Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 May 23;92(11):5057–5061. doi: 10.1073/pnas.92.11.5057

N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia.

J Folbergrová 1, Q Zhao 1, K Katsura 1, B K Siesjö 1
PMCID: PMC41847  PMID: 7761448

Abstract

Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.

Full text

PDF
5057

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brint S., Jacewicz M., Kiessling M., Tanabe J., Pulsinelli W. Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab. 1988 Aug;8(4):474–485. doi: 10.1038/jcbfm.1988.88. [DOI] [PubMed] [Google Scholar]
  2. Cao X., Phillis J. W. alpha-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 1994 May 2;644(2):267–272. doi: 10.1016/0006-8993(94)91689-6. [DOI] [PubMed] [Google Scholar]
  3. Carney J. M., Floyd R. A. Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: a novel series of nonlipid free radical scavengers. J Mol Neurosci. 1991;3(1):47–57. doi: 10.1007/BF02896848. [DOI] [PubMed] [Google Scholar]
  4. Chan P. H., Yang G. Y., Chen S. F., Carlson E., Epstein C. J. Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase. Ann Neurol. 1991 May;29(5):482–486. doi: 10.1002/ana.410290506. [DOI] [PubMed] [Google Scholar]
  5. Chapman A. G., Westerberg E., Siesjö B. K. The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery. J Neurochem. 1981 Jan;36(1):179–189. doi: 10.1111/j.1471-4159.1981.tb02393.x. [DOI] [PubMed] [Google Scholar]
  6. Chen H., Chopp M., Zhang R. L., Bodzin G., Chen Q., Rusche J. R., Todd R. F., 3rd Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol. 1994 Apr;35(4):458–463. doi: 10.1002/ana.410350414. [DOI] [PubMed] [Google Scholar]
  7. Clough-Helfman C., Phillis J. W. The free radical trapping agent N-tert.-butyl-alpha-phenylnitrone (PBN) attenuates cerebral ischaemic injury in gerbils. Free Radic Res Commun. 1991;15(3):177–186. doi: 10.3109/10715769109049138. [DOI] [PubMed] [Google Scholar]
  8. Feuerstein G. Z., Liu T., Barone F. C. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev. 1994 Winter;6(4):341–360. [PubMed] [Google Scholar]
  9. Floyd R. A., Carney J. M. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol. 1992;32 (Suppl):S22–S27. doi: 10.1002/ana.410320706. [DOI] [PubMed] [Google Scholar]
  10. Floyd R. A. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 1990 Jun;4(9):2587–2597. [PubMed] [Google Scholar]
  11. Folbergrová J., Kiyota Y., Pahlmark K., Memezawa H., Smith M. L., Siesjö B. K. Does ischemia with reperfusion lead to oxidative damage to proteins in the brain? J Cereb Blood Flow Metab. 1993 Jan;13(1):145–152. doi: 10.1038/jcbfm.1993.17. [DOI] [PubMed] [Google Scholar]
  12. Folbergrová J., MacMillan V., Siesjö B. K. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH-NAD+ ratio of the rat brain. J Neurochem. 1972 Nov;19(11):2497–2505. doi: 10.1111/j.1471-4159.1972.tb01309.x. [DOI] [PubMed] [Google Scholar]
  13. Folbergrová J., Memezawa H., Smith M. L., Siesjö B. K. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J Cereb Blood Flow Metab. 1992 Jan;12(1):25–33. doi: 10.1038/jcbfm.1992.4. [DOI] [PubMed] [Google Scholar]
  14. Garcia J. H., Liu K. F., Yoshida Y., Lian J., Chen S., del Zoppo G. J. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994 Jan;144(1):188–199. [PMC free article] [PubMed] [Google Scholar]
  15. Ginsberg M. D., Pulsinelli W. A. The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke. Ann Neurol. 1994 Oct;36(4):553–554. doi: 10.1002/ana.410360402. [DOI] [PubMed] [Google Scholar]
  16. Hess D. C., Zhao W., Carroll J., McEachin M., Buchanan K. Increased expression of ICAM-1 during reoxygenation in brain endothelial cells. Stroke. 1994 Jul;25(7):1463–1468. doi: 10.1161/01.str.25.7.1463. [DOI] [PubMed] [Google Scholar]
  17. Hossmann K. A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994 Oct;36(4):557–565. doi: 10.1002/ana.410360404. [DOI] [PubMed] [Google Scholar]
  18. Kleihues P., Kobayashi K., Hossmann K. A. Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J Neurochem. 1974 Aug;23(2):417–425. doi: 10.1111/j.1471-4159.1974.tb04374.x. [DOI] [PubMed] [Google Scholar]
  19. Krause G. S., DeGracia D. J., Skjaerlund J. M., O'Neil B. J. Assessment of free radical-induced damage in brain proteins after ischemia and reperfusion. Resuscitation. 1992 Feb;23(1):59–69. doi: 10.1016/0300-9572(92)90162-6. [DOI] [PubMed] [Google Scholar]
  20. Liu T. H., Beckman J. S., Freeman B. A., Hogan E. L., Hsu C. Y. Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol. 1989 Feb;256(2 Pt 2):H589–H593. doi: 10.1152/ajpheart.1989.256.2.H589. [DOI] [PubMed] [Google Scholar]
  21. Martz D., Rayos G., Schielke G. P., Betz A. L. Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats. Stroke. 1989 Apr;20(4):488–494. doi: 10.1161/01.str.20.4.488. [DOI] [PubMed] [Google Scholar]
  22. Matsuo Y., Onodera H., Shiga Y., Shozuhara H., Ninomiya M., Kihara T., Tamatani T., Miyasaka M., Kogure K. Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain Res. 1994 Sep 12;656(2):344–352. doi: 10.1016/0006-8993(94)91478-8. [DOI] [PubMed] [Google Scholar]
  23. Memezawa H., Minamisawa H., Smith M. L., Siesjö B. K. Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res. 1992;89(1):67–78. doi: 10.1007/BF00229002. [DOI] [PubMed] [Google Scholar]
  24. Oliver C. N., Starke-Reed P. E., Stadtman E. R., Liu G. J., Carney J. M., Floyd R. A. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5144–5147. doi: 10.1073/pnas.87.13.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pahlmark K., Folbergrová J., Smith M. L., Siesjö B. K. Effects of dimethylthiourea on selective neuronal vulnerability in forebrain ischemia in rats. Stroke. 1993 May;24(5):731–737. doi: 10.1161/01.str.24.5.731. [DOI] [PubMed] [Google Scholar]
  26. Pontén U., Ratcheson R. A., Salford L. G., Siesjö B. K. Optimal freezing conditions for cerebral metabolites in rats. J Neurochem. 1973 Nov;21(5):1127–1138. doi: 10.1111/j.1471-4159.1973.tb07567.x. [DOI] [PubMed] [Google Scholar]
  27. Prehn J. H., Karkoutly C., Nuglisch J., Peruche B., Krieglstein J. Dihydrolipoate reduces neuronal injury after cerebral ischemia. J Cereb Blood Flow Metab. 1992 Jan;12(1):78–87. doi: 10.1038/jcbfm.1992.10. [DOI] [PubMed] [Google Scholar]
  28. Selman W. R., Crumrine R. C., Ricci A. J., LaManna J. C., Ratcheson R. A., Lust W. D. Impairment of metabolic recovery with increasing periods of middle cerebral artery occlusion in rats. Stroke. 1990 Mar;21(3):467–471. doi: 10.1161/01.str.21.3.467. [DOI] [PubMed] [Google Scholar]
  29. Selman W. R., Ricci A. J., Crumrine R. C., LaManna J. C., Ratcheson R. A., Lust W. D. The evolution of focal ischemic damage: a metabolic analysis. Metab Brain Dis. 1990 Mar;5(1):33–44. doi: 10.1007/BF00996976. [DOI] [PubMed] [Google Scholar]
  30. Sen S., Phillis J. W. alpha-Phenyl-tert-butyl-nitrone (PBN) attenuates hydroxyl radical production during ischemia-reperfusion injury of rat brain: an EPR study. Free Radic Res Commun. 1993;19(4):255–265. doi: 10.3109/10715769309056513. [DOI] [PubMed] [Google Scholar]
  31. Stadtman E. R., Oliver C. N. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem. 1991 Feb 5;266(4):2005–2008. [PubMed] [Google Scholar]
  32. Tamura A., Graham D. I., McCulloch J., Teasdale G. M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):53–60. doi: 10.1038/jcbfm.1981.6. [DOI] [PubMed] [Google Scholar]
  33. Welsh F. A., Marcy V. R., Sims R. E. NADH fluorescence and regional energy metabolites during focal ischemia and reperfusion of rat brain. J Cereb Blood Flow Metab. 1991 May;11(3):459–465. doi: 10.1038/jcbfm.1991.88. [DOI] [PubMed] [Google Scholar]
  34. Zhao Q., Memezawa H., Smith M. L., Siesjö B. K. Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res. 1994 Jun 27;649(1-2):253–259. doi: 10.1016/0006-8993(94)91071-5. [DOI] [PubMed] [Google Scholar]
  35. Zhao Q., Pahlmark K., Smith M. L., Siesjö B. K. Delayed treatment with the spin trap alpha-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand. 1994 Nov;152(3):349–350. doi: 10.1111/j.1748-1716.1994.tb09816.x. [DOI] [PubMed] [Google Scholar]
  36. Zini I., Tomasi A., Grimaldi R., Vannini V., Agnati L. F. Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci Lett. 1992 Apr 27;138(2):279–282. doi: 10.1016/0304-3940(92)90933-x. [DOI] [PubMed] [Google Scholar]
  37. del Zoppo G. J. Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev. 1994 Spring;6(1):47–96. [PubMed] [Google Scholar]
  38. del Zoppo G. J., Schmid-Schönbein G. W., Mori E., Copeland B. R., Chang C. M. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991 Oct;22(10):1276–1283. doi: 10.1161/01.str.22.10.1276. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES