Abstract
In the title compound, C10H5ClO3, a chlorinated 3-formylchromone derivative, all atoms are essentially coplanar (r.m.s. deviation = 0.0592 Å for all non-H atoms), with the largest deviation from the least-squares plane [0.1792 (19) Å] being for the chromone-ring carbonyl O atom. In the crystal, molecules are linked through C—H⋯O hydrogen bonds to form tetrads, which are assembled by stacking interactions [centroid–centroid distance between the pyran rings = 3.823 (3) Å] and van der Waals contacts between the Cl atoms [Cl⋯Cl = 3.4483 (16) Å and C—Cl⋯Cl = 171.73 (7)°] into a three-dimensional architecture.
Keywords: crystal structure
Related literature
For related structures, see: Ishikawa & Motohashi (2013 ▶); Ishikawa (2014a
▶,b
▶). For halogen bonding, see: Auffinger et al. (2004 ▶); Metrangolo et al. (2005 ▶); Wilcken et al. (2013 ▶); Sirimulla et al. (2013 ▶). For halogen–halogen interactions, see: Metrangolo & Resnati (2014 ▶); Mukherjee & Desiraju (2014 ▶).
Experimental
Crystal data
C10H5ClO3
M r = 208.60
Triclinic,
a = 3.823 (2) Å
b = 5.973 (3) Å
c = 18.386 (8) Å
α = 85.99 (4)°
β = 87.74 (4)°
γ = 86.58 (4)°
V = 417.8 (4) Å3
Z = 2
Mo Kα radiation
μ = 0.43 mm−1
T = 100 K
0.42 × 0.25 × 0.08 mm
Data collection
Rigaku AFC-7R diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.865, T max = 0.966
2429 measured reflections
1899 independent reflections
1690 reflections with F 2 > 2σ(F 2)
R int = 0.050
3 standard reflections every 150 reflections intensity decay: −1.1%
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.104
S = 1.10
1899 reflections
127 parameters
H-atom parameters constrained
Δρmax = 0.41 e Å−3
Δρmin = −0.50 e Å−3
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999 ▶); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: CrystalStructure (Rigaku, 2010 ▶); software used to prepare material for publication: CrystalStructure.
Supplementary Material
Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814014925/tk5323sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014925/tk5323Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814014925/tk5323Isup3.cml
CCDC reference: 1010095
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C7—H4⋯O2i | 0.95 | 2.34 | 3.204 (3) | 151 (1) |
| C1—H1⋯O3ii | 0.95 | 2.37 | 3.209 (3) | 148 (1) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The University of Shizuoka is acknowledged for instrumental support.
supplementary crystallographic information
S1. Structural commentary
Halogen bonding and halogen···halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of a dichlorinated 3-formylchromone derivative 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013), and monochlorinated 3-formylchromone derivatives 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b). Halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen interaction between the chlorine atoms at 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig·2 A). On the other hand, van der Waals contacts between the formyl oxygen atom and the chlorine atom at 6-position in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig·2 B) and between the formyl oxygen atom and the chlorine atom at 8-position in 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig·2 C) are found. As part of our interest in these types of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative 7-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether a short contact is found for the chlorine atom at 7-position.
The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0592 Å, and the largest deviation is 0.1792 (19) Å for O3.
In the crystal, the molecules are linked through C–H···O hydrogen bonds among the translation-symmetryi and inversion-symmetry equivalentsii,iii to form tetrads [i: x – 1, y – 1, z, ii: –x, –y, –z + 1, iii: –x + 1, –y + 1, –z + 1], which are assembled by stacking interactions [centroid–centroid distance between the pyran rings = 3.823 (3) Å], as shown in Fig. 1.
Van der Waals contacts between the chlorine atoms of inversion-symmetry equivalents are found [Cl1···Cl1iv = 3.4483 (16) Å, C6–Cl1···Cl1iv = 171.73 (7)°, iv: –x + 1, –y + 2, –z + 2], as shown in Fig. 2D. Thus, significant short contact for the chlorine atom at 7-position is not observed. Whereas the characteristic short Cl···O contact is observed in the dichlorinated 3-formylchromone (Fig. 2A), such a short contact is not found in the monochlorinated ones (Fig. 2B, C and D). These findings should be helpful to understand interactions of halogenated ligands with proteins, and thus invaluable for rational drug design.
S2. Synthesis and crystallization
To a solution of 4-chloro-2-hydroxyacetophenone (5.9 mmol) in N,N-dimethylformamide (15 ml) was added dropwise POCl3 (14.7 mmol) at 0 °C. After the mixture was stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 85%). 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, 1H, J = 8.8 Hz), 7.57 (s, 1H), 8.24 (d, 1H, J = 8.8 Hz), 8.52 (s, 1H), 10.37 (s, 1H). DART-MS calcd for [C10H5Cl1O3 + H+]: 209.001, found 209.029. Single crystals suitable for X-ray diffraction were obtained from a 1,2-dichloroethane/cyclohexane solution of the title compound at room temperature.
S3. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1. The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.
Figures
Fig. 1.
A packing view of the title compound, with displacement ellipsoids drawn at the 50% probability level. C—H···O hydrogen bonds are represented by dashed lines.
Fig. 2.
Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (A, Ishikawa & Motohashi, 2013), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (B, Ishikawa, 2014a), 8-chloro-4-oxo-4H-chromene-3-carbaldehyde (C, Ishikawa, 2014b), and the title compound (D).
Crystal data
| C10H5ClO3 | Z = 2 |
| Mr = 208.60 | F(000) = 212.00 |
| Triclinic, P1 | Dx = 1.658 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
| a = 3.823 (2) Å | Cell parameters from 25 reflections |
| b = 5.973 (3) Å | θ = 15.2–17.0° |
| c = 18.386 (8) Å | µ = 0.43 mm−1 |
| α = 85.99 (4)° | T = 100 K |
| β = 87.74 (4)° | Plate, yellow |
| γ = 86.58 (4)° | 0.42 × 0.25 × 0.08 mm |
| V = 417.8 (4) Å3 |
Data collection
| Rigaku AFC-7R diffractometer | Rint = 0.050 |
| ω–2θ scans | θmax = 27.5° |
| Absorption correction: ψ scan (North et al., 1968) | h = −4→2 |
| Tmin = 0.865, Tmax = 0.966 | k = −7→7 |
| 2429 measured reflections | l = −23→23 |
| 1899 independent reflections | 3 standard reflections every 150 reflections |
| 1690 reflections with F2 > 2σ(F2) | intensity decay: −1.1% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.104 | H-atom parameters constrained |
| S = 1.10 | w = 1/[σ2(Fo2) + (0.0425P)2 + 0.5019P] where P = (Fo2 + 2Fc2)/3 |
| 1899 reflections | (Δ/σ)max = 0.001 |
| 127 parameters | Δρmax = 0.41 e Å−3 |
| 0 restraints | Δρmin = −0.50 e Å−3 |
| Primary atom site location: structure-invariant direct methods |
Special details
| Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.40101 (12) | 0.80466 (8) | 0.94032 (2) | 0.01990 (15) | |
| O1 | 0.3743 (4) | 0.6471 (3) | 0.67507 (7) | 0.0171 (3) | |
| O2 | −0.1431 (4) | 0.0675 (3) | 0.71337 (8) | 0.0199 (3) | |
| O3 | 0.2057 (5) | 0.2458 (3) | 0.50473 (8) | 0.0265 (4) | |
| C1 | 0.3077 (5) | 0.5184 (4) | 0.62091 (10) | 0.0162 (4) | |
| C2 | 0.1464 (5) | 0.3212 (4) | 0.62998 (10) | 0.0160 (4) | |
| C3 | 0.0256 (5) | 0.2365 (3) | 0.70234 (10) | 0.0152 (4) | |
| C4 | 0.0441 (5) | 0.3071 (4) | 0.83526 (10) | 0.0159 (4) | |
| C5 | 0.1313 (5) | 0.4379 (4) | 0.88996 (10) | 0.0164 (4) | |
| C6 | 0.2909 (5) | 0.6400 (3) | 0.87083 (10) | 0.0150 (4) | |
| C7 | 0.3697 (5) | 0.7116 (3) | 0.79955 (10) | 0.0153 (4) | |
| C8 | 0.1182 (5) | 0.3730 (3) | 0.76188 (10) | 0.0138 (4) | |
| C9 | 0.2831 (5) | 0.5741 (3) | 0.74571 (10) | 0.0140 (4) | |
| C10 | 0.0936 (6) | 0.1938 (4) | 0.56551 (11) | 0.0201 (4) | |
| H1 | 0.3784 | 0.5687 | 0.5727 | 0.0194* | |
| H2 | −0.0674 | 0.1709 | 0.8474 | 0.0191* | |
| H3 | 0.0840 | 0.3919 | 0.9397 | 0.0197* | |
| H4 | 0.4785 | 0.8490 | 0.7877 | 0.0183* | |
| H5 | −0.0367 | 0.0629 | 0.5723 | 0.0241* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0221 (3) | 0.0227 (3) | 0.0159 (3) | −0.00304 (17) | −0.00206 (16) | −0.00573 (17) |
| O1 | 0.0201 (7) | 0.0185 (7) | 0.0129 (7) | −0.0055 (5) | 0.0019 (5) | −0.0007 (5) |
| O2 | 0.0204 (7) | 0.0195 (7) | 0.0207 (8) | −0.0079 (6) | 0.0003 (6) | −0.0018 (6) |
| O3 | 0.0359 (9) | 0.0303 (9) | 0.0146 (8) | −0.0111 (7) | 0.0031 (6) | −0.0054 (6) |
| C1 | 0.0151 (9) | 0.0198 (9) | 0.0139 (9) | −0.0017 (7) | −0.0004 (7) | −0.0019 (7) |
| C2 | 0.0145 (9) | 0.0181 (9) | 0.0154 (9) | −0.0010 (7) | −0.0012 (7) | −0.0018 (7) |
| C3 | 0.0108 (8) | 0.0168 (9) | 0.0181 (9) | −0.0001 (7) | −0.0010 (7) | −0.0015 (7) |
| C4 | 0.0122 (9) | 0.0182 (9) | 0.0171 (9) | −0.0010 (7) | 0.0001 (7) | 0.0011 (7) |
| C5 | 0.0158 (9) | 0.0179 (9) | 0.0151 (9) | 0.0001 (7) | 0.0010 (7) | 0.0007 (7) |
| C6 | 0.0134 (9) | 0.0181 (9) | 0.0138 (9) | 0.0002 (7) | −0.0021 (7) | −0.0042 (7) |
| C7 | 0.0126 (9) | 0.0167 (9) | 0.0167 (9) | −0.0017 (7) | −0.0004 (7) | −0.0016 (7) |
| C8 | 0.0109 (8) | 0.0152 (9) | 0.0151 (9) | −0.0000 (6) | 0.0005 (7) | −0.0010 (7) |
| C9 | 0.0121 (8) | 0.0173 (9) | 0.0122 (9) | −0.0005 (7) | 0.0004 (6) | 0.0007 (7) |
| C10 | 0.0225 (10) | 0.0232 (10) | 0.0154 (10) | −0.0048 (8) | −0.0013 (7) | −0.0036 (8) |
Geometric parameters (Å, º)
| Cl1—C6 | 1.745 (2) | C4—C8 | 1.402 (3) |
| O1—C1 | 1.341 (3) | C5—C6 | 1.402 (3) |
| O1—C9 | 1.379 (3) | C6—C7 | 1.377 (3) |
| O2—C3 | 1.231 (3) | C7—C9 | 1.392 (3) |
| O3—C10 | 1.208 (3) | C8—C9 | 1.398 (3) |
| C1—C2 | 1.359 (3) | C1—H1 | 0.950 |
| C2—C3 | 1.458 (3) | C4—H2 | 0.950 |
| C2—C10 | 1.480 (3) | C5—H3 | 0.950 |
| C3—C8 | 1.476 (3) | C7—H4 | 0.950 |
| C4—C5 | 1.378 (3) | C10—H5 | 0.950 |
| O1···C3 | 2.865 (3) | C10···H1 | 2.5619 |
| O1···C6 | 3.598 (3) | H1···H5 | 3.4961 |
| O2···C1 | 3.577 (3) | H2···H3 | 2.3320 |
| O2···C4 | 2.877 (3) | Cl1···H2iii | 3.1871 |
| O2···C10 | 2.895 (3) | Cl1···H2iv | 3.4009 |
| O3···C1 | 2.827 (3) | Cl1···H3ii | 3.4824 |
| C1···C7 | 3.578 (3) | Cl1···H3xi | 3.0426 |
| C1···C8 | 2.759 (3) | Cl1···H3xii | 3.1343 |
| C2···C9 | 2.777 (3) | O1···H5iii | 3.3638 |
| C4···C7 | 2.809 (3) | O2···H4v | 2.3412 |
| C5···C9 | 2.769 (3) | O2···H4vi | 2.9752 |
| C6···C8 | 2.769 (3) | O3···H1ix | 2.8238 |
| Cl1···Cl1i | 3.4483 (16) | O3···H1x | 2.3652 |
| Cl1···C5ii | 3.578 (3) | O3···H5ii | 3.2929 |
| O1···O2iii | 3.202 (3) | O3···H5viii | 2.5304 |
| O1···O2iv | 3.333 (3) | C1···H5iii | 3.5044 |
| O1···C2ii | 3.540 (3) | C2···H1vii | 3.3800 |
| O1···C3ii | 3.415 (3) | C2···H5ii | 3.5566 |
| O1···C8ii | 3.571 (3) | C3···H4v | 3.4647 |
| O2···O1v | 3.333 (3) | C3···H4vi | 3.1692 |
| O2···O1vi | 3.202 (3) | C4···H2ii | 3.4575 |
| O2···C2vii | 3.397 (3) | C4···H4vi | 3.2692 |
| O2···C3vii | 3.286 (3) | C5···H2ii | 3.4558 |
| O2···C7v | 3.204 (3) | C5···H3xi | 3.4146 |
| O2···C7vi | 3.185 (3) | C6···H2iii | 3.3840 |
| O2···C8vii | 3.393 (3) | C6···H3ii | 3.5349 |
| O2···C9vi | 3.309 (3) | C7···H2iii | 3.2808 |
| O3···O3viii | 3.430 (3) | C7···H4vii | 3.4681 |
| O3···O3ix | 3.332 (3) | C8···H4vi | 3.3537 |
| O3···C1ix | 3.278 (3) | C9···H4vii | 3.4840 |
| O3···C1x | 3.209 (3) | C10···H1vii | 3.4338 |
| O3···C10viii | 3.289 (3) | C10···H1ix | 3.3580 |
| C1···O3ix | 3.278 (3) | C10···H1x | 3.4611 |
| C1···O3x | 3.209 (3) | C10···H5ii | 3.3751 |
| C1···C2ii | 3.356 (3) | C10···H5viii | 3.0735 |
| C1···C3ii | 3.468 (3) | H1···O3ix | 2.8238 |
| C2···O1vii | 3.540 (3) | H1···O3x | 2.3652 |
| C2···O2ii | 3.397 (3) | H1···C2ii | 3.3800 |
| C2···C1vii | 3.356 (3) | H1···C10ii | 3.4338 |
| C3···O1vii | 3.415 (3) | H1···C10ix | 3.3580 |
| C3···O2ii | 3.286 (3) | H1···C10x | 3.4611 |
| C3···C1vii | 3.468 (3) | H1···H1x | 2.9506 |
| C3···C9vii | 3.481 (3) | H1···H5iii | 3.2659 |
| C4···C6vii | 3.467 (3) | H1···H5ix | 3.5735 |
| C4···C7vii | 3.476 (3) | H2···Cl1v | 3.4009 |
| C5···Cl1vii | 3.578 (3) | H2···Cl1vi | 3.1871 |
| C5···C6vii | 3.386 (4) | H2···C4vii | 3.4575 |
| C6···C4ii | 3.467 (3) | H2···C5vii | 3.4558 |
| C6···C5ii | 3.386 (4) | H2···C6vi | 3.3840 |
| C7···O2iii | 3.185 (3) | H2···C7vi | 3.2808 |
| C7···O2iv | 3.204 (3) | H2···H4v | 2.9597 |
| C7···C4ii | 3.476 (3) | H2···H4vi | 2.9822 |
| C7···C8ii | 3.479 (3) | H3···Cl1vii | 3.4824 |
| C8···O1vii | 3.571 (3) | H3···Cl1xi | 3.0426 |
| C8···O2ii | 3.393 (3) | H3···Cl1xii | 3.1343 |
| C8···C7vii | 3.479 (3) | H3···C5xi | 3.4146 |
| C8···C9vii | 3.360 (3) | H3···C6vii | 3.5349 |
| C9···O2iii | 3.309 (3) | H3···H3xi | 2.6802 |
| C9···C3ii | 3.481 (3) | H4···O2iii | 2.9752 |
| C9···C8ii | 3.360 (3) | H4···O2iv | 2.3412 |
| C10···O3viii | 3.289 (3) | H4···C3iii | 3.1692 |
| C10···C10viii | 3.575 (4) | H4···C3iv | 3.4647 |
| Cl1···H3 | 2.8121 | H4···C4iii | 3.2692 |
| Cl1···H4 | 2.8064 | H4···C7ii | 3.4681 |
| O1···H4 | 2.5238 | H4···C8iii | 3.3537 |
| O2···H2 | 2.6135 | H4···C9ii | 3.4840 |
| O2···H5 | 2.6106 | H4···H2iii | 2.9822 |
| O3···H1 | 2.5045 | H4···H2iv | 2.9597 |
| C1···H5 | 3.2854 | H5···O1vi | 3.3638 |
| C3···H1 | 3.2928 | H5···O3vii | 3.2929 |
| C3···H2 | 2.6818 | H5···O3viii | 2.5304 |
| C3···H5 | 2.6956 | H5···C1vi | 3.5044 |
| C5···H4 | 3.2981 | H5···C2vii | 3.5566 |
| C6···H2 | 3.2536 | H5···C10vii | 3.3751 |
| C7···H3 | 3.2895 | H5···C10viii | 3.0735 |
| C8···H3 | 3.2766 | H5···H1vi | 3.2659 |
| C8···H4 | 3.3034 | H5···H1ix | 3.5735 |
| C9···H1 | 3.1896 | H5···H5viii | 2.8132 |
| C9···H2 | 3.2637 | ||
| C1—O1—C9 | 118.62 (16) | C4—C8—C9 | 118.32 (18) |
| O1—C1—C2 | 124.73 (17) | O1—C9—C7 | 115.76 (17) |
| C1—C2—C3 | 120.42 (18) | O1—C9—C8 | 121.83 (18) |
| C1—C2—C10 | 119.24 (17) | C7—C9—C8 | 122.41 (17) |
| C3—C2—C10 | 120.34 (18) | O3—C10—C2 | 124.1 (2) |
| O2—C3—C2 | 123.38 (18) | O1—C1—H1 | 117.638 |
| O2—C3—C8 | 122.38 (17) | C2—C1—H1 | 117.633 |
| C2—C3—C8 | 114.24 (17) | C5—C4—H2 | 119.644 |
| C5—C4—C8 | 120.70 (18) | C8—C4—H2 | 119.653 |
| C4—C5—C6 | 118.78 (17) | C4—C5—H3 | 120.611 |
| Cl1—C6—C5 | 118.56 (15) | C6—C5—H3 | 120.611 |
| Cl1—C6—C7 | 118.76 (15) | C6—C7—H4 | 121.444 |
| C5—C6—C7 | 122.66 (18) | C9—C7—H4 | 121.444 |
| C6—C7—C9 | 117.11 (18) | O3—C10—H5 | 117.967 |
| C3—C8—C4 | 121.70 (17) | C2—C10—H5 | 117.976 |
| C3—C8—C9 | 119.98 (17) | ||
| C1—O1—C9—C7 | 177.96 (14) | C8—C4—C5—C6 | 0.9 (3) |
| C1—O1—C9—C8 | −1.3 (3) | C8—C4—C5—H3 | −179.1 |
| C9—O1—C1—C2 | 1.8 (3) | H2—C4—C5—C6 | −179.1 |
| C9—O1—C1—H1 | −178.2 | H2—C4—C5—H3 | 0.9 |
| O1—C1—C2—C3 | 1.1 (3) | H2—C4—C8—C3 | 0.4 |
| O1—C1—C2—C10 | −179.09 (14) | H2—C4—C8—C9 | −179.8 |
| H1—C1—C2—C3 | −178.9 | C4—C5—C6—Cl1 | −179.93 (14) |
| H1—C1—C2—C10 | 0.9 | C4—C5—C6—C7 | −1.1 (3) |
| C1—C2—C3—O2 | 174.85 (16) | H3—C5—C6—Cl1 | 0.1 |
| C1—C2—C3—C8 | −4.3 (3) | H3—C5—C6—C7 | 178.9 |
| C1—C2—C10—O3 | 5.1 (3) | Cl1—C6—C7—C9 | 178.98 (11) |
| C1—C2—C10—H5 | −174.9 | Cl1—C6—C7—H4 | −1.0 |
| C3—C2—C10—O3 | −175.13 (16) | C5—C6—C7—C9 | 0.2 (3) |
| C3—C2—C10—H5 | 4.9 | C5—C6—C7—H4 | −179.8 |
| C10—C2—C3—O2 | −4.9 (3) | C6—C7—C9—O1 | −178.22 (14) |
| C10—C2—C3—C8 | 175.94 (14) | C6—C7—C9—C8 | 1.0 (3) |
| O2—C3—C8—C4 | 5.4 (3) | H4—C7—C9—O1 | 1.8 |
| O2—C3—C8—C9 | −174.38 (15) | H4—C7—C9—C8 | −179.0 |
| C2—C3—C8—C4 | −175.44 (14) | C3—C8—C9—O1 | −2.2 (3) |
| C2—C3—C8—C9 | 4.8 (3) | C3—C8—C9—C7 | 178.65 (14) |
| C5—C4—C8—C3 | −179.64 (15) | C4—C8—C9—O1 | 178.01 (14) |
| C5—C4—C8—C9 | 0.1 (3) | C4—C8—C9—C7 | −1.1 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x−1, y−1, z; (vi) x, y−1, z; (vii) x−1, y, z; (viii) −x, −y, −z+1; (ix) −x, −y+1, −z+1; (x) −x+1, −y+1, −z+1; (xi) −x, −y+1, −z+2; (xii) −x+1, −y+1, −z+2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C7—H4···O2iv | 0.95 | 2.34 | 3.204 (3) | 151 (1) |
| C1—H1···O3x | 0.95 | 2.37 | 3.209 (3) | 148 (1) |
Symmetry codes: (iv) x+1, y+1, z; (x) −x+1, −y+1, −z+1.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5323).
References
- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. [DOI] [PMC free article] [PubMed]
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Ishikawa, Y. (2014a). Acta Cryst. E70, o514. [DOI] [PMC free article] [PubMed]
- Ishikawa, Y. (2014b). Acta Cryst. E70, o743. [DOI] [PMC free article] [PubMed]
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. [DOI] [PMC free article] [PubMed]
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. [DOI] [PubMed]
- Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7. [DOI] [PMC free article] [PubMed]
- Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. [DOI] [PMC free article] [PubMed]
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rigaku (1999). WinAFC Diffractometer Control Software Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. [DOI] [PubMed]
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814014925/tk5323sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014925/tk5323Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814014925/tk5323Isup3.cml
CCDC reference: 1010095
Additional supporting information: crystallographic information; 3D view; checkCIF report


