Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 23;70(Pt 9):o1041–o1042. doi: 10.1107/S1600536814018194

Crystal structure of N-(1-allyl-3-chloro-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

Hakima Chicha a, El Mostapha Rakib a, Mohamed Chigr a,*, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC4186064  PMID: 25309215

Abstract

The 3-chloro-1H-indazole system in the title mol­ecule, C17H16ClN3O2S, is almost planar, with the largest deviation from the mean plane being 0.029 (2) Å for one of the N atoms. This system is nearly perpendicular to the allyl chain, as indicated by the C—C—N—N torsion angle of −90.1 (6)° between them. The allyl group is split into two fragments, the major component has a site occupancy of 0.579 (7). The indazole system makes a dihedral angle of 47.53 (10)° with the plane through the benzene ring. In the crystal, mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Keywords: crystal structure, benzene­sulfonamides, biological activity, hydrogen bonding

Related literature  

For the biological activity of sulfonamides, see: El-Sayed, et al. (2011); Mustafa et al. (2012); Scozzafava et al. (2003). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2014).graphic file with name e-70-o1041-scheme1.jpg

Experimental  

Crystal data  

  • C17H16ClN3O2S

  • M r = 361.84

  • Orthorhombic, Inline graphic

  • a = 8.1736 (12) Å

  • b = 22.504 (4) Å

  • c = 19.279 (3) Å

  • V = 3546.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.31 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.693, T max = 0.747

  • 18362 measured reflections

  • 3621 independent reflections

  • 2327 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.123

  • S = 1.02

  • 3621 reflections

  • 225 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814018194/tk5336sup1.cif

e-70-o1041-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018194/tk5336Isup2.hkl

e-70-o1041-Isup2.hkl (177.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018194/tk5336Isup3.cml

. DOI: 10.1107/S1600536814018194/tk5336fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

N . DOI: 10.1107/S1600536814018194/tk5336fig2.tif

Crystal structure of the title compound, showing mol­ecules linked by N3–H3N⋯O1, C5–H5⋯O1 and C4–H4⋯O2 hydrogen bonds between mol­ecules.

CCDC reference: 1018456

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.81 2.39 3.140 (3) 155
C4—H4⋯O2ii 0.93 2.44 3.364 (3) 171
C5—H5⋯O1i 0.93 2.58 3.282 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

supplementary crystallographic information

S1. Chemical context

S2. Structural commentary

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (El-Sayed et al., 2011; Mustafa et al., 2012; Scozzafava et al., 2003). Previously, we identified a series of indazoles bearing a sulfonamide moiety with good anti­proliferative activities (Abbassi et al., 2012; Abbassi, et al. 2013; Chicha et al., 2014).

The molecule of the title compound is built up from two fused five- and six-membered rings (N1 N2 C2 to C8) almost coplanar, with a maximum deviation of 0.029 (2) Å for N1 atom (Fig. 1). The dihedral angle between the indazol system and the plane through the benzene ring (C9 to C14) is of 47.53 (10)°. The allyl chain is perpendicular to the fused rings system as indicated by the C(16A)—C(15)—N(1)—N(2) torsion angle of -90.1 (6)°.

The cohesion of the crystal structure is ensured by N3–H3N···O1, C5–H5···O1 and C4–H4···O2 hydrogen bonds between molecules to form a three-dimensional network as shown in Fig. 2 and Table 1.

S3. Supra­molecular features

S4. Database survey

S5. Synthesis and crystallization

A mixture of 1-allyl-3-chloro-5-nitro­indazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methyl­benzene­sulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate:hexane 2:8). The title compound was recrystallized from its ethanol solution. Yield: 65%, M.pt: 394 K.

S6. Refinement

The reflections (002), (110), (021) and (020), probably affected by the beam stop, were removed from the final refinement. The refinement of the model, i.e. disordered allyl group, required constraints on the distance C15—C16—C17 and atomic displacements of allyl group. The H atoms were located in a difference map and treated as riding with C—H = 0.96 Å, C—H = 0.97 Å, C—H = 0.93 Å, and N—H = 0.81 Å for methyl, methyl­ene, aromatic CH and NH, respectively, and with Uiso(H) = 1.2 Ueq (methyl­ene, aromatic, NH) and Uiso(H) = 1.5 Ueq for methyl.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Crystal structure of the title compound, showing molecules linked by N3–H3N···O1, C5–H5···O1 and C4–H4···O2 hydrogen bonds between molecules.

Crystal data

C17H16ClN3O2S Dx = 1.355 Mg m3
Mr = 361.84 Melting point: 394 K
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 3621 reflections
a = 8.1736 (12) Å θ = 2.8–26.4°
b = 22.504 (4) Å µ = 0.35 mm1
c = 19.279 (3) Å T = 296 K
V = 3546.2 (10) Å3 Block, colourless
Z = 8 0.40 × 0.36 × 0.31 mm
F(000) = 1504

Data collection

Bruker X8 APEX diffractometer 3621 independent reflections
Radiation source: fine-focus sealed tube 2327 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
φ and ω scans θmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −9→10
Tmin = 0.693, Tmax = 0.747 k = −28→26
18362 measured reflections l = −22→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.7269P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3621 reflections Δρmax = 0.26 e Å3
225 parameters Δρmin = −0.26 e Å3
4 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0026 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.8260 (3) −0.03622 (11) 0.08181 (12) 0.0516 (6)
C2 0.8328 (3) 0.02554 (10) 0.06992 (11) 0.0427 (5)
C3 0.9964 (3) 0.04008 (11) 0.08496 (12) 0.0481 (6)
C4 1.0542 (3) 0.09849 (12) 0.07951 (13) 0.0570 (7)
H4 1.1624 0.1081 0.0892 0.068*
C5 0.9446 (3) 0.14053 (11) 0.05939 (13) 0.0532 (6)
H5 0.9793 0.1798 0.0558 0.064*
C6 0.7806 (3) 0.12692 (10) 0.04380 (11) 0.0444 (5)
C7 0.7233 (3) 0.06945 (10) 0.04817 (11) 0.0445 (6)
H7 0.6156 0.0602 0.0370 0.053*
C8 0.6222 (3) 0.22836 (11) 0.14802 (13) 0.0503 (6)
C9 0.6865 (3) 0.19241 (12) 0.19974 (14) 0.0628 (7)
H9 0.6795 0.1513 0.1961 0.075*
C10 0.7609 (4) 0.21805 (15) 0.25663 (15) 0.0741 (8)
H10 0.8063 0.1939 0.2907 0.089*
C11 0.7691 (4) 0.27915 (16) 0.26378 (16) 0.0756 (9)
C12 0.7046 (4) 0.31338 (14) 0.21193 (19) 0.0830 (10)
H12 0.7097 0.3545 0.2162 0.100*
C13 0.6321 (3) 0.28965 (12) 0.15350 (16) 0.0669 (8)
H13 0.5911 0.3141 0.1187 0.080*
C14 0.8448 (5) 0.3061 (2) 0.32849 (19) 0.1179 (15)
H14A 0.8818 0.2750 0.3586 0.177*
H14B 0.7645 0.3298 0.3521 0.177*
H14C 0.9358 0.3307 0.3156 0.177*
C15 1.2392 (3) −0.01960 (14) 0.12649 (15) 0.0755 (9)
H15A 1.3111 0.0081 0.1029 0.091*
H15B 1.2767 −0.0597 0.1172 0.091*
C16A 1.2386 (8) −0.0080 (6) 0.2012 (2) 0.0902 (19) 0.579 (7)
H16A 1.1739 −0.0334 0.2276 0.108* 0.579 (7)
C17A 1.3154 (12) 0.0324 (4) 0.2354 (5) 0.120 (2) 0.579 (7)
H17A 1.3823 0.0593 0.2122 0.144* 0.579 (7)
H17B 1.3039 0.0348 0.2833 0.144* 0.579 (7)
C16B 1.2961 (13) −0.0101 (9) 0.1975 (3) 0.0902 (19) 0.421 (7)
H16B 1.3979 −0.0238 0.2119 0.108* 0.421 (7)
C17B 1.2008 (15) 0.0178 (6) 0.2393 (6) 0.120 (2) 0.421 (7)
H17C 1.0994 0.0312 0.2241 0.144* 0.421 (7)
H17D 1.2333 0.0246 0.2849 0.144* 0.421 (7)
N1 1.0722 (2) −0.01207 (10) 0.10293 (11) 0.0576 (6)
N2 0.9665 (3) −0.05905 (9) 0.10217 (11) 0.0593 (6)
N3 0.6711 (2) 0.17352 (9) 0.02206 (10) 0.0510 (5)
H3N 0.7140 0.2027 0.0059 0.061*
O1 0.4373 (2) 0.24036 (8) 0.03876 (10) 0.0743 (6)
O2 0.44423 (19) 0.14312 (8) 0.09892 (10) 0.0613 (5)
S1 0.52632 (7) 0.19552 (3) 0.07563 (3) 0.0508 (2)
Cl1 0.65782 (9) −0.08137 (3) 0.07145 (5) 0.0776 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0444 (14) 0.0511 (15) 0.0591 (16) 0.0037 (11) −0.0066 (12) −0.0015 (11)
C2 0.0360 (12) 0.0497 (14) 0.0424 (12) 0.0002 (10) −0.0015 (10) −0.0025 (10)
C3 0.0361 (13) 0.0595 (15) 0.0486 (14) 0.0021 (11) −0.0009 (10) −0.0027 (11)
C4 0.0324 (13) 0.0728 (18) 0.0659 (17) −0.0071 (12) −0.0022 (12) −0.0017 (13)
C5 0.0449 (14) 0.0543 (15) 0.0605 (15) −0.0097 (12) 0.0030 (12) 0.0020 (11)
C6 0.0380 (13) 0.0514 (14) 0.0437 (13) −0.0018 (11) 0.0008 (10) 0.0035 (10)
C7 0.0326 (12) 0.0537 (15) 0.0471 (13) −0.0013 (10) −0.0013 (10) −0.0012 (10)
C8 0.0372 (13) 0.0534 (16) 0.0603 (16) −0.0031 (11) 0.0080 (11) 0.0041 (11)
C9 0.0652 (18) 0.0606 (17) 0.0625 (17) −0.0024 (14) 0.0008 (14) 0.0087 (13)
C10 0.0681 (19) 0.099 (2) 0.0556 (17) −0.0019 (18) 0.0005 (15) 0.0061 (16)
C11 0.0620 (18) 0.102 (3) 0.0632 (19) −0.0170 (18) 0.0130 (16) −0.0167 (17)
C12 0.094 (2) 0.064 (2) 0.090 (2) −0.0176 (18) 0.006 (2) −0.0170 (17)
C13 0.0691 (18) 0.0497 (16) 0.082 (2) −0.0021 (14) 0.0029 (16) 0.0027 (13)
C14 0.113 (3) 0.162 (4) 0.078 (2) −0.028 (3) 0.007 (2) −0.041 (2)
C15 0.0471 (15) 0.094 (2) 0.086 (2) 0.0195 (15) −0.0203 (15) −0.0028 (16)
C16A 0.051 (5) 0.108 (3) 0.112 (3) 0.026 (6) −0.053 (3) −0.003 (3)
C17A 0.125 (7) 0.150 (6) 0.085 (4) −0.008 (6) −0.019 (5) −0.002 (4)
C16B 0.051 (5) 0.108 (3) 0.112 (3) 0.026 (6) −0.053 (3) −0.003 (3)
C17B 0.125 (7) 0.150 (6) 0.085 (4) −0.008 (6) −0.019 (5) −0.002 (4)
N1 0.0400 (11) 0.0674 (15) 0.0655 (14) 0.0090 (11) −0.0081 (10) −0.0028 (11)
N2 0.0556 (13) 0.0575 (13) 0.0649 (14) 0.0090 (12) −0.0079 (11) −0.0014 (10)
N3 0.0487 (12) 0.0504 (12) 0.0540 (12) −0.0004 (9) 0.0008 (10) 0.0125 (9)
O1 0.0602 (12) 0.0682 (12) 0.0945 (14) 0.0180 (10) −0.0207 (11) 0.0137 (10)
O2 0.0408 (9) 0.0583 (11) 0.0848 (12) −0.0107 (8) 0.0069 (9) 0.0003 (9)
S1 0.0372 (3) 0.0478 (4) 0.0673 (4) 0.0015 (3) −0.0050 (3) 0.0078 (3)
Cl1 0.0639 (5) 0.0553 (4) 0.1137 (7) −0.0094 (3) −0.0186 (4) 0.0066 (4)

Geometric parameters (Å, º)

C1—N2 1.318 (3) C12—H12 0.9300
C1—C2 1.410 (3) C13—H13 0.9300
C1—Cl1 1.721 (3) C14—H14A 0.9600
C2—C7 1.398 (3) C14—H14B 0.9600
C2—C3 1.407 (3) C14—H14C 0.9600
C3—N1 1.371 (3) C15—N1 1.448 (3)
C3—C4 1.400 (3) C15—C16B 1.461 (2)
C4—C5 1.359 (3) C15—C16A 1.464 (2)
C4—H4 0.9300 C15—H15A 0.9700
C5—C6 1.407 (3) C15—H15B 0.9700
C5—H5 0.9300 C16A—C17A 1.286 (2)
C6—C7 1.378 (3) C16A—H16A 0.9300
C6—N3 1.441 (3) C17A—H17A 0.9300
C7—H7 0.9300 C17A—H17B 0.9300
C8—C13 1.386 (3) C16B—C17B 1.286 (2)
C8—C9 1.387 (3) C16B—H16B 0.9300
C8—S1 1.763 (3) C17B—H17C 0.9300
C9—C10 1.381 (4) C17B—H17D 0.9300
C9—H9 0.9300 N1—N2 1.366 (3)
C10—C11 1.384 (4) N3—S1 1.647 (2)
C10—H10 0.9300 N3—H3N 0.8060
C11—C12 1.368 (5) O1—S1 1.4329 (18)
C11—C14 1.519 (4) O2—S1 1.4291 (17)
C12—C13 1.380 (4)
N2—C1—C2 113.4 (2) C11—C14—H14B 109.5
N2—C1—Cl1 120.0 (2) H14A—C14—H14B 109.5
C2—C1—Cl1 126.52 (19) C11—C14—H14C 109.5
C7—C2—C3 120.4 (2) H14A—C14—H14C 109.5
C7—C2—C1 136.1 (2) H14B—C14—H14C 109.5
C3—C2—C1 103.5 (2) N1—C15—C16B 125.2 (5)
N1—C3—C4 132.1 (2) N1—C15—C16A 106.5 (3)
N1—C3—C2 106.4 (2) C16B—C15—C16A 18.8 (5)
C4—C3—C2 121.5 (2) N1—C15—H15A 110.4
C5—C4—C3 116.9 (2) C16B—C15—H15A 98.8
C5—C4—H4 121.5 C16A—C15—H15A 110.4
C3—C4—H4 121.5 N1—C15—H15B 110.4
C4—C5—C6 122.5 (2) C16B—C15—H15B 102.0
C4—C5—H5 118.8 C16A—C15—H15B 110.4
C6—C5—H5 118.8 H15A—C15—H15B 108.6
C7—C6—C5 121.0 (2) C17A—C16A—C15 128.9 (8)
C7—C6—N3 119.3 (2) C17A—C16A—H16A 115.5
C5—C6—N3 119.7 (2) C15—C16A—H16A 115.5
C6—C7—C2 117.6 (2) C16A—C17A—H17A 120.0
C6—C7—H7 121.2 C16A—C17A—H17B 120.0
C2—C7—H7 121.2 H17A—C17A—H17B 120.0
C13—C8—C9 120.2 (3) C17B—C16B—C15 117.8 (10)
C13—C8—S1 120.3 (2) C17B—C16B—H16B 121.1
C9—C8—S1 119.5 (2) C15—C16B—H16B 121.1
C10—C9—C8 119.6 (3) C16B—C17B—H17C 120.0
C10—C9—H9 120.2 C16B—C17B—H17D 120.0
C8—C9—H9 120.2 H17C—C17B—H17D 120.0
C9—C10—C11 121.1 (3) N2—N1—C3 111.97 (18)
C9—C10—H10 119.5 N2—N1—C15 120.6 (2)
C11—C10—H10 119.5 C3—N1—C15 127.2 (2)
C12—C11—C10 117.9 (3) C1—N2—N1 104.6 (2)
C12—C11—C14 122.2 (3) C6—N3—S1 118.87 (15)
C10—C11—C14 119.9 (3) C6—N3—H3N 115.8
C11—C12—C13 123.0 (3) S1—N3—H3N 108.1
C11—C12—H12 118.5 O2—S1—O1 119.90 (11)
C13—C12—H12 118.5 O2—S1—N3 106.65 (10)
C12—C13—C8 118.2 (3) O1—S1—N3 105.41 (11)
C12—C13—H13 120.9 O2—S1—C8 107.81 (11)
C8—C13—H13 120.9 O1—S1—C8 108.85 (12)
C11—C14—H14A 109.5 N3—S1—C8 107.64 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3N···O1i 0.81 2.39 3.140 (3) 155
C4—H4···O2ii 0.93 2.44 3.364 (3) 171
C5—H5···O1i 0.93 2.58 3.282 (3) 132

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5336).

References

  1. Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. [DOI] [PubMed]
  2. Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181. [DOI] [PMC free article] [PubMed]
  5. El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539. [DOI] [PubMed]
  8. Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814018194/tk5336sup1.cif

e-70-o1041-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018194/tk5336Isup2.hkl

e-70-o1041-Isup2.hkl (177.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018194/tk5336Isup3.cml

. DOI: 10.1107/S1600536814018194/tk5336fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

N . DOI: 10.1107/S1600536814018194/tk5336fig2.tif

Crystal structure of the title compound, showing mol­ecules linked by N3–H3N⋯O1, C5–H5⋯O1 and C4–H4⋯O2 hydrogen bonds between mol­ecules.

CCDC reference: 1018456

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES