Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jun 20;92(13):5969–5972. doi: 10.1073/pnas.92.13.5969

Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the "mind's eye".

R Kawashima 1, B T O'Sullivan 1, P E Roland 1
PMCID: PMC41623  PMID: 7597062

Abstract

It is a familiar experience that we tend to close our eyes or divert our gaze when concentrating attention on cognitively demanding tasks. We report on the brain activity correlates of directing attention away from potentially competing visual processing and toward processing in another sensory modality. Results are reported from a series of positron-emission tomography studies of the human brain engaged in somatosensory tasks, in both "eyes open" and "eyes closed" conditions. During these tasks, there was a significant decrease in the regional cerebral blood flow in the visual cortex, which occurred irrespective of whether subjects had to close their eyes or were instructed to keep their eyes open. These task-related deactivations of the association areas belonging to the nonrelevant sensory modality were interpreted as being due to decreased metabolic activity. Previous research has clearly demonstrated selective activation of cortical regions involved in attention-demanding modality-specific tasks; however, the other side of this story appears to be one of selective deactivation of unattended areas.

Full text

PDF
5969

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astrup J., Blennow G., Nilsson B. Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizures. Brain Res. 1979 Nov 9;177(1):115–126. doi: 10.1016/0006-8993(79)90922-3. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. S., Adler L. P., Nelson A. D., Cassidy E. H., Muzic R. F., Bednarczyk E. M., Miraldi F. Measurement of human cerebral blood flow with [15O]butanol and positron emission tomography. J Cereb Blood Flow Metab. 1991 Sep;11(5):707–715. doi: 10.1038/jcbfm.1991.127. [DOI] [PubMed] [Google Scholar]
  3. Bohm C., Greitz T., Blomqvist G., Farde L., Forsgren P. O., Kingsley D., Sjögren I., Wiesel F., Wik G. Applications of a computerized adjustable brain atlas in positron emission tomography. Acta Radiol Suppl. 1986;369:449–452. [PubMed] [Google Scholar]
  4. Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., Petersen S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci. 1991 Aug;11(8):2383–2402. doi: 10.1523/JNEUROSCI.11-08-02383.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haxby J. V., Horwitz B., Ungerleider L. G., Maisog J. M., Pietrini P., Grady C. L. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci. 1994 Nov;14(11 Pt 1):6336–6353. doi: 10.1523/JNEUROSCI.14-11-06336.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Juliano S. L., Hand P. J., Whitsel B. L. Patterns of increased metabolic activity in somatosensory cortex of monkeys Macaca fascicularis, subjected to controlled cutaneous stimulation: a 2-deoxyglucose study. J Neurophysiol. 1981 Dec;46(6):1260–1284. doi: 10.1152/jn.1981.46.6.1260. [DOI] [PubMed] [Google Scholar]
  7. Koeppe R. A., Holden J. E., Ip W. R. Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab. 1985 Jun;5(2):224–234. doi: 10.1038/jcbfm.1985.29. [DOI] [PubMed] [Google Scholar]
  8. Mata M., Fink D. J., Gainer H., Smith C. B., Davidsen L., Savaki H., Schwartz W. J., Sokoloff L. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem. 1980 Jan;34(1):213–215. doi: 10.1111/j.1471-4159.1980.tb04643.x. [DOI] [PubMed] [Google Scholar]
  9. O'Sullivan B. T., Roland P. E., Kawashima R. A PET study of somatosensory discrimination in man. microgeometry versus macrogeometry. Eur J Neurosci. 1994 Jan 1;6(1):137–148. doi: 10.1111/j.1460-9568.1994.tb00255.x. [DOI] [PubMed] [Google Scholar]
  10. Posner M. I., Petersen S. E. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42. doi: 10.1146/annurev.ne.13.030190.000325. [DOI] [PubMed] [Google Scholar]
  11. Roland P. E. Cortical regulation of selective attention in man. A regional cerebral blood flow study. J Neurophysiol. 1982 Nov;48(5):1059–1078. doi: 10.1152/jn.1982.48.5.1059. [DOI] [PubMed] [Google Scholar]
  12. Roland P. E., Friberg L. The effect of the GABA-A agonist THIP on regional cortical blood flow in humans. A new test of hemispheric dominance. J Cereb Blood Flow Metab. 1988 Jun;8(3):314–323. doi: 10.1038/jcbfm.1988.66. [DOI] [PubMed] [Google Scholar]
  13. Roland P. E., Mortensen E. Somatosensory detection of microgeometry, macrogeometry and kinesthesia in man. Brain Res. 1987 Mar;434(1):1–42. doi: 10.1016/0165-0173(87)90017-8. [DOI] [PubMed] [Google Scholar]
  14. Roland P. E. Somatotopical tuning of postcentral gyrus during focal attention in man. A regional cerebral blood flow study. J Neurophysiol. 1981 Oct;46(4):744–754. doi: 10.1152/jn.1981.46.4.744. [DOI] [PubMed] [Google Scholar]
  15. SOKOLOFF L., KETY S. S. Regulation of cerebral circulation. Physiol Rev Suppl. 1960 Apr;4:38–44. [PubMed] [Google Scholar]
  16. SOKOLOFF L., MANGOLD R., WECHSLER R. L., KENNEY C., KETY S. S. The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest. 1955 Jul;34(7 Pt 1):1101–1108. doi: 10.1172/JCI103159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seitz R. J., Bohm C., Greitz T., Roland P. E., Eriksson L., Blomqvist G., Rosenqvist G., Nordell B. Accuracy and precision of the computerized brain atlas programme for localization and quantification in positron emission tomography. J Cereb Blood Flow Metab. 1990 Jul;10(4):443–457. doi: 10.1038/jcbfm.1990.87. [DOI] [PubMed] [Google Scholar]
  18. Seitz R. J., Roland P. E. Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurol Scand. 1992 Jul;86(1):60–67. doi: 10.1111/j.1600-0404.1992.tb08055.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES