Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1971 Sep;4(3):199–204. doi: 10.1128/iai.4.3.199-204.1971

Utilization of Palmitic Acid by Mycobacterium avium

Charlotte McCarthy 1
PMCID: PMC416288  PMID: 5154882

Abstract

Mycobacterium avium accumulates 14C-palmitic acid with saturation kinetics; the process is both temperature dependent and pH sensitive. The fatty acid is incorporated into triglyceride in vivo and the conversion is detectable within 5 min after exposure of the cells to 14C-palmitic acid. The triglyceride is rapidly utilized because 14CO2 evolution from it begins within 30 min after 14C-palmitic acid accumulation. Data from silicic acid column chromatography of extracts of cultures that have divided many times in medium containing 14C-palmitic acid indicate that a large proportion of the cell lipid is triglyceride, but the radioactivity is widely dispersed among the other lipids. It is estimated that about 5% of the cell dry weight is triglyceride in a postexponential culture.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMENTA J. S. A RAPID CHEMICAL METHOD FOR QUANTIFICATION OF LIPIDS SEPARATED BY THIN-LAYER CHROMATOGRAPHY. J Lipid Res. 1964 Apr;5:270–272. [PubMed] [Google Scholar]
  2. Antoine A. D., Tepper B. S. Environmental control of glycogen and lipid content of Mycobacterium tuberculosis. J Bacteriol. 1969 Oct;100(1):538–539. doi: 10.1128/jb.100.1.538-539.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLOCH H., DEFAYE J., LEDERER E., NOLL H. Constituents of a toxic-lipid obtained from Mycobacterium tuberculosis. Biochim Biophys Acta. 1957 Feb;23(2):312–321. doi: 10.1016/0006-3002(57)90333-5. [DOI] [PubMed] [Google Scholar]
  4. Ferdinandus J., Clark J. B. Selective inhibition of bacterial enzymes by free fatty acids. J Bacteriol. 1969 Jun;98(3):1109–1113. doi: 10.1128/jb.98.3.1109-1113.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  6. Hedgecock L. W. Nutritional characteristics of the atypical mycobacteria. J Bacteriol. 1968 Aug;96(2):306–313. doi: 10.1128/jb.96.2.306-313.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henning U., Dennert G., Rehn K., Deppe G. Effects of oleate starvation in a fatty acid auxotroph of Escherichia coli K-12. J Bacteriol. 1969 May;98(2):784–796. doi: 10.1128/jb.98.2.784-796.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krulwich T. A., Ensign J. C. Alteration of glucose metabolism of Arthrobacter crystallopoietes by compounds which induce sphere to rod morphogenesis. J Bacteriol. 1969 Feb;97(2):526–534. doi: 10.1128/jb.97.2.526-534.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lennarz W. J. Lipid metabolism in the bacteria. Adv Lipid Res. 1966;4:175–225. doi: 10.1016/b978-1-4831-9940-5.50012-0. [DOI] [PubMed] [Google Scholar]
  11. MICHEL G. Composition des cires A de Mycobacterium marianum. C R Hebd Seances Acad Sci. 1957 May 6;244(19):2429–2432. [PubMed] [Google Scholar]
  12. McCarthy C. Spontaneous and Induced Mutation in Mycobacterium avium. Infect Immun. 1970 Sep;2(3):223–228. doi: 10.1128/iai.2.3.223-228.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WAYNE L. G. Differentiation of mycobacteria by their effect on tween 80. Am Rev Respir Dis. 1962 Oct;86:579–581. doi: 10.1164/arrd.1962.86.4.579. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES