 0.9787 0.6832 0.2146 0.043*
C17 0.94061 (9) 0.6444 (2) 0.29920 (9) 0.0273 (4)
H17 0.9738 0.5790 0.3150 0.033*
S21 0.77040 (2) 0.40904 (5) 0.61626 (2) 0.02150 (10)
C21 0.69687 (8) 0.45636 (18) 0.64762 (8) 0.0189 (3)
N21 0.65424 (7) 0.54193 (16) 0.61843 (7) 0.0214 (3)
N22 0.67275 (7) 0.58376 (15) 0.55827 (6) 0.0179 (3)
C22 0.62487 (8) 0.63338 (18) 0.52238 (8) 0.0185 (3)
C23 0.56144 (8) 0.6663 (2) 0.55078 (9) 0.0265 (4)
H23A 0.5686 0.7398 0.5857 0.032*
H23B 0.5451 0.5710 0.5689 0.032*
C24 0.51066 (9) 0.7303 (2) 0.50437 (10) 0.0314 (4)
H24A 0.4914 0.6466 0.4787 0.038*
H24B 0.4763 0.7789 0.5276 0.038*
C25 0.54023 (9) 0.8468 (2) 0.46163 (10) 0.0298 (4)
H25A 0.5068 0.8908 0.4325 0.036*
H25B 0.5599 0.9303 0.4871 0.036*
C26 0.59041 (9) 0.7688 (2) 0.42476 (9) 0.0244 (4)
C27 0.59580 (11) 0.7956 (2) 0.36072 (9) 0.0350 (4)
H27 0.5691 0.8697 0.3402 0.042*
C28 0.63934 (11) 0.7161 (3) 0.32660 (9) 0.0376 (5)
H28 0.6429 0.7375 0.2832 0.045*
C29 0.67788 (10) 0.6050 (2) 0.35546 (9) 0.0306 (4)
H29 0.7070 0.5487 0.3317 0.037*
C30 0.67348 (9) 0.57702 (19) 0.41940 (9) 0.0233 (4)
H30 0.6994 0.5005 0.4392 0.028*
C31 0.63103 (8) 0.66085 (18) 0.45479 (8) 0.0195 (3)
N23 0.68631 (7) 0.39556 (17) 0.70534 (7) 0.0229 (3)
H2N 0.7178 0.3384 0.7209 0.027*
C32 0.62840 (9) 0.38489 (19) 0.73636 (8) 0.0221 (3)
C33 0.57121 (9) 0.4550 (2) 0.71649 (9) 0.0285 (4)
H33 0.5697 0.5192 0.6806 0.034*
C34 0.51621 (10) 0.4305 (2) 0.74952 (10) 0.0339 (4)
H34 0.4772 0.4776 0.7354 0.041*
C35 0.51734 (10) 0.3391 (2) 0.80225 (10) 0.0356 (5)
H35 0.4795 0.3227 0.8242 0.043*
C36 0.57417 (11) 0.2718 (2) 0.82274 (10) 0.0357 (5)
H36 0.5755 0.2098 0.8594 0.043*
C37 0.62939 (10) 0.2937 (2) 0.79037 (9) 0.0298 (4)
H37 0.6682 0.2464 0.8050 0.036*
O1 0.99770 (7) 0.40290 (16) 0.41952 (8) 0.0417 (4)
H1O1 1.0309 0.4309 0.4401 0.062*
H2O1 1.0030 0.3084 0.4169 0.062*
O41 0.97593 (8) 0.58636 (16) 0.08169 (9) 0.0448 (4)
C41 0.90931 (12) 0.5585 (3) 0.07052 (16) 0.0538 (7)
H41A 0.8912 0.6291 0.0381 0.065*
H41B 0.8864 0.5735 0.1097 0.065*
C42 0.90244 (13) 0.3977 (3) 0.04853 (15) 0.0531 (7)
H42A 0.8981 0.3930 0.0020 0.064*
H42B 0.8645 0.3492 0.0661 0.064*
C43 0.96318 (13) 0.3203 (3) 0.07266 (12) 0.0455 (6)
H43A 0.9842 0.2683 0.0380 0.055*
H43B 0.9540 0.2443 0.1053 0.055*
C44 1.00526 (12) 0.4463 (2) 0.10005 (13) 0.0448 (6)
H44A 1.0089 0.4382 0.1465 0.054*
H44B 1.0487 0.4394 0.0838 0.054*
O51 0.78020 (7) 0.19400 (17) 0.76536 (7) 0.0344 (3)
C51 0.81446 (12) 0.2516 (3) 0.82019 (11) 0.0467 (6)
H51A 0.8107 0.1802 0.8558 0.056*
H51B 0.7967 0.3512 0.8323 0.056*
C52 0.88412 (11) 0.2691 (3) 0.80450 (11) 0.0408 (5)
H52A 0.9120 0.2021 0.8314 0.049*
H52B 0.8985 0.3758 0.8103 0.049*
C53 0.88546 (10) 0.2222 (2) 0.73570 (10) 0.0347 (4)
H53A 0.8835 0.3122 0.7077 0.042*
H53B 0.9245 0.1630 0.7278 0.042*
C54 0.82624 (9) 0.1255 (2) 0.72640 (10) 0.0297 (4)
H54A 0.8106 0.1259 0.6817 0.036*
H54B 0.8351 0.0192 0.7395 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01618 (12) 0.01577 (11) 0.01627 (11) 0.00208 (7) 0.00338 (8) 0.00228 (7)
S1 0.0184 (2) 0.0223 (2) 0.0243 (2) 0.00532 (15) 0.00491 (16) 0.00550 (15)
C1 0.0171 (8) 0.0168 (7) 0.0191 (7) −0.0003 (6) 0.0028 (6) −0.0024 (6)
N1 0.0229 (7) 0.0191 (6) 0.0164 (6) 0.0042 (5) 0.0067 (6) −0.0001 (5)
N2 0.0176 (7) 0.0197 (6) 0.0157 (6) 0.0022 (5) 0.0035 (5) −0.0018 (5)
C2 0.0175 (8) 0.0163 (7) 0.0189 (8) 0.0006 (6) 0.0019 (6) −0.0006 (6)
C3 0.0301 (9) 0.0188 (8) 0.0234 (8) 0.0055 (7) 0.0056 (7) 0.0026 (6)
C4 0.0326 (10) 0.0158 (8) 0.0335 (10) 0.0048 (7) 0.0065 (8) 0.0019 (7)
C5 0.0275 (10) 0.0212 (8) 0.0451 (11) 0.0079 (7) 0.0031 (9) −0.0016 (8)
C6 0.0211 (9) 0.0185 (8) 0.0358 (10) −0.0011 (6) 0.0064 (8) −0.0077 (7)
C7 0.0285 (10) 0.0273 (9) 0.0473 (12) −0.0029 (7) 0.0167 (9) −0.0147 (8)
C8 0.0411 (12) 0.0367 (11) 0.0384 (11) −0.0119 (9) 0.0229 (10) −0.0165 (9)
C9 0.0423 (12) 0.0348 (10) 0.0242 (9) −0.0111 (8) 0.0117 (9) −0.0071 (8)
C10 0.0308 (10) 0.0237 (8) 0.0204 (8) −0.0057 (7) 0.0049 (7) −0.0052 (7)
C11 0.0209 (8) 0.0191 (7) 0.0217 (8) −0.0034 (6) 0.0062 (7) −0.0051 (6)
N3 0.0213 (7) 0.0228 (7) 0.0220 (7) 0.0063 (6) 0.0054 (6) −0.0005 (6)
C12 0.0224 (8) 0.0216 (8) 0.0187 (8) −0.0039 (6) 0.0055 (7) −0.0036 (6)
C13 0.0348 (10) 0.0295 (9) 0.0205 (8) 0.0045 (8) 0.0073 (8) 0.0007 (7)
C14 0.0518 (13) 0.0330 (10) 0.0229 (9) 0.0043 (9) 0.0053 (9) 0.0045 (8)
C15 0.0557 (14) 0.0387 (11) 0.0217 (9) −0.0103 (10) 0.0102 (9) 0.0022 (8)
C16 0.0345 (11) 0.0485 (12) 0.0258 (10) −0.0151 (9) 0.0146 (8) −0.0088 (9)
C17 0.0224 (9) 0.0340 (9) 0.0261 (9) −0.0048 (7) 0.0068 (7) −0.0081 (7)
S21 0.0219 (2) 0.0233 (2) 0.0197 (2) 0.00565 (15) 0.00496 (16) 0.00627 (15)
C21 0.0214 (8) 0.0183 (7) 0.0171 (7) −0.0010 (6) 0.0026 (6) 0.0006 (6)
N21 0.0214 (7) 0.0243 (7) 0.0189 (7) 0.0009 (6) 0.0060 (6) 0.0042 (5)
N22 0.0197 (7) 0.0178 (6) 0.0164 (6) 0.0016 (5) 0.0029 (5) 0.0011 (5)
C22 0.0192 (8) 0.0160 (7) 0.0204 (8) 0.0006 (6) 0.0022 (6) −0.0015 (6)
C23 0.0189 (8) 0.0323 (9) 0.0288 (9) 0.0031 (7) 0.0042 (7) 0.0005 (7)
C24 0.0186 (9) 0.0361 (10) 0.0394 (11) 0.0043 (7) 0.0004 (8) −0.0007 (8)
C25 0.0258 (10) 0.0294 (9) 0.0338 (10) 0.0105 (7) −0.0030 (8) 0.0006 (8)
C26 0.0239 (9) 0.0239 (8) 0.0250 (9) 0.0041 (7) −0.0035 (7) −0.0011 (7)
C27 0.0404 (12) 0.0388 (11) 0.0251 (9) 0.0109 (9) −0.0056 (8) 0.0050 (8)
C28 0.0486 (13) 0.0465 (12) 0.0175 (9) 0.0073 (10) −0.0003 (8) 0.0013 (8)
C29 0.0337 (11) 0.0358 (10) 0.0225 (9) 0.0028 (8) 0.0034 (8) −0.0079 (7)
C30 0.0245 (9) 0.0214 (8) 0.0238 (8) 0.0026 (7) −0.0004 (7) −0.0041 (6)
C31 0.0196 (8) 0.0192 (7) 0.0194 (8) 0.0008 (6) −0.0015 (6) −0.0029 (6)
N23 0.0228 (8) 0.0277 (7) 0.0185 (7) 0.0042 (6) 0.0039 (6) 0.0058 (6)
C32 0.0261 (9) 0.0223 (8) 0.0183 (8) −0.0021 (6) 0.0064 (7) −0.0010 (6)
C33 0.0273 (10) 0.0348 (10) 0.0238 (9) 0.0009 (8) 0.0056 (8) 0.0047 (7)
C34 0.0248 (10) 0.0429 (11) 0.0343 (11) −0.0005 (8) 0.0068 (8) 0.0019 (8)
C35 0.0335 (11) 0.0394 (11) 0.0355 (11) −0.0082 (9) 0.0170 (9) 0.0019 (9)
C36 0.0443 (12) 0.0347 (10) 0.0294 (10) −0.0021 (9) 0.0153 (9) 0.0080 (8)
C37 0.0347 (11) 0.0301 (9) 0.0252 (9) 0.0038 (8) 0.0077 (8) 0.0063 (7)
O1 0.0317 (8) 0.0309 (7) 0.0613 (11) 0.0075 (6) −0.0092 (7) −0.0028 (7)
O41 0.0357 (9) 0.0262 (7) 0.0711 (12) −0.0026 (6) −0.0108 (8) 0.0095 (7)
C41 0.0352 (13) 0.0342 (11) 0.090 (2) 0.0029 (9) −0.0133 (13) −0.0017 (12)
C42 0.0458 (14) 0.0434 (13) 0.0685 (18) −0.0082 (11) −0.0121 (13) −0.0022 (12)
C43 0.0606 (16) 0.0306 (10) 0.0443 (13) 0.0010 (10) −0.0074 (11) −0.0035 (9)
C44 0.0422 (13) 0.0310 (10) 0.0602 (15) 0.0027 (9) −0.0069 (11) 0.0046 (10)
O51 0.0256 (7) 0.0425 (8) 0.0351 (8) 0.0066 (6) 0.0017 (6) 0.0013 (6)
C51 0.0449 (14) 0.0643 (15) 0.0309 (11) 0.0098 (12) 0.0022 (10) −0.0047 (11)
C52 0.0393 (12) 0.0409 (11) 0.0409 (12) 0.0005 (9) −0.0103 (10) −0.0025 (9)
C53 0.0279 (10) 0.0370 (11) 0.0395 (11) 0.0015 (8) 0.0039 (9) 0.0030 (9)
C54 0.0296 (10) 0.0266 (9) 0.0329 (10) 0.0055 (7) 0.0006 (8) 0.0016 (7)

Geometric parameters (Å, º)

Ni1—N2 1.9313 (14) C24—H24B 0.9900
Ni1—N22 1.9417 (14) C25—C26 1.506 (3)
Ni1—S21 2.1524 (5) C25—H25A 0.9900
Ni1—S1 2.1664 (5) C25—H25B 0.9900
S1—C1 1.7612 (17) C26—C27 1.393 (3)
C1—N1 1.298 (2) C26—C31 1.406 (2)
C1—N3 1.365 (2) C27—C28 1.382 (3)
N1—N2 1.4008 (18) C27—H27 0.9500
N2—C2 1.307 (2) C28—C29 1.390 (3)
C2—C11 1.471 (2) C28—H28 0.9500
C2—C3 1.511 (2) C29—C30 1.390 (3)
C3—C4 1.522 (2) C29—H29 0.9500
C3—H3A 0.9900 C30—C31 1.402 (2)
C3—H3B 0.9900 C30—H30 0.9500
C4—C5 1.524 (3) N23—C32 1.412 (2)
C4—H4A 0.9900 N23—H2N 0.8800
C4—H4B 0.9900 C32—C33 1.393 (3)
C5—C6 1.505 (3) C32—C37 1.401 (2)
C5—H5A 0.9900 C33—C34 1.395 (3)
C5—H5B 0.9900 C33—H33 0.9500
C6—C7 1.394 (3) C34—C35 1.379 (3)
C6—C11 1.412 (2) C34—H34 0.9500
C7—C8 1.379 (3) C35—C36 1.379 (3)
C7—H7 0.9500 C35—H35 0.9500
C8—C9 1.390 (3) C36—C37 1.388 (3)
C8—H8 0.9500 C36—H36 0.9500
C9—C10 1.388 (3) C37—H37 0.9500
C9—H9 0.9500 O1—H1O1 0.8400
C10—C11 1.401 (3) O1—H2O1 0.8397
C10—H10 0.9500 O41—C44 1.422 (3)
N3—C12 1.413 (2) O41—C41 1.424 (3)
N3—H1N 0.8798 C41—C42 1.493 (3)
C12—C13 1.398 (3) C41—H41A 0.9900
C12—C17 1.400 (2) C41—H41B 0.9900
C13—C14 1.400 (3) C42—C43 1.509 (4)
C13—H13 0.9500 C42—H42A 0.9900
C14—C15 1.378 (3) C42—H42B 0.9900
C14—H14 0.9500 C43—C44 1.513 (3)
C15—C16 1.386 (3) C43—H43A 0.9900
C15—H15 0.9500 C43—H43B 0.9900
C16—C17 1.391 (3) C44—H44A 0.9900
C16—H16 0.9500 C44—H44B 0.9900
C17—H17 0.9500 O51—C51 1.431 (3)
S21—C21 1.7571 (17) O51—C54 1.434 (2)
C21—N21 1.301 (2) C51—C52 1.519 (3)
C21—N23 1.368 (2) C51—H51A 0.9900
N21—N22 1.4050 (19) C51—H51B 0.9900
N22—C22 1.304 (2) C52—C53 1.523 (3)
C22—C31 1.470 (2) C52—H52A 0.9900
C22—C23 1.513 (2) C52—H52B 0.9900
C23—C24 1.522 (3) C53—C54 1.508 (3)
C23—H23A 0.9900 C53—H53A 0.9900
C23—H23B 0.9900 C53—H53B 0.9900
C24—C25 1.521 (3) C54—H54A 0.9900
C24—H24A 0.9900 C54—H54B 0.9900
N2—Ni1—N22 100.89 (6) C26—C25—C24 108.67 (15)
N2—Ni1—S21 164.04 (5) C26—C25—H25A 110.0
N22—Ni1—S21 85.90 (4) C24—C25—H25A 110.0
N2—Ni1—S1 85.74 (4) C26—C25—H25B 110.0
N22—Ni1—S1 162.63 (4) C24—C25—H25B 110.0
S21—Ni1—S1 91.944 (18) H25A—C25—H25B 108.3
C1—S1—Ni1 93.59 (5) C27—C26—C31 118.83 (17)
N1—C1—N3 120.84 (15) C27—C26—C25 121.67 (17)
N1—C1—S1 122.94 (12) C31—C26—C25 119.43 (16)
N3—C1—S1 116.22 (12) C28—C27—C26 121.06 (18)
C1—N1—N2 112.26 (13) C28—C27—H27 119.5
C2—N2—N1 112.85 (13) C26—C27—H27 119.5
C2—N2—Ni1 130.35 (11) C27—C28—C29 120.40 (18)
N1—N2—Ni1 116.77 (10) C27—C28—H28 119.8
N2—C2—C11 120.93 (14) C29—C28—H28 119.8
N2—C2—C3 119.88 (14) C28—C29—C30 119.46 (18)
C11—C2—C3 119.19 (14) C28—C29—H29 120.3
C2—C3—C4 113.48 (14) C30—C29—H29 120.3
C2—C3—H3A 108.9 C29—C30—C31 120.48 (17)
C4—C3—H3A 108.9 C29—C30—H30 119.8
C2—C3—H3B 108.9 C31—C30—H30 119.8
C4—C3—H3B 108.9 C30—C31—C26 119.68 (16)
H3A—C3—H3B 107.7 C30—C31—C22 121.87 (15)
C3—C4—C5 110.47 (15) C26—C31—C22 118.36 (15)
C3—C4—H4A 109.6 C21—N23—C32 128.82 (16)
C5—C4—H4A 109.6 C21—N23—H2N 114.1
C3—C4—H4B 109.6 C32—N23—H2N 115.6
C5—C4—H4B 109.6 C33—C32—C37 118.67 (17)
H4A—C4—H4B 108.1 C33—C32—N23 124.97 (16)
C6—C5—C4 109.69 (16) C37—C32—N23 116.34 (17)
C6—C5—H5A 109.7 C32—C33—C34 119.79 (18)
C4—C5—H5A 109.7 C32—C33—H33 120.1
C6—C5—H5B 109.7 C34—C33—H33 120.1
C4—C5—H5B 109.7 C35—C34—C33 121.2 (2)
H5A—C5—H5B 108.2 C35—C34—H34 119.4
C7—C6—C11 118.49 (18) C33—C34—H34 119.4
C7—C6—C5 121.87 (17) C34—C35—C36 119.13 (18)
C11—C6—C5 119.53 (16) C34—C35—H35 120.4
C8—C7—C6 121.49 (19) C36—C35—H35 120.4
C8—C7—H7 119.3 C35—C36—C37 120.63 (19)
C6—C7—H7 119.3 C35—C36—H36 119.7
C7—C8—C9 120.08 (18) C37—C36—H36 119.7
C7—C8—H8 120.0 C36—C37—C32 120.52 (19)
C9—C8—H8 120.0 C36—C37—H37 119.7
C10—C9—C8 119.6 (2) C32—C37—H37 119.7
C10—C9—H9 120.2 H1O1—O1—H2O1 102.5
C8—C9—H9 120.2 C44—O41—C41 107.61 (17)
C9—C10—C11 120.61 (18) O41—C41—C42 107.1 (2)
C9—C10—H10 119.7 O41—C41—H41A 110.3
C11—C10—H10 119.7 C42—C41—H41A 110.3
C10—C11—C6 119.45 (16) O41—C41—H41B 110.3
C10—C11—C2 121.53 (15) C42—C41—H41B 110.3
C6—C11—C2 118.94 (16) H41A—C41—H41B 108.6
C1—N3—C12 128.03 (15) C41—C42—C43 104.7 (2)
C1—N3—H1N 118.2 C41—C42—H42A 110.8
C12—N3—H1N 113.8 C43—C42—H42A 110.8
C13—C12—C17 119.16 (17) C41—C42—H42B 110.8
C13—C12—N3 123.95 (15) C43—C42—H42B 110.8
C17—C12—N3 116.85 (16) H42A—C42—H42B 108.9
C12—C13—C14 119.57 (18) C42—C43—C44 105.43 (19)
C12—C13—H13 120.2 C42—C43—H43A 110.7
C14—C13—H13 120.2 C44—C43—H43A 110.7
C15—C14—C13 121.2 (2) C42—C43—H43B 110.7
C15—C14—H14 119.4 C44—C43—H43B 110.7
C13—C14—H14 119.4 H43A—C43—H43B 108.8
C14—C15—C16 119.09 (19) O41—C44—C43 107.00 (19)
C14—C15—H15 120.5 O41—C44—H44A 110.3
C16—C15—H15 120.5 C43—C44—H44A 110.3
C15—C16—C17 120.95 (18) O41—C44—H44B 110.3
C15—C16—H16 119.5 C43—C44—H44B 110.3
C17—C16—H16 119.5 H44A—C44—H44B 108.6
C16—C17—C12 120.02 (19) C51—O51—C54 107.23 (16)
C16—C17—H17 120.0 O51—C51—C52 107.68 (18)
C12—C17—H17 120.0 O51—C51—H51A 110.2
C21—S21—Ni1 94.84 (6) C52—C51—H51A 110.2
N21—C21—N23 121.14 (15) O51—C51—H51B 110.2
N21—C21—S21 123.24 (13) C52—C51—H51B 110.2
N23—C21—S21 115.61 (13) H51A—C51—H51B 108.5
C21—N21—N22 111.90 (14) C51—C52—C53 104.34 (18)
C22—N22—N21 112.50 (14) C51—C52—H52A 110.9
C22—N22—Ni1 129.64 (12) C53—C52—H52A 110.9
N21—N22—Ni1 117.63 (11) C51—C52—H52B 110.9
N22—C22—C31 121.71 (15) C53—C52—H52B 110.9
N22—C22—C23 119.56 (15) H52A—C52—H52B 108.9
C31—C22—C23 118.72 (15) C54—C53—C52 102.98 (17)
C22—C23—C24 114.16 (15) C54—C53—H53A 111.2
C22—C23—H23A 108.7 C52—C53—H53A 111.2
C24—C23—H23A 108.7 C54—C53—H53B 111.2
C22—C23—H23B 108.7 C52—C53—H53B 111.2
C24—C23—H23B 108.7 H53A—C53—H53B 109.1
H23A—C23—H23B 107.6 O51—C54—C53 105.00 (16)
C25—C24—C23 110.19 (16) O51—C54—H54A 110.7
C25—C24—H24A 109.6 C53—C54—H54A 110.7
C23—C24—H24A 109.6 O51—C54—H54B 110.7
C25—C24—H24B 109.6 C53—C54—H54B 110.7
C23—C24—H24B 109.6 H54A—C54—H54B 108.8
H24A—C24—H24B 108.1

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C32–C37 and C12–C17 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N3—H1N···O1 0.88 2.06 2.934 (2) 172
N23—H2N···O51 0.88 2.02 2.895 (2) 171
O1—H1O1···S1i 0.84 2.63 3.4609 (16) 170
O1—H2O1···O41ii 0.84 2.00 2.836 (2) 173
C27—H27···Cg1iii 0.95 2.80 3.595 (2) 142
C54—H54B···Cg2iv 0.99 2.67 3.633 (2) 164

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, y−1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) x, −y+1/2, z+1/2.

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–452.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl. Acad. Sci. 104, 6908–6914. [DOI] [PMC free article] [PubMed]
  4. Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.
  5. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  6. Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205. [DOI] [PMC free article] [PubMed]
  7. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536814016079/rz5128sup1.cif

e-70-00101-sup1.cif (42.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016079/rz5128Isup2.hkl

e-70-00101-Isup2.hkl (411.5KB, hkl)

CCDC reference: 1013220

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES