Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 May 23;92(11):4957–4961. doi: 10.1073/pnas.92.11.4957

Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa.

W J Swanson 1, V D Vacquier 1
PMCID: PMC41826  PMID: 7761431

Abstract

During fertilization in marine invertebrates, fusion between sperm and egg cell membranes occurs at the tip of the sperm acrosomal process. In abalone sperm the acrosomal process is coated with an 18-kDa protein. In situ, this protein has no effect on the egg vitelline envelope, but in vitro it is a potent fusagen of liposomes. Thus, the 18-kDa protein may mediate membrane fusion between the gametes, a step in gamete recognition known to restrict heterospecific fertilization in other species. The cDNA and deduced amino acid sequences of the 18-kDa protein were determined for five species of California abalone. The deduced amino acid sequences exhibit extraordinary divergence; the percent identity varies from 27% to 87%. Analysis of nucleotide substitution shows extremely high frequencies of amino acid-altering substitution compared to silent substitution, demonstrating that positive Darwinian selection promotes the divergence of this protein. However, amino acid replacement is conservative with respect to size and polarity of residue. The data support the developing idea that in free-spawning marine invertebrates, the proteins mediating fertilization may be subjected to intense, and as yet unknown, selective forces. The extraordinary divergence of fertilization proteins may be related to the establishment of barriers to heterospecific fertilization.

Full text

PDF
4957

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  3. Feng D. F., Doolittle R. F. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 1990;183:375–387. doi: 10.1016/0076-6879(90)83025-5. [DOI] [PubMed] [Google Scholar]
  4. Glabe C. G. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidylcholine and phosphatidylserine in vitro. J Cell Biol. 1985 Mar;100(3):800–806. doi: 10.1083/jcb.100.3.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hong K., Vacquier V. D. Fusion of liposomes induced by a cationic protein from the acrosome granule of abalone spermatozoa. Biochemistry. 1986 Feb 11;25(3):543–549. doi: 10.1021/bi00351a004. [DOI] [PubMed] [Google Scholar]
  6. Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
  7. Hughes A. L., Ota T., Nei M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol. 1990 Nov;7(6):515–524. doi: 10.1093/oxfordjournals.molbev.a040626. [DOI] [PubMed] [Google Scholar]
  8. Hughes A. L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci. 1994 May 23;256(1346):119–124. doi: 10.1098/rspb.1994.0058. [DOI] [PubMed] [Google Scholar]
  9. Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
  10. Lee Y. H., Vacquier V. D. A method for obtaining high-quality sequences from the non-biotinylated, free ssDNA remaining after solid-phase sequencing. Biotechniques. 1993 Feb;14(2):191–192. [PubMed] [Google Scholar]
  11. Lee Y. H., Vacquier V. D. Reusable cDNA libraries coupled to magnetic beads. Anal Biochem. 1992 Oct;206(1):206–207. doi: 10.1016/s0003-2697(05)80035-1. [DOI] [PubMed] [Google Scholar]
  12. Lewis C. A., Talbot C. F., Vacquier V. D. A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism. Dev Biol. 1982 Jul;92(1):227–239. doi: 10.1016/0012-1606(82)90167-1. [DOI] [PubMed] [Google Scholar]
  13. Lopez A., Miraglia S. J., Glabe C. G. Structure/function analysis of the sea urchin sperm adhesive protein bindin. Dev Biol. 1993 Mar;156(1):24–33. doi: 10.1006/dbio.1993.1056. [DOI] [PubMed] [Google Scholar]
  14. Minor J. E., Fromson D. R., Britten R. J., Davidson E. H. Comparison of the bindin proteins of Strongylocentrotus franciscanus, S. purpuratus, and Lytechinus variegatus: sequences involved in the species specificity of fertilization. Mol Biol Evol. 1991 Nov;8(6):781–795. doi: 10.1093/oxfordjournals.molbev.a040690. [DOI] [PubMed] [Google Scholar]
  15. Miyata T., Miyazawa S., Yasunaga T. Two types of amino acid substitutions in protein evolution. J Mol Evol. 1979 Mar 15;12(3):219–236. doi: 10.1007/BF01732340. [DOI] [PubMed] [Google Scholar]
  16. Moriyama E. N., Gojobori T. Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics. 1992 Apr;130(4):855–864. doi: 10.1093/genetics/130.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moriyama E. N., Hartl D. L. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics. 1993 Jul;134(3):847–858. doi: 10.1093/genetics/134.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moy G. W., Vacquier V. D. Immunoperoxidase localization of bindin during the adhesion of sperm to sea urchin eggs. Curr Top Dev Biol. 1979;13(Pt 1):31–44. doi: 10.1016/s0070-2153(08)60688-2. [DOI] [PubMed] [Google Scholar]
  19. Myles D. G. Molecular mechanisms of sperm-egg membrane binding and fusion in mammals. Dev Biol. 1993 Jul;158(1):35–45. doi: 10.1006/dbio.1993.1166. [DOI] [PubMed] [Google Scholar]
  20. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  21. Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  22. Roldan E. R., Yanagimachi R. Cross-fertilization between Syrian and Chinese hamsters. J Exp Zool. 1989 Jun;250(3):321–328. doi: 10.1002/jez.1402500312. [DOI] [PubMed] [Google Scholar]
  23. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  24. Sharp P. M., Li W. H. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. doi: 10.1093/oxfordjournals.molbev.a040443. [DOI] [PubMed] [Google Scholar]
  25. Shaw A., McRee D. E., Vacquier V. D., Stout C. D. The crystal structure of lysin, a fertilization protein. Science. 1993 Dec 17;262(5141):1864–1867. doi: 10.1126/science.8266073. [DOI] [PubMed] [Google Scholar]
  26. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  27. Summers R. G., Hylander B. L. Primary gamete binding. Quantitative determination of its specificity in echinoid fertilization. Exp Cell Res. 1976 Jun;100(1):190–194. doi: 10.1016/0014-4827(76)90341-4. [DOI] [PubMed] [Google Scholar]
  28. Ticher A., Graur D. Nucleic acid composition, codon usage, and the rate of synonymous substitution in protein-coding genes. J Mol Evol. 1989 Apr;28(4):286–298. doi: 10.1007/BF02103424. [DOI] [PubMed] [Google Scholar]
  29. Usui N., Haino-Fukushima K. Two major acrosomal proteins act on different parts of the oocyte vitelline coat in the abalone, Haliotis discus. Mol Reprod Dev. 1991 Feb;28(2):189–198. doi: 10.1002/mrd.1080280213. [DOI] [PubMed] [Google Scholar]
  30. Vacquier V. D., Lee Y. H. Abalone sperm lysin: unusual mode of evolution of a gamete recognition protein. Zygote. 1993 Aug;1(3):181–196. doi: 10.1017/s0967199400001465. [DOI] [PubMed] [Google Scholar]
  31. Wolfe K. H., Sharp P. M., Li W. H. Mutation rates differ among regions of the mammalian genome. Nature. 1989 Jan 19;337(6204):283–285. doi: 10.1038/337283a0. [DOI] [PubMed] [Google Scholar]
  32. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES