Abstract
The question was addressed whether the risk of cancer of an individual in a heterogeneous population can be predicted on the basis of measurable biochemical and biological variables postulated to be associated with the process of chemical carcinogenesis. Using the skin tumor model with outbred male NMRI mice, the latency time for the appearance of a papilloma was used as an indicator of the individual cancer risk. Starting at 8 weeks of age, a group of 29 mice was treated twice weekly with 20 nmol of 7,12-dimethylbenz[alpha]anthracene (DMBA) applied to back skin. The individual papilloma latency time ranged from 13.5 to 25 weeks of treatment. Two weeks after the appearance of the first papilloma in each mouse, an osmotic minipump delivering 5-bromo-2'-deoxyuridine was s.c. implanted and the mouse was killed 24 hr later. Levels of DMBA-DNA adducts, of 8-hydroxy-2'-deoxyguanosine, and various measures of the kinetics of cell division were determined in the epidermis of the treated skin area. The levels of 8-hydroxy-2'-deoxyguanosine and the fraction of cells in DNA replication (labeling index for the incorporation of 5-bromo-2'-deoxyuridine) were significantly higher in those mice that showed short latency times. On the other hand, the levels of DMBA-DNA adducts were lowest in animals with short latency times. The latter finding was rather unexpected but can be explained as a consequence of the inverse correlation seen for the labeling index: with each round of cell division, the adduct concentration is reduced to 50% because the new DNA strand is free of DMBA adducts until the next treatment. Under the conditions of this bioassay, therefore, oxygen radical-related genotoxicity and the rate of cell division, rather than levels of carcinogen-DNA adducts, were found to be of predictive value as indicators of an individual cancer risk.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
- Argyris T. S. Regeneration and the mechanism of epidermal tumor promotion. Crit Rev Toxicol. 1985;14(3):211–258. doi: 10.3109/10408448509037459. [DOI] [PubMed] [Google Scholar]
- BOUTWELL R. K. SOME BIOLOGICAL ASPECTS OF SKIN CARCINOGENISIS. Prog Exp Tumor Res. 1964;4:207–250. doi: 10.1159/000385978. [DOI] [PubMed] [Google Scholar]
- Beland F. A., Poirier M. C. Significance of DNA adduct studies in animal models for cancer molecular dosimetry and risk assessment. Environ Health Perspect. 1993 Mar;99:5–10. doi: 10.1289/ehp.93995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnboim H. C. DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate. Science. 1982 Mar 5;215(4537):1247–1249. doi: 10.1126/science.6276978. [DOI] [PubMed] [Google Scholar]
- Bishop J. M. Molecular themes in oncogenesis. Cell. 1991 Jan 25;64(2):235–248. doi: 10.1016/0092-8674(91)90636-d. [DOI] [PubMed] [Google Scholar]
- Breimer L. H. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinog. 1990;3(4):188–197. doi: 10.1002/mc.2940030405. [DOI] [PubMed] [Google Scholar]
- Butterworth B. E. Consideration of both genotoxic and nongenotoxic mechanisms in predicting carcinogenic potential. Mutat Res. 1990 Sep;239(2):117–132. doi: 10.1016/0165-1110(90)90033-8. [DOI] [PubMed] [Google Scholar]
- Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
- Cohen S. M., Ellwein L. B. Cell proliferation in carcinogenesis. Science. 1990 Aug 31;249(4972):1007–1011. doi: 10.1126/science.2204108. [DOI] [PubMed] [Google Scholar]
- Cohen S. M., Ellwein L. B. Genetic errors, cell proliferation, and carcinogenesis. Cancer Res. 1991 Dec 15;51(24):6493–6505. [PubMed] [Google Scholar]
- Cunningham M. L., Elwell M. R., Matthews H. B. Relationship of carcinogenicity and cellular proliferation induced by mutagenic noncarcinogens vs carcinogens. III. Organophosphate pesticides vs tris(2,3-dibromopropyl)phosphate. Fundam Appl Toxicol. 1994 Oct;23(3):363–369. doi: 10.1006/faat.1994.1116. [DOI] [PubMed] [Google Scholar]
- Dietrich D. R., Swenberg J. A. The presence of alpha 2u-globulin is necessary for d-limonene promotion of male rat kidney tumors. Cancer Res. 1991 Jul 1;51(13):3512–3521. [PubMed] [Google Scholar]
- Dzarlieva R. T., Fusenig N. E. Tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate enhances sister chromatid exchanges and numerical and structural chromosome aberrations in primary mouse epidermal cell cultures. Cancer Lett. 1982 May-Jun;16(1):7–17. doi: 10.1016/0304-3835(82)90085-4. [DOI] [PubMed] [Google Scholar]
- Edler L., Schmidt R., Weber E., Rippmann F., Hecker E. Biological assays for irritant, tumor-initiating and -promoting activities. III. Computer-assisted management and validation of biodata generated by standardized initiation/promotion protocols in skin of mice. J Cancer Res Clin Oncol. 1991;117(3):205–216. doi: 10.1007/BF01625426. [DOI] [PubMed] [Google Scholar]
- Emerit I., Cerutti P. A. Tumour promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action. Nature. 1981 Sep 10;293(5828):144–146. doi: 10.1038/293144a0. [DOI] [PubMed] [Google Scholar]
- Fischer W. H., Beland P. E., Lutz W. K. DNA adducts, cell proliferation and papilloma latency time in mouse skin after repeated dermal application of DMBA and TPA. Carcinogenesis. 1993 Jul;14(7):1285–1288. doi: 10.1093/carcin/14.7.1285. [DOI] [PubMed] [Google Scholar]
- Fraga C. G., Shigenaga M. K., Park J. W., Degan P., Ames B. N. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4533–4537. doi: 10.1073/pnas.87.12.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemminki K. DNA adducts, mutations and cancer. Carcinogenesis. 1993 Oct;14(10):2007–2012. doi: 10.1093/carcin/14.10.2007. [DOI] [PubMed] [Google Scholar]
- Krontiris T. G., Cooper G. M. Transforming activity of human tumor DNAs. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1181–1184. doi: 10.1073/pnas.78.2.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawley P. D. From fluorescence spectra to mutational spectra, a historical overview of DNA-reactive compounds. IARC Sci Publ. 1994;(125):3–22. [PubMed] [Google Scholar]
- Lutz W. K. In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis. Mutat Res. 1979 Dec;65(4):289–356. doi: 10.1016/0165-1110(79)90006-x. [DOI] [PubMed] [Google Scholar]
- Marnett L. J. Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis. 1987 Oct;8(10):1365–1373. doi: 10.1093/carcin/8.10.1365. [DOI] [PubMed] [Google Scholar]
- Marrs J. M., Voorhees J. J. A method for bioassay of an epidermal chalone-like inhibitor. J Invest Dermatol. 1971 Mar;56(3):174–181. doi: 10.1111/1523-1747.ep12260779. [DOI] [PubMed] [Google Scholar]
- Miller J. A. Carcinogenesis by chemicals: an overview--G. H. A. Clowes memorial lecture. Cancer Res. 1970 Mar;30(3):559–576. [PubMed] [Google Scholar]
- Muehlematter D., Larsson R., Cerutti P. Active oxygen induced DNA strand breakage and poly ADP-ribosylation in promotable and non-promotable JB6 mouse epidermal cells. Carcinogenesis. 1988 Feb;9(2):239–245. doi: 10.1093/carcin/9.2.239. [DOI] [PubMed] [Google Scholar]
- Schmeiser H., Dipple A., Schurdak M. E., Randerath E., Randerath K. Comparison of 32P-postlabeling and high pressure liquid chromatographic analyses for 7,12-dimethylbenz[a]anthracene--DNA adducts. Carcinogenesis. 1988 Apr;9(4):633–638. doi: 10.1093/carcin/9.4.633. [DOI] [PubMed] [Google Scholar]
- Schoepe K. B., Friesel H., Schurdak M. E., Randerath K., Hecker E. Comparative DNA binding of 7,12-dimethylbenz[a]anthracene and some of its metabolites in mouse epidermis in vivo as revealed by the 32P-postlabeling technique. Carcinogenesis. 1986 Apr;7(4):535–540. doi: 10.1093/carcin/7.4.535. [DOI] [PubMed] [Google Scholar]
- Scrable H. J., Sapienza C., Cavenee W. K. Genetic and epigenetic losses of heterozygosity in cancer predisposition and progression. Adv Cancer Res. 1990;54:25–62. doi: 10.1016/s0065-230x(08)60807-6. [DOI] [PubMed] [Google Scholar]
- Shih C., Padhy L. C., Murray M., Weinberg R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981 Mar 19;290(5803):261–264. doi: 10.1038/290261a0. [DOI] [PubMed] [Google Scholar]
- Slaga T. J., Fischer S. M. Strain differences and solvent effects in mouse skin carcinogenesis experiments using carcinogens, tumor initiators and promoters. Prog Exp Tumor Res. 1983;26:85–109. doi: 10.1159/000407254. [DOI] [PubMed] [Google Scholar]
- Stanbridge E. J. Human tumor suppressor genes. Annu Rev Genet. 1990;24:615–657. doi: 10.1146/annurev.ge.24.120190.003151. [DOI] [PubMed] [Google Scholar]
- Totter J. R. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1763–1767. doi: 10.1073/pnas.77.4.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vericat J. A., Cheng S. C., Dipple A. Absolute stereochemistry of the major 7,12-dimethylbenz[alpha]anthracene- DNA adducts formed in mouse cells. Carcinogenesis. 1989 Mar;10(3):567–570. doi: 10.1093/carcin/10.3.567. [DOI] [PubMed] [Google Scholar]
- Vuillaume M. Reduced oxygen species, mutation, induction and cancer initiation. Mutat Res. 1987 Jul;186(1):43–72. doi: 10.1016/0165-1110(87)90014-5. [DOI] [PubMed] [Google Scholar]
- Wei L., Wei H., Frenkel K. Sensitivity to tumor promotion of SENCAR and C57BL/6J mice correlates with oxidative events and DNA damage. Carcinogenesis. 1993 May;14(5):841–847. doi: 10.1093/carcin/14.5.841. [DOI] [PubMed] [Google Scholar]
- Weitzman S. A., Weitberg A. B., Clark E. P., Stossel T. P. Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science. 1985 Mar 8;227(4691):1231–1233. doi: 10.1126/science.3975611. [DOI] [PubMed] [Google Scholar]