Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 May 23;92(11):5017–5021. doi: 10.1073/pnas.92.11.5017

Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity.

J A Ippolito 1, T T Baird Jr 1, S A McGee 1, D W Christianson 1, C A Fierke 1
PMCID: PMC41839  PMID: 7761440

Abstract

We have inserted a fourth protein ligand into the zinc coordination polyhedron of carbonic anhydrase II (CAII) that increases metal affinity 200-fold (Kd = 20 fM). The three-dimensional structures of threonine-199-->aspartate (T199D) and threonine-199-->glutamate (T199E) CAIIs, determined by x-ray crystallographic methods to resolutions of 2.35 Angstrum and 2.2 Angstrum, respectively, reveal a tetrahedral metal-binding site consisting of H94, H96, H119, and the engineered carboxylate side chain, which displaces zinc-bound hydroxide. Although the stereochemistry of neither engineered carboxylate-zinc interaction is comparable to that found in naturally occurring protein zinc-binding sites, protein-zinc affinity is enhanced in T199E CAII demonstrating that ligand-metal separation is a significant determinant of carboxylate-zinc affinity. In contrast, the three-dimensional structure of threonine-199-->histidine (T199H) CAII, determined to 2.25-Angstrum resolution, indicates that the engineered imidazole side chain rotates away from the metal and does not coordinate to zinc; this results in a weaker zinc-binding site. All three of these substitutions nearly obliterate CO2 hydrase activity, consistent with the role of zinc-bound hydroxide as catalytic nucleophile. The engineering of an additional protein ligand represents a general approach for increasing protein-metal affinity if the side chain can adopt a reasonable conformation and achieve inner-sphere zinc coordination. Moreover, this structure-assisted design approach may be effective in the development of high-sensitivity metal ion biosensors.

Full text

PDF
5017

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. S., Kiefer L. L., Fierke C. A., Christianson D. W. Engineering the zinc binding site of human carbonic anhydrase II: structure of the His-94-->Cys apoenzyme in a new crystalline form. Biochemistry. 1993 Feb 16;32(6):1510–1518. doi: 10.1021/bi00057a015. [DOI] [PubMed] [Google Scholar]
  2. Alexander R. S., Nair S. K., Christianson D. W. Engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry. 1991 Nov 19;30(46):11064–11072. doi: 10.1021/bi00110a008. [DOI] [PubMed] [Google Scholar]
  3. Bertini I., Luchinat C. High spin cobalt(II) as a probe for the investigation of metalloproteins. Adv Inorg Biochem. 1984;6:71–111. [PubMed] [Google Scholar]
  4. Browner M. F., Hackos D., Fletterick R. Identification of the molecular trigger for allosteric activation in glycogen phosphorylase. Nat Struct Biol. 1994 May;1(5):327–333. doi: 10.1038/nsb0594-327. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  6. Chakrabarti P. Interaction of metal ions with carboxylic and carboxamide groups in protein structures. Protein Eng. 1990 Oct;4(1):49–56. doi: 10.1093/protein/4.1.49. [DOI] [PubMed] [Google Scholar]
  7. Durbin R. M., Burns R., Moulai J., Metcalf P., Freymann D., Blum M., Anderson J. E., Harrison S. C., Wiley D. C. Protein, DNA, and virus crystallography with a focused imaging proportional counter. Science. 1986 May 30;232(4754):1127–1132. doi: 10.1126/science.3704639. [DOI] [PubMed] [Google Scholar]
  8. Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
  9. Hunt J. B., Neece S. H., Ginsburg A. The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase. Anal Biochem. 1985 Apr;146(1):150–157. doi: 10.1016/0003-2697(85)90409-9. [DOI] [PubMed] [Google Scholar]
  10. Håkansson K., Carlsson M., Svensson L. A., Liljas A. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol. 1992 Oct 20;227(4):1192–1204. doi: 10.1016/0022-2836(92)90531-n. [DOI] [PubMed] [Google Scholar]
  11. Ippolito J. A., Christianson D. W. Structure of an engineered His3Cys zinc binding site in human carbonic anhydrase II. Biochemistry. 1993 Sep 28;32(38):9901–9905. doi: 10.1021/bi00089a005. [DOI] [PubMed] [Google Scholar]
  12. Iverson B. L., Iverson S. A., Roberts V. A., Getzoff E. D., Tainer J. A., Benkovic S. J., Lerner R. A. Metalloantibodies. Science. 1990 Aug 10;249(4969):659–662. doi: 10.1126/science.2116666. [DOI] [PubMed] [Google Scholar]
  13. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  14. Khalifah R. G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971 Apr 25;246(8):2561–2573. [PubMed] [Google Scholar]
  15. Kiefer L. L., Fierke C. A. Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry. 1994 Dec 27;33(51):15233–15240. doi: 10.1021/bi00255a003. [DOI] [PubMed] [Google Scholar]
  16. Kiefer L. L., Krebs J. F., Paterno S. A., Fierke C. A. Engineering a cysteine ligand into the zinc binding site of human carbonic anhydrase II. Biochemistry. 1993 Sep 28;32(38):9896–9900. doi: 10.1021/bi00089a004. [DOI] [PubMed] [Google Scholar]
  17. Krebs J. F., Fierke C. A. Determinants of catalytic activity and stability of carbonic anhydrase II as revealed by random mutagenesis. J Biol Chem. 1993 Jan 15;268(2):948–954. [PubMed] [Google Scholar]
  18. Krebs J. F., Ippolito J. A., Christianson D. W., Fierke C. A. Structural and functional importance of a conserved hydrogen bond network in human carbonic anhydrase II. J Biol Chem. 1993 Dec 25;268(36):27458–27466. [PubMed] [Google Scholar]
  19. McGrath M. E., Haymore B. L., Summers N. L., Craik C. S., Fletterick R. J. Structure of an engineered, metal-actuated switch in trypsin. Biochemistry. 1993 Mar 2;32(8):1914–1919. doi: 10.1021/bi00059a005. [DOI] [PubMed] [Google Scholar]
  20. Merz K. M., Jr Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases. J Mol Biol. 1990 Aug 20;214(4):799–802. doi: 10.1016/0022-2836(90)90333-H. [DOI] [PubMed] [Google Scholar]
  21. Pessi A., Bianchi E., Crameri A., Venturini S., Tramontano A., Sollazzo M. A designed metal-binding protein with a novel fold. Nature. 1993 Mar 25;362(6418):367–369. doi: 10.1038/362367a0. [DOI] [PubMed] [Google Scholar]
  22. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  23. Regan L., Clarke N. D. A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry. 1990 Dec 11;29(49):10878–10883. doi: 10.1021/bi00501a003. [DOI] [PubMed] [Google Scholar]
  24. Roberts V. A., Iverson B. L., Iverson S. A., Benkovic S. J., Lerner R. A., Getzoff E. D., Tainer J. A. Antibody remodeling: a general solution to the design of a metal-coordination site in an antibody binding pocket. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6654–6658. doi: 10.1073/pnas.87.17.6654. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES