Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jul 19;70(Pt 8):54–57. doi: 10.1107/S1600536814011799

Crystal structures of Na2SeO4·1.5H2O and Na2SeO4·10H2O

Matthias Weil a,*, Barbara Bonneau b
PMCID: PMC4158548  PMID: 25249853

The crystal structures of the 1.5- and 10-hydrates of Na2SeO4 are isotypic with those of the corresponding chromates.

Keywords: isotypism, sodium selenate, salt hydrates, crystal structure

Abstract

The crystal structures of Na2SeO4·1.5H2O (sodium selenate sesquihydrate) and Na2SeO4·10H2O (sodium selenate deca­hydrate) are isotypic with those of Na2CrO4·1.5H2O and Na2 XSeO4·10H2O (X = S, Cr), respectively. The asymmetric unit of the sesquihydrate contains two Na+ cations, one SeO4 tetra­hedron and one and a half water mol­ecules, the other half being generated by twofold rotation symmetry. The coordination polyhedra of the cations are a distorted monocapped octa­hedron and a square pyramid; these [NaOx] polyhedra are linked through common edges and corners into a three-dimensional framework structure, the voids of which are filled with the Se atoms of the SeO4 tetra­hedra. The structure is consolidated by O—H⋯O hydrogen bonds between coordinating water mol­ecules and framework O atoms. The asymmetric unit of the deca­hydrate consists of two Na+ cations, one SeO4 tetra­hedron and ten water mol­ecules. Both Na+ cations are octa­hedrally surrounded by water mol­ecules and by edge-sharing condensed into zigzag chains extending parallel to [001]. The SeO4 tetra­hedra and two uncoordinating water mol­ecules are situated between the chains and are connected to the chains through an intricate network of medium-strength O—H⋯O hydrogen bonds.

Chemical context  

Based on recent studies in the system Na/Se/O/H that revealed dimorphism of the phases NaHSeO4 and Na5H3(SeO4)4(H2O)2 (Pollitt & Weil, 2014), we became inter­ested in the structure determination of hydrous phases of Na2SeO4. Although the first report of the deca­hydrate of Na2SeO4 dates back to 1827 (Mitscherlich, 1827), a detailed structure report for this compound has not been published so far. Mitscherlich (1827) also recognized an isomorphic relationship of Na2SeO4·10H2O with Na2SO4·10H2O (Glauber’s salt or mirabilite as a mineral species). This relation was later confirmed by Rosický (1908) and by Ruben et al. (1961) on the basis of unit-cell determinations using diffraction methods. Another hydrous phase of Na2SeO4 reported in the literature is the metastable hepta­hydrate that crystallized from supersaturated Na2SeO4 solutions only when seeded with Na2SO4·7H2O nuclei below 293 K (Belarew, 1965).

During crystallization studies of aqueous Na2SeO4 solutions under different temperature conditions, we were able to isolate crystals not only of the deca­hydrate, but also of the sesqui­hydrate, the crystal structures of which are reported here.

Structural commentary  

Na2SeO4·1.5H2O is isotypic with the corresponding chromate (Kahlenberg, 2012) and is the second example of the Na2 XO4·1.5H2O structure family. The main building blocks of this structure type are distorted [NaO5(H2O)2] (Na1) monocapped octa­hedra, distorted [NaO4(H2O)] square pyramids (Na2) (Fig. 1) and rather regular XO4 (X = Se, Cr) tetra­hedra. These building blocks are linked through common corners and edges into a three-dimensional framework structure (Fig. 2). Hydrogen bonds of the type O—H⋯O between the coord­in­ating water mol­ecules and parts of the framework O atoms provide additional stabilization (Table 1). The bond lengths (Table 2) and angles within the individual building blocks of the selenate and chromate structures are more or less identical with mean distances of SeO4 = 1.641; CrO4 = 1.651; Na1O7 = 2.514 (selenate), 2.505 (chromate); Na2O5 = 2.350 (selenate), 2.360 Å (chromate).

Figure 1.

Figure 1

The NaO7 and NaO5 polyhedra in the structure of Na2SO4·1.5H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry codes: (i) Inline graphic, Inline graphic, Inline graphic; (ii) Inline graphic, Inline graphic, z; (iii) Inline graphic, y, z; (iv) Inline graphic, Inline graphic, Inline graphic; (v) Inline graphic, y, z; (vi) x, Inline graphic, Inline graphic; (vii) Inline graphic, Inline graphic, z.]

Figure 2.

Figure 2

The crystal structure of Na2SO4·1.5H2O in a projection along [110]. NaO5 polyhedra are turquoise, NaO7 polyhedra are blue, SeO4 tetra­hedra are red and H atoms are grey. Hydrogen bonds have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °) for 1.5-hydrate.

D—H⋯A D—H H⋯A DA D—H⋯A
OW5—H1⋯O4viii 0.82 (1) 2.13 (1) 2.922 (2) 164 (3)
OW5—H2⋯O3ix 0.82 (1) 2.08 (1) 2.891 (2) 169 (3)
OW6—H3⋯O1vi 0.82 (1) 1.90 (1) 2.703 (2) 167 (4)

Symmetry codes: (vi) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Table 2. Selected bond lengths (Å) for 1.5-hydrate.

Na1—OW5 2.3660 (18) Na2—O2iv 2.3301 (18)
Na1—O3i 2.4157 (19) Na2—OW6v 2.3480 (18)
Na1—O1 2.4379 (18) Na2—O4vi 2.3651 (19)
Na1—O3ii 2.4594 (16) Na2—O1vii 2.4103 (18)
Na1—OW5i 2.465 (2) Se1—O2 1.6350 (14)
Na1—O4iii 2.6057 (19) Se1—O3 1.6367 (14)
Na1—O2ii 2.8475 (17) Se1—O4 1.6451 (16)
Na2—O2 2.298 (2) Se1—O1 1.6481 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Isotypism has been reported for several Na2 XO4·10H2O (X = S, Se, Cr, W, Mo) phases (Ruben et al., 1961), but only the structures of X = S (Levy & Lisensky, 1978; Prescott et al., 2001) and Cr (Kahlenberg, 2012) have been determined so far. As expected, the general structural set-up in the isotypic Na2 XO4·10H2O structures is very similar. Each of the two Na+ cations is octa­hedrally surrounded [mean Na—O distance of the two octa­hedra is 2.420 Å (see Table 3); sulfate analogue (Prescott et al., 2001): 2.415 Å; chromate analogue (Kahlenberg, 2012): 2.423 Å]. The [NaO6] octa­hedra are linked via edge-sharing into zigzag chains (Fig. 3) running parallel to [001]. These chains are linked with neighbouring chains and inter­mediate SeO4 tetra­hedra (mean Se—O distance 1.639; sulfate 1.488, chromate 1.647 Å) and non-coordinating lattice water mol­ecules through O—H⋯O hydrogen bonds of medium strength (Table 4) to build up the crystal structure (Fig. 4). The most important difference between the structures of the three Na2 XO4·10H2O (X = S, Se, Cr) phases is the missing disorder of the XO4 tetra­hedron in the selenate compound that has been observed in the sulfate compound on the basis of single-crystal neutron data (Levy & Lisensky, 1978) and single-crystal X-ray data (Prescott et al., 2001), or for the chromate compound on the basis of single-crystal X-ray data (Kahlenberg, 2012).

Table 3. Selected bond lengths (Å) for 10-hydrate.

Na1—OW5 2.3776 (6) Na2—OW7 2.3935 (6)
Na1—OW6i 2.4181 (6) Na2—OW9 2.4325 (6)
Na1—OW11 2.4184 (6) Na2—OW6 2.4415 (6)
Na1—OW10 2.4194 (6) Na2—OW10ii 2.4667 (6)
Na1—OW8i 2.4473 (6) Se1—O41 1.6335 (5)
Na1—OW9i 2.4507 (6) Se1—O31 1.6394 (5)
Na2—OW12 2.3814 (6) Se1—O1 1.6398 (5)
Na2—OW5ii 2.3891 (6) Se1—O21 1.6421 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

A chain of edge-sharing NaO6 octa­hedra in the crystal structure of Na2SO4·10H2O. Displacement parameters are drawn at the 99% probability level. [Symmetry code: (i) x, −y − Inline graphic, z − Inline graphic.]

Table 4. Hydrogen-bond geometry (Å, °) for 10-hydrate.

D—H⋯A D—H H⋯A DA D—H⋯A
OW5—H5A⋯O41 0.82 (1) 1.96 (1) 2.7570 (7) 164 (1)
OW5—H5B⋯OW13iii 0.82 (1) 2.00 (1) 2.7980 (7) 165 (1)
OW6—H6A⋯OW14 0.82 (1) 2.02 (1) 2.8301 (7) 168 (1)
OW6—H6B⋯O41ii 0.82 (1) 1.98 (1) 2.7791 (7) 166 (2)
OW7—H7A⋯O1iv 0.82 (1) 1.97 (1) 2.7727 (7) 166 (1)
OW7—H7B⋯OW8v 0.82 (1) 1.95 (1) 2.7542 (7) 168 (1)
OW8—H8A⋯O41ii 0.82 (1) 1.95 (1) 2.7544 (7) 166 (1)
OW8—H8B⋯OW7vi 0.82 (1) 1.99 (1) 2.8076 (7) 178 (1)
OW9—H9A⋯O1vii 0.82 (1) 2.11 (1) 2.9152 (7) 168 (1)
OW9—H9B⋯OW13viii 0.82 (1) 2.04 (1) 2.8596 (7) 177 (1)
OW10—H10A⋯OW14ix 0.82 (1) 2.05 (1) 2.8686 (7) 178 (2)
OW10—H10B⋯O31x 0.82 (1) 2.08 (1) 2.8920 (7) 174 (1)
OW11—H11A⋯O31 0.82 (1) 2.05 (1) 2.8604 (7) 171 (1)
OW11—H11B⋯OW12i 0.82 (1) 1.96 (1) 2.7716 (8) 168 (1)
OW12—H12A⋯O21iv 0.82 (1) 1.92 (1) 2.7359 (7) 179 (1)
OW12—H12B⋯OW11viii 0.82 (1) 1.97 (1) 2.7818 (7) 173 (1)
OW13—H13A⋯O1xi 0.82 (1) 1.98 (1) 2.7932 (7) 172 (1)
OW13—H13B⋯O21x 0.82 (1) 1.98 (1) 2.7931 (7) 170 (1)
OW14—H14A⋯O21xii 0.82 (1) 1.98 (1) 2.8002 (7) 174 (1)
OW14—H14B⋯O31viii 0.82 (1) 2.00 (1) 2.8061 (7) 169 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic; (xii) Inline graphic.

Figure 4.

Figure 4

The crystal structure of Na2SO4·10H2O in a projection along [110]. NaO6 polyhedra are light blue, SeO4 tetra­hedra are red, O atoms are white and H atoms are grey. Hydrogen bonds have been omitted for clarity.

Synthesis and crystallization  

Anhydrous Na2SeO4 was prepared according to the method compiled by Brauer (1963) by adding a half-concentrated aqueous selenic acid solution (ca 60 wt%) to an excess of an Na2CO3 solution. The resulting solution was heated until a considerable amount of the neutralization product had crystallized. The crystal mush was then separated by suction filtration of the still-hot solution and dried in air. X-ray powder diffraction revealed a single-phase material. The Na2SeO4 crystals were then dissolved in small amounts of water and kept at ca 300, 293 and 280 K until complete evaporation of the solvent. According to Rietveld refinements using TOPAS (Bruker, 2013) the product crystallized at 300 K consisted of Na2SeO4 and Na2SeO4·1.5H2O in an approximate 9:1 weight ratio, the product crystallized at 290 K consisted of Na2SeO4 and Na2SeO4·1.5H2O in an approximate 5:1 ratio, and the product crystallized at 280 K consisted of Na2SeO4, Na2SeO4·1.5H2O and Na2SeO4·10H2O in an approximate 5:4:1 ratio. The crystal forms of the three obtained phases were different and were used for separation. Crystals of the anhydrous phase had mainly a lath-like form, of the sesquihydrate a plate-like form, and of the deca­hydrate a pinacoidal form. All obtained hydrate phases tend to weather when stored under ambient conditions.

Refinement  

Unit-cell determinations revealed isotypic relationships with the corresponding chromate phases (Kahlenberg, 2012). For better comparison of the isotypic structures, atom labels and the setting of the unit cells of the selenate compounds were retained, and the coordinates of the non-H atoms of the chromate structure were used as starting parameters for refinement [note that the unit cell of Na2CrO4·1.5H2O is given in the non-standard setting F2dd of space group No. 43 (standard setting Fdd2)]. The H atoms of the water mol­ecules were located from difference maps and were refined with a common U iso parameter and a fixed O—H distance of 0.82 Å. Experimental details are given in Table 1.

Table 5. Experimental details.

  1.5-hydrate 10-hydrate
Crystal data
Chemical formula Na2SeO4·1.5H2O Na2O4Se·10H2O
M r 215.96 369.10
Crystal system, space group Orthorhombic, F2d d Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 6.7533 (8), 8.6299 (10), 35.206 (4) 11.5758 (6), 10.4911 (5), 12.9570 (7)
α, β, γ (°) 90, 90, 90 90, 107.995 (3), 90
V3) 2051.8 (4) 1496.56 (13)
Z 16 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.43 2.62
Crystal size (mm) 0.20 × 0.15 × 0.10 0.32 × 0.18 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.488, 0.584 0.642, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 8363, 1824, 1723 213856, 11218, 9196
R int 0.032 0.054
(sin θ/λ)max−1) 0.762 0.965
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.019, 0.042, 0.99 0.021, 0.046, 1.05
No. of reflections 1824 11218
No. of parameters 89 215
No. of restraints 4 20
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.37 0.48, −0.52
Absolute structure Flack (1983), 823 Friedel pairs
Absolute structure parameter 0.025 (8)

Computer programs: SMART, SAINT, SAINT-Plus and APEX2 (Bruker, 2013, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1.5-hydrate, 10-hydrate, global. DOI: 10.1107/S1600536814011799/hb0010sup1.cif

e-70-00054-sup1.cif (38.7KB, cif)

Structure factors: contains datablock(s) 1.5-hydrate. DOI: 10.1107/S1600536814011799/hb00101.5-hydratesup2.hkl

CCDC references: 1004274, 1004275

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal and powder diffractometers. BB acknowledges the French government for a grant during a student exchange programme.

supplementary crystallographic information

Crystal data

Na2O4Se·10H2O F(000) = 752
Mr = 369.10 Dx = 1.638 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9719 reflections
a = 11.5758 (6) Å θ = 2.7–40.1°
b = 10.4911 (5) Å µ = 2.62 mm1
c = 12.9570 (7) Å T = 100 K
β = 107.995 (3)° Fragment, colourless
V = 1496.56 (13) Å3 0.32 × 0.18 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 11218 independent reflections
Radiation source: fine-focus sealed tube 9196 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
ω and φ scans θmax = 43.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −22→22
Tmin = 0.642, Tmax = 0.749 k = −20→20
213856 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.017P)2 + 0.2899P] where P = (Fo2 + 2Fc2)/3
11218 reflections (Δ/σ)max = 0.006
215 parameters Δρmax = 0.48 e Å3
20 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Se1 0.752121 (5) 0.139467 (5) 0.740658 (4) 0.00723 (1)
Na1 0.74307 (2) −0.24486 (3) 0.97851 (2) 0.01112 (5)
Na2 0.75630 (2) −0.11228 (3) 0.23666 (2) 0.01081 (4)
O1 0.86910 (4) 0.19770 (5) 0.83551 (4) 0.01211 (7)
O21 0.73195 (4) 0.21974 (4) 0.62765 (4) 0.01245 (8)
O31 0.63136 (4) 0.15034 (5) 0.78083 (4) 0.01257 (7)
O41 0.77699 (5) −0.00971 (4) 0.71826 (4) 0.01330 (8)
OW5 0.85363 (4) −0.21683 (5) 0.85304 (4) 0.01236 (7)
OW6 0.64473 (4) −0.27987 (5) 0.11583 (4) 0.01269 (8)
OW7 0.87675 (5) 0.03985 (5) 0.36196 (4) 0.01443 (8)
OW8 0.87052 (5) −0.42968 (5) 0.05311 (4) 0.01472 (8)
OW9 0.88112 (4) −0.10907 (5) 0.11623 (4) 0.01306 (8)
OW10 0.61813 (4) −0.39325 (5) 0.84832 (4) 0.01310 (8)
OW11 0.61541 (5) −0.06034 (5) 0.91589 (4) 0.01584 (9)
OW12 0.63321 (5) 0.04187 (5) 0.11747 (4) 0.01397 (8)
OW13 0.09783 (5) −0.14961 (5) 0.94520 (4) 0.01473 (8)
OW14 0.39997 (5) −0.34873 (5) 0.08502 (4) 0.01467 (8)
H5A 0.8345 (13) −0.1472 (6) 0.8240 (11) 0.0412 (9)*
H5B 0.9267 (3) −0.2110 (14) 0.8845 (10) 0.0412 (9)*
H6A 0.5712 (2) −0.2905 (14) 0.1003 (11) 0.0412 (9)*
H6B 0.6722 (13) −0.3481 (7) 0.1436 (11) 0.0412 (9)*
H7A 0.8618 (13) 0.1162 (3) 0.3535 (12) 0.0412 (9)*
H7B 0.8709 (12) 0.0169 (13) 0.4206 (5) 0.0412 (9)*
H8A 0.8415 (11) −0.4602 (12) 0.0978 (8) 0.0412 (9)*
H8B 0.9440 (2) −0.4401 (13) 0.0788 (10) 0.0412 (9)*
H9A 0.9508 (4) −0.1364 (12) 0.1394 (11) 0.0412 (9)*
H9B 0.8892 (13) −0.0359 (5) 0.0973 (11) 0.0412 (9)*
H10A 0.6143 (13) −0.4669 (4) 0.8683 (11) 0.0412 (9)*
H10B 0.5473 (4) −0.3767 (12) 0.8146 (10) 0.0412 (9)*
H11A 0.6205 (12) −0.0062 (10) 0.8719 (8) 0.0412 (9)*
H11B 0.6254 (12) −0.0213 (11) 0.9728 (6) 0.0412 (9)*
H12A 0.6618 (12) 0.1138 (5) 0.1205 (12) 0.0412 (9)*
H12B 0.5615 (3) 0.0506 (13) 0.1131 (11) 0.0412 (9)*
H13A 0.1146 (13) −0.1610 (13) 1.0108 (2) 0.0412 (9)*
H13B 0.1423 (10) −0.1952 (11) 0.9226 (10) 0.0412 (9)*
H14A 0.3586 (11) −0.3337 (13) 0.0224 (4) 0.0412 (9)*
H14B 0.3809 (12) −0.2944 (10) 0.1223 (9) 0.0412 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Se1 0.00796 (2) 0.00652 (2) 0.00716 (2) 0.00002 (2) 0.00228 (1) 0.00003 (2)
Na1 0.01190 (11) 0.01128 (11) 0.01052 (11) −0.00036 (9) 0.00396 (9) −0.00045 (8)
Na2 0.01176 (11) 0.01011 (10) 0.01050 (10) 0.00016 (9) 0.00333 (8) 0.00013 (8)
O1 0.00993 (17) 0.01300 (18) 0.01144 (17) −0.00124 (14) 0.00041 (14) −0.00188 (14)
O21 0.0162 (2) 0.01156 (18) 0.00963 (17) 0.00085 (15) 0.00404 (15) 0.00315 (14)
O31 0.00980 (17) 0.0156 (2) 0.01373 (18) −0.00012 (15) 0.00571 (14) −0.00071 (15)
O41 0.0190 (2) 0.00658 (16) 0.01498 (19) 0.00140 (15) 0.00617 (16) −0.00054 (14)
OW5 0.01162 (18) 0.01215 (18) 0.01230 (18) −0.00102 (15) 0.00222 (14) 0.00144 (14)
OW6 0.01137 (18) 0.01229 (19) 0.01431 (19) −0.00005 (15) 0.00381 (15) 0.00107 (14)
OW7 0.0160 (2) 0.01212 (19) 0.01404 (19) −0.00039 (16) 0.00291 (16) 0.00042 (15)
OW8 0.01307 (19) 0.0172 (2) 0.0149 (2) 0.00141 (16) 0.00583 (16) 0.00232 (16)
OW9 0.01073 (18) 0.01301 (18) 0.0154 (2) 0.00022 (14) 0.00393 (15) 0.00012 (15)
OW10 0.01081 (18) 0.01338 (18) 0.01408 (19) −0.00065 (15) 0.00237 (15) 0.00038 (15)
OW11 0.0166 (2) 0.0150 (2) 0.0176 (2) 0.00205 (17) 0.00788 (17) 0.00367 (16)
OW12 0.01201 (19) 0.01201 (19) 0.0171 (2) −0.00065 (15) 0.00339 (16) 0.00122 (15)
OW13 0.01312 (19) 0.0176 (2) 0.01342 (19) 0.00137 (16) 0.00410 (15) 0.00051 (16)
OW14 0.0148 (2) 0.0152 (2) 0.01333 (19) 0.00127 (16) 0.00335 (15) −0.00077 (15)

Geometric parameters (Å, º)

Na1—OW5 2.3776 (6) Na2—OW7 2.3935 (6)
Na1—OW6i 2.4181 (6) Na2—OW9 2.4325 (6)
Na1—OW11 2.4184 (6) Na2—OW6 2.4415 (6)
Na1—OW10 2.4194 (6) Na2—OW10ii 2.4667 (6)
Na1—OW8i 2.4473 (6) Se1—O41 1.6335 (5)
Na1—OW9i 2.4507 (6) Se1—O31 1.6394 (5)
Na2—OW12 2.3814 (6) Se1—O1 1.6398 (5)
Na2—OW5ii 2.3891 (6) Se1—O21 1.6421 (5)
O41—Se1—O31 109.72 (2) Na1—OW5—H5A 107.3 (10)
O41—Se1—O1 109.88 (3) Na2iii—OW5—H5A 111.8 (10)
O31—Se1—O1 108.89 (2) Na1—OW5—H5B 111.1 (10)
O41—Se1—O21 108.50 (2) Na2iii—OW5—H5B 125.7 (10)
O31—Se1—O21 110.31 (2) H5A—OW5—H5B 104.6 (14)
O1—Se1—O21 109.53 (2) Na1iv—OW6—Na2 94.959 (19)
OW5—Na1—OW6i 175.60 (2) Na1iv—OW6—H6A 122.0 (10)
OW5—Na1—OW11 94.230 (19) Na2—OW6—H6A 124.0 (10)
OW6i—Na1—OW11 89.467 (19) Na1iv—OW6—H6B 104.4 (10)
OW5—Na1—OW10 86.270 (19) Na2—OW6—H6B 106.9 (10)
OW6i—Na1—OW10 95.70 (2) H6A—OW6—H6B 102.8 (13)
OW11—Na1—OW10 96.28 (2) Na2—OW7—H7A 120.4 (10)
OW5—Na1—OW8i 88.961 (19) Na2—OW7—H7B 103.6 (10)
OW6i—Na1—OW8i 87.276 (19) H7A—OW7—H7B 109.7 (14)
OW11—Na1—OW8i 176.39 (2) Na1iv—OW8—H8A 105.1 (10)
OW10—Na1—OW8i 85.59 (2) Na1iv—OW8—H8B 133.6 (10)
OW5—Na1—OW9i 93.341 (19) H8A—OW8—H8B 105.2 (13)
OW6i—Na1—OW9i 84.368 (19) Na2—OW9—Na1iv 94.36 (2)
OW11—Na1—OW9i 88.42 (2) Na2—OW9—H9A 118.2 (10)
OW10—Na1—OW9i 175.30 (2) Na1iv—OW9—H9A 114.2 (10)
OW8i—Na1—OW9i 89.72 (2) Na2—OW9—H9B 110.5 (10)
OW12—Na2—OW5ii 171.87 (2) Na1iv—OW9—H9B 115.8 (10)
OW12—Na2—OW7 95.37 (2) H9A—OW9—H9B 104.3 (13)
OW5ii—Na2—OW7 90.57 (2) Na1—OW10—Na2iii 92.153 (19)
OW12—Na2—OW9 85.96 (2) Na1—OW10—H10A 117.7 (10)
OW5ii—Na2—OW9 99.063 (19) Na2iii—OW10—H10A 108.3 (10)
OW7—Na2—OW9 95.10 (2) Na1—OW10—H10B 121.3 (10)
OW12—Na2—OW6 88.92 (2) Na2iii—OW10—H10B 113.9 (10)
OW5ii—Na2—OW6 85.252 (19) H10A—OW10—H10B 103.0 (13)
OW7—Na2—OW6 175.61 (2) Na1—OW11—H11A 128.3 (10)
OW9—Na2—OW6 84.260 (19) Na1—OW11—H11B 101.3 (10)
OW12—Na2—OW10ii 89.884 (19) H11A—OW11—H11B 105.1 (13)
OW5ii—Na2—OW10ii 84.965 (19) Na2—OW12—H12A 116.2 (10)
OW7—Na2—OW10ii 86.209 (19) Na2—OW12—H12B 120.7 (10)
OW9—Na2—OW10ii 175.74 (2) H12A—OW12—H12B 106.6 (13)
OW6—Na2—OW10ii 94.743 (19) H13A—OW13—H13B 108.1 (13)
Na1—OW5—Na2iii 95.178 (19) H14A—OW14—H14B 105.5 (13)

Symmetry codes: (i) x, y, z+1; (ii) x, −y−1/2, z−1/2; (iii) x, −y−1/2, z+1/2; (iv) x, y, z−1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
OW5—H5A···O41 0.82 (1) 1.96 (1) 2.7570 (7) 164 (1)
OW5—H5B···OW13v 0.82 (1) 2.00 (1) 2.7980 (7) 165 (1)
OW6—H6A···OW14 0.82 (1) 2.02 (1) 2.8301 (7) 168 (1)
OW6—H6B···O41ii 0.82 (1) 1.98 (1) 2.7791 (7) 166 (2)
OW7—H7A···O1vi 0.82 (1) 1.97 (1) 2.7727 (7) 166 (1)
OW7—H7B···OW8iii 0.82 (1) 1.95 (1) 2.7542 (7) 168 (1)
OW8—H8A···O41ii 0.82 (1) 1.95 (1) 2.7544 (7) 166 (1)
OW8—H8B···OW7vii 0.82 (1) 1.99 (1) 2.8076 (7) 178 (1)
OW9—H9A···O1viii 0.82 (1) 2.11 (1) 2.9152 (7) 168 (1)
OW9—H9B···OW13ix 0.82 (1) 2.04 (1) 2.8596 (7) 177 (1)
OW10—H10A···OW14x 0.82 (1) 2.05 (1) 2.8686 (7) 178 (2)
OW10—H10B···O31xi 0.82 (1) 2.08 (1) 2.8920 (7) 174 (1)
OW11—H11A···O31 0.82 (1) 2.05 (1) 2.8604 (7) 171 (1)
OW11—H11B···OW12i 0.82 (1) 1.96 (1) 2.7716 (8) 168 (1)
OW12—H12A···O21vi 0.82 (1) 1.92 (1) 2.7359 (7) 179 (1)
OW12—H12B···OW11ix 0.82 (1) 1.97 (1) 2.7818 (7) 173 (1)
OW13—H13A···O1xii 0.82 (1) 1.98 (1) 2.7932 (7) 172 (1)
OW13—H13B···O21xi 0.82 (1) 1.98 (1) 2.7931 (7) 170 (1)
OW14—H14A···O21xiii 0.82 (1) 1.98 (1) 2.8002 (7) 174 (1)
OW14—H14B···O31ix 0.82 (1) 2.00 (1) 2.8061 (7) 169 (1)

Symmetry codes: (i) x, y, z+1; (ii) x, −y−1/2, z−1/2; (iii) x, −y−1/2, z+1/2; (v) x+1, y, z; (vi) x, −y+1/2, z−1/2; (vii) −x+2, y−1/2, −z+1/2; (viii) −x+2, −y, −z+1; (ix) −x+1, −y, −z+1; (x) −x+1, −y−1, −z+1; (xi) −x+1, y−1/2, −z+3/2; (xii) −x+1, −y, −z+2; (xiii) −x+1, y−1/2, −z+1/2.

References

  1. Belarew, C. (1965). Z. Anorg. Allg. Chem. 336, 92–95.
  2. Brauer, G. (1963). In Handbook of Preparative Inorganic Chemistry, Vol. 1, 2nd ed. New York, London: Academic Press.
  3. Bruker (2008). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2013). APEX2, SAINT-Plus, SADABS and TOPAS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dowty, E. (2006). ATOMS for Windows Shape Software, Kingsport, Tennessee, USA.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Kahlenberg, V. (2012). Z. Kristallogr. 227, 621–628.
  8. Levy, H. A. & Lisensky, G. C. (1978). Acta Cryst. B34, 3502–3510.
  9. Mitscherlich, E. (1827). Pogg. Ann. 11, 323–332.
  10. Pollitt, S. & Weil, M. (2014). Z. Anorg. Allg. Chem. 10.1002/zaac.201400068.
  11. Prescott, H. A., Troyanov, S. I. & Kemnitz, E. (2001). J. Solid State Chem. 156, 415–421.
  12. Rosický, V. (1908). Z. Kristallogr. 45, 473–489.
  13. Ruben, H. W., Templeton, D. H., Rosenstein, R. D. & Olovsson, I. (1961). J. Am. Chem. Soc. 83, 820–824.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1.5-hydrate, 10-hydrate, global. DOI: 10.1107/S1600536814011799/hb0010sup1.cif

e-70-00054-sup1.cif (38.7KB, cif)

Structure factors: contains datablock(s) 1.5-hydrate. DOI: 10.1107/S1600536814011799/hb00101.5-hydratesup2.hkl

CCDC references: 1004274, 1004275

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES