Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1971 Jun;3(6):768–773. doi: 10.1128/iai.3.6.768-773.1971

Influence of the Indigenous Gastrointestinal Microbial Flora on Duodenal Alkaline Phosphatase Activity in Mice

Diane P Yolton a, Carol Stanley a,1, Dwayne C Savage a
PMCID: PMC416235  PMID: 16558052

Abstract

Alkaline phosphatase activity was assayed by two procedures in duodenal homogenates from specific pathogen-free (SPF) mice of various ages, adult germfree mice, adult ex-germ-free mice colonized with an indigenous microflora from the SPF mice, and adult ex-germ-free mice monocontaminated with a Lactobacillus sp. indigenous to the SPF mice. In the SPF neonates, the activity remained at low levels until at least 12 days of age, increased to high levels at 20 days of age, and then fell to adult levels between the early neonatal and later high levels. In the germ-free mice, the activity levels were significantly higher than the levels in SPF mice at any age. In contrast, in the ex-germ-free animals, colonized by an entire indigenous microflora, the values fell within the range for adult SPF animals. In the ex-germ-free mice colonized only by the Lactobacillus sp., the activity levels were intermediate between the values for germ-free and SPF mice. These findings show that the indigenous microbial flora influences considerably the intestinal alkaline phosphatase activity in the mouse.

Full text

PDF
768

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd C. A., Parsons D. S., Thomas A. V. The presence of K+dependent phophatase in intestinal epithelial cell brush borders isolated by a new method. Biochim Biophys Acta. 1968 Jun 11;150(4):723–726. doi: 10.1016/0005-2736(68)90061-8. [DOI] [PubMed] [Google Scholar]
  2. CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
  3. DUBOS R., SCHAEDLER R. W., COSTELLO R., HOET P. INDIGENOUS, NORMAL, AND AUTOCHTHONOUS FLORA OF THE GASTROINTESTINAL TRACT. J Exp Med. 1965 Jul 1;122:67–76. doi: 10.1084/jem.122.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Etzler M. E., Moog F. Biochemical identification and characterization of the multiple forms of alkaline phosphatase in the developing duodenum of the mouse. Dev Biol. 1968 Nov;18(5):515–535. doi: 10.1016/0012-1606(68)90055-9. [DOI] [PubMed] [Google Scholar]
  5. JERVIS H. R., BIGGERS D. C. MUCOSAL ENZYMES IN THE CECUM OF CONVENTIONAL AND GERMFREE MICE. Anat Rec. 1964 Apr;148:591–597. doi: 10.1002/ar.1091480410. [DOI] [PubMed] [Google Scholar]
  6. King E. J., Armstrong A. R. A CONVENIENT METHOD FOR DETERMINING SERUM AND BILE PHOSPHATASE ACTIVITY. Can Med Assoc J. 1934 Oct;31(4):376–381. [PMC free article] [PubMed] [Google Scholar]
  7. LANDAU W., SCHLAMOWITZ M. Studies of factors related to the differentiation of alkaline phosphatases derived from several tissues. Arch Biochem Biophys. 1961 Dec;95:474–482. doi: 10.1016/0003-9861(61)90179-5. [DOI] [PubMed] [Google Scholar]
  8. LESHER S., WALBURG H. E., Jr, SACHER G. A., Jr GENERATION CYCLE IN THE DUODENAL CRYPT CELLS OF GERM-FREE AND CONVENTIONAL MICE. Nature. 1964 May 30;202:884–886. doi: 10.1038/202884a0. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. MOOG F. The functional differentiation of the small intestine. VIII. Regional differences in the alkaline phosphatases of the small intestine of the mouse from birth to one year. Dev Biol. 1961 Apr;3:153–174. doi: 10.1016/0012-1606(61)90003-3. [DOI] [PubMed] [Google Scholar]
  11. Reddy B. S., Pleasants J. R., Wostmann B. S. Effect of dietary carbohydrates on intestinal disaccharidases in germfree and conventional rats. J Nutr. 1968 Jul;95(3):413–419. doi: 10.1093/jn/95.3.413. [DOI] [PubMed] [Google Scholar]
  12. SCHAEDLER R. W., DUBOS R. J. The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin. J Exp Med. 1962 Jun 1;115:1149–1160. doi: 10.1084/jem.115.6.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SCHAEDLER R. W., DUBOS R., COSTELLO R. THE DEVELOPMENT OF THE BACTERIAL FLORA IN THE GASTROINTESTINAL TRACT OF MICE. J Exp Med. 1965 Jul 1;122:59–66. doi: 10.1084/jem.122.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCHAEDLER R. W., DUBS R., COSTELLO R. ASSOCIATION OF GERMFREE MICE WITH BACTERIA ISOLATED FROM NORMAL MICE. J Exp Med. 1965 Jul 1;122:77–82. doi: 10.1084/jem.122.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Savage D. C., Dubos R., Schaedler R. W. The gastrointestinal epithelium and its autochthonous bacterial flora. J Exp Med. 1968 Jan 1;127(1):67–76. doi: 10.1084/jem.127.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Savage D. C., McAllister J. S. Cecal enlargement and microbial flora in suckling mice given antibacterial drugs. Infect Immun. 1971 Feb;3(2):342–349. doi: 10.1128/iai.3.2.342-349.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Syed S. A., Abrams G. D., Freter R. Efficiency of various intestinal bacteria in assuming normal functions of enteric flora after association with germ-free mice. Infect Immun. 1970 Oct;2(4):376–386. doi: 10.1128/iai.2.4.376-386.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. TREXLER P. C., REYNOLDS L. I. Flexible film apparatus for the rearing and use of germfree animals. Appl Microbiol. 1957 Nov;5(6):406–412. doi: 10.1128/am.5.6.406-412.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES