Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 May 23;92(11):5012–5016. doi: 10.1073/pnas.92.11.5012

NusA interferes with interactions between the nascent RNA and the C-terminal domain of the alpha subunit of RNA polymerase in Escherichia coli transcription complexes.

K Liu 1, M M Hanna 1
PMCID: PMC41838  PMID: 7539140

Abstract

The effects of NusA on the RNA polymerase contacts made by nucleotides at internal positions in the nascent RNA in Escherichia coli transcription complexes were analyzed by using the photocrosslinking nucleotide analog 5-[(4-azidophenacyl) thio]-UMP. It was placed at nucleotides between +6 and +15 in RNA transcribed from the phage lambda PR' promoter. Crosslinks of analog in these positions in RNAs which contained either 15, 28, 29, or 49 nt were examined. Contacts between the nascent RNA and proteins in the transcription complex were analyzed as the RNA was elongated, by placing the crosslinker nearest the 5' end of the RNA 10, 23, 24, or 44 nt away from the 3' end. The beta or beta' subunit of polymerase, and NusA when added, were contacted by RNA from 15 to 49 nt long. When the upstream crosslinker was 24 nt from the 3" end of the RNA (29-nt RNA), alpha was also contacted in the absence of NusA. The addition of NusA prevented RNA crosslinking to alpha. When the crosslinker was 44 nt from the 3' end (49-nt RNA), alpha crosslinks were still observed, but crosslinks to beta or beta' and NusA were greatly diminished. RNA crosslinking to alpha, and loss of this crosslink when NusA was added, was observed in the presence of NusB, NusE, and NusG and when transcription was carried out in the presence of an E. coli S100 cell extract. Peptide mapping localized the RNA interactions to the C-terminal domain of alpha.

Full text

PDF
5012

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blatter E. E., Ross W., Tang H., Gourse R. L., Ebright R. H. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell. 1994 Sep 9;78(5):889–896. doi: 10.1016/s0092-8674(94)90682-3. [DOI] [PubMed] [Google Scholar]
  2. Chamberlin M. J. New models for the mechanism of transcription elongation and its regulation. Harvey Lect. 1992 1993;88:1–21. [PubMed] [Google Scholar]
  3. Chen Y., Ebright Y. W., Ebright R. H. Identification of the target of a transcription activator protein by protein-protein photocrosslinking. Science. 1994 Jul 1;265(5168):90–92. doi: 10.1126/science.8016656. [DOI] [PubMed] [Google Scholar]
  4. Dissinger S., Hanna M. M. Active site labeling of Escherichia coli transcription elongation complexes with 5-[4-azidophenacyl)thio)uridine 5'-triphosphate. J Biol Chem. 1990 May 5;265(13):7662–7668. [PubMed] [Google Scholar]
  5. Dissinger S., Hanna M. M. RNA-protein interactions in a Nus A-containing Escherichia coli transcription complex paused at an RNA hairpin. J Mol Biol. 1991 May 5;219(1):11–25. doi: 10.1016/0022-2836(91)90853-x. [DOI] [PubMed] [Google Scholar]
  6. Erie D. A., Yager T. D., von Hippel P. H. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu Rev Biophys Biomol Struct. 1992;21:379–415. doi: 10.1146/annurev.bb.21.060192.002115. [DOI] [PubMed] [Google Scholar]
  7. Gill S. C., Weitzel S. E., von Hippel P. H. Escherichia coli sigma 70 and NusA proteins. I. Binding interactions with core RNA polymerase in solution and within the transcription complex. J Mol Biol. 1991 Jul 20;220(2):307–324. doi: 10.1016/0022-2836(91)90015-x. [DOI] [PubMed] [Google Scholar]
  8. Goda Y., Greenblatt J. Efficient modification of E. coli RNA polymerase in vitro by the N gene transcription antitermination protein of bacteriophage lambda. Nucleic Acids Res. 1985 Apr 11;13(7):2569–2582. doi: 10.1093/nar/13.7.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grachev M. A., Zaychikov E. F. Photo-modification studies of the contacts of the 5'-terminus of growing RNA with the subunits of RNA-polymerase. FEBS Lett. 1981 Jul 20;130(1):23–26. doi: 10.1016/0014-5793(81)80657-6. [DOI] [PubMed] [Google Scholar]
  10. Hanna M. M., Dissinger S., Williams B. D., Colston J. E. Synthesis and characterization of 5-[(4-Azidophenacyl)thio]uridine 5'-triphosphate, a cleavable photo-cross-linking nucleotide analogue. Biochemistry. 1989 Jul 11;28(14):5814–5820. doi: 10.1021/bi00440a017. [DOI] [PubMed] [Google Scholar]
  11. Hanna M. M., Meares C. F. Topography of transcription: path of the leading end of nascent RNA through the Escherichia coli transcription complex. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4238–4242. doi: 10.1073/pnas.80.14.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanna M. M. Photoaffinity cross-linking methods for studying RNA-protein interactions. Methods Enzymol. 1989;180:383–409. doi: 10.1016/0076-6879(89)80113-2. [DOI] [PubMed] [Google Scholar]
  13. Hanna M. M., Zhang Y., Reidling J. C., Thomas M. J., Jou J. Synthesis and characterization of a new photocrosslinking CTP analog and its use in photoaffinity labeling E. coli and T7 RNA polymerases. Nucleic Acids Res. 1993 May 11;21(9):2073–2079. doi: 10.1093/nar/21.9.2073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Igarashi K., Fujita N., Ishihama A. Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase. J Mol Biol. 1991 Mar 5;218(1):1–6. [PubMed] [Google Scholar]
  15. Ishihama A. Protein-protein communication within the transcription apparatus. J Bacteriol. 1993 May;175(9):2483–2489. doi: 10.1128/jb.175.9.2483-2489.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ishihama A. Role of the RNA polymerase alpha subunit in transcription activation. Mol Microbiol. 1992 Nov;6(22):3283–3288. doi: 10.1111/j.1365-2958.1992.tb02196.x. [DOI] [PubMed] [Google Scholar]
  17. Ito K., Egawa K., Nakamura Y. Genetic interaction between the beta' subunit of RNA polymerase and the arginine-rich domain of Escherichia coli nusA protein. J Bacteriol. 1991 Feb;173(4):1492–1501. doi: 10.1128/jb.173.4.1492-1501.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. King K., Benkovic S. J., Modrich P. Glu-111 is required for activation of the DNA cleavage center of EcoRI endonuclease. J Biol Chem. 1989 Jul 15;264(20):11807–11815. [PubMed] [Google Scholar]
  19. Liu K., Hanna M. M. NusA contacts nascent RNA in Escherichia coli transcription complexes. J Mol Biol. 1995 Apr 7;247(4):547–558. doi: 10.1006/jmbi.1994.0161. [DOI] [PubMed] [Google Scholar]
  20. Mason S. W., Greenblatt J. Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev. 1991 Aug;5(8):1504–1512. doi: 10.1101/gad.5.8.1504. [DOI] [PubMed] [Google Scholar]
  21. Mason S. W., Li J., Greenblatt J. Direct interaction between two Escherichia coli transcription antitermination factors, NusB and ribosomal protein S10. J Mol Biol. 1992 Jan 5;223(1):55–66. doi: 10.1016/0022-2836(92)90715-v. [DOI] [PubMed] [Google Scholar]
  22. Nudler E., Goldfarb A., Kashlev M. Discontinuous mechanism of transcription elongation. Science. 1994 Aug 5;265(5173):793–796. doi: 10.1126/science.8047884. [DOI] [PubMed] [Google Scholar]
  23. Pavco P. A., Steege D. A. Elongation by Escherichia coli RNA polymerase is blocked in vitro by a site-specific DNA binding protein. J Biol Chem. 1990 Jun 15;265(17):9960–9969. [PubMed] [Google Scholar]
  24. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993 Nov 26;262(5138):1407–1413. doi: 10.1126/science.8248780. [DOI] [PubMed] [Google Scholar]
  25. Saris C. J., van Eenbergen J., Jenks B. G., Bloemers H. P. Hydroxylamine cleavage of proteins in polyacrylamide gels. Anal Biochem. 1983 Jul 1;132(1):54–67. doi: 10.1016/0003-2697(83)90425-6. [DOI] [PubMed] [Google Scholar]
  26. Sparkowski J., Das A. Simultaneous gain and loss of functions caused by a single amino acid substitution in the beta subunit of Escherichia coli RNA polymerase: suppression of nusA and rho mutations and conditional lethality. Genetics. 1992 Mar;130(3):411–428. doi: 10.1093/genetics/130.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tao K., Fujita N., Ishihama A. Involvement of the RNA polymerase alpha subunit C-terminal region in co-operative interaction and transcriptional activation with OxyR protein. Mol Microbiol. 1993 Mar;7(6):859–864. doi: 10.1111/j.1365-2958.1993.tb01176.x. [DOI] [PubMed] [Google Scholar]
  28. Zhang Y., Hanna M. M. NusA changes the conformation of Escherichia coli RNA polymerase at the binding site for the 3' end of the nascent RNA. J Bacteriol. 1994 Mar;176(6):1787–1789. doi: 10.1128/jb.176.6.1787-1789.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES