Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o917–o918. doi: 10.1107/S1600536814015633

Crystal structure of allyl­ammonium hydrogen succinate at 100 K

Błażej Dziuk a, Bartosz Zarychta a, Krzysztof Ejsmont a,*
PMCID: PMC4186065  PMID: 25309251

Abstract

The asymmetric unit of the title compound, C2H8N+·C4H5O4 , consists of two allyl­ammonium cations and two hydrogen succinate anions (Z′ = 2). One of the cations has a near-perfect syn-periplanar (cis) conformation with an N—C—C—C torsion angle of 0.4 (3)°, while the other is characterized by a gauche conformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C–CH2–CH2–C group [dihedral angles = 24.4 (2), 31.2 (2) and 40.4 (2)°], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2)°. In the crystal, there are two very short, near linear O—H⋯O hydrogen bonds between anions, with the H atoms shifted notably from the donor O towards the O⋯O midpoint. These O—H⋯O hydrogen bonds form helical chains along the [011] which are further linked to each other through N—H⋯O hydrogen bonds (involving all the available NH groups), forming layers lying parallel to (100).

Keywords: crystal structure, allyl­ammonium, succinate, hydrogen bonds

Related literature  

For other crystal structures of succinate salts with amines, see: Bhardwaj et al. (2013); Bruni et al. (2013); Khorasani & Fernandes (2012). For the characteristic structural motifs in ammonium di­carboxyl­ate salts, see: Kashino et al. (1998); Barnes & Weakley (2000); MacDonald et al. (2001); Vaidhyanathan et al. (2001, 2002); Saraswathi & Vijayan (2002); Ejsmont (2007). Salts of succinic acid and amines have strong N—H⋯O and O—H⋯O hydrogen bonds and are thus used as building blocks for the construction of supra­molecular structures, see: Khorasani et al. (2012); Lemmerer (2011). For hydrogen bonding, see: Steiner (2002). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-70-0o917-scheme1.jpg

Experimental  

Crystal data  

  • C3H8N+·C4H5O4

  • M r = 175.19

  • Triclinic, Inline graphic

  • a = 8.5649 (3) Å

  • b = 9.4364 (3) Å

  • c = 10.8051 (4) Å

  • α = 88.838 (3)°

  • β = 87.482 (3)°

  • γ = 82.843 (3)°

  • V = 865.55 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer

  • 5454 measured reflections

  • 3013 independent reflections

  • 2373 reflections with I > 2σI)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.093

  • S = 1.10

  • 3013 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814015633/bg2532sup1.cif

e-70-0o917-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015633/bg2532Isup2.hkl

e-70-0o917-Isup2.hkl (147.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015633/bg2532Isup3.cml

. DOI: 10.1107/S1600536814015633/bg2532fig1.tif

The mol­ecular structure of (I), showing 50% displacement ellipsoids. Hydrogen bonds are shown as dotted lines.

b . DOI: 10.1107/S1600536814015633/bg2532fig2.tif

Packing diagram of (I) viewed along the b axis, showing (sideways) the (100) 2D structure defined by the hydrogen-bonding network (dotted lines).

CCDC reference: 1012134

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O48 0.94 (2) 1.89 (2) 2.8275 (19) 174.4 (17)
N11—H11B⋯O32i 0.95 (2) 1.88 (2) 2.8107 (19) 166.9 (18)
N11—H11C⋯O41ii 0.90 (2) 1.95 (2) 2.844 (2) 172 (2)
N21—H21A⋯O32 0.95 (3) 2.28 (3) 2.972 (2) 128.5 (19)
N21—H21A⋯O47 0.95 (3) 2.21 (3) 2.994 (2) 138.7 (19)
N21—H21B⋯O42iii 0.93 (2) 1.86 (2) 2.786 (2) 169.2 (17)
N21—H21C⋯O38iv 0.92 (2) 1.86 (2) 2.7809 (19) 177 (2)
O37—H37⋯O41v 1.18 (3) 1.28 (3) 2.4510 (15) 180 (3)
O47—H47⋯O31 1.08 (3) 1.39 (3) 2.4707 (15) 176 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

S1. Comment

Crystal engineering is extremely fast growing area of experimental chemistry leading to new materials with controlled and understood nature. Hydrogen bonding plays an important role in organizing molecules, assembling them to create supramolecules and controlling their dimensions in one-, two- or three-dimensions (Khorasani et al., 2012). The adducts of succinic acid and amines have strong N—H···O and O—H···O hydrogen bonds, thus they can be used to align molecules in chosen directions, as building blocks for the construction of supramolecular structures. (Khorasani et al., 2012; Lemmerer, 2011).

There are three characteristic structural motifs in ammonium dicarboxylate salts: (i) linear chains of dicarboxylic acids formed by strong hydrogen bonds; (ii) dimers of dicarboxylic acid molecules; (iii) isolated oxalate monoanions or dianion units (for example: Kashino et al., 1998; Barnes & Weakley 2000; MacDonald et al., 2001; Vaidhyanathan et al., 2001, 2002; Saraswathi & Vijayan 2002; and Ejsmont, 2007).

The independent part of the unit cell of the title salt, (I), consists with two allyloammonium cations and two hydrogen succinate anions (Fig. 1). A geometry of amonium cations is normal (CSD; CONQUEST Version 1.16; Allen, 2002) and comparable with those found in other crystal structures which include this cation (Allen, 2002). The N11 cation has perfect syn-periplanar (cis) conformation with N11–C12–C13–C14 torsion angle of 0.4 (3)°, while N21 cataion is characterized by gauche conformation (the torsion angle N21–C22–C23—C24 amounts 102.5 (3)°). Three out of four carboxalic groups are twisted with respect to the central C–CH2–CH2–C group; the remaining one being rather co-planar.

In the crystal structure of (I), there are two linear or nearly linear O–H···O hydrogen bonds between the hydrogen succinate, which can be identified as a very strong interactions (Steiner, 2002). The O···O distances in these interactions are close to that observed for O–H···O hydrogen bonds formed between the monoanionic oxalate units in the structures of diethylammonium hydrogen oxalate (Ejsmont, 2007). These O–H···O hydrogen bonds forming helical chains along <011> direction. The allylammonium cations are linked to polianionic chains through the N–H···O hydrogen bonds (Table 2, Fig. 2).

S2. Experimental

Crystals of (I) were grown at room temperature by slow evaporation of an aqueous solution containing allylamine and succinatic acid in a 1:1 stoichiometric ratio.

S3. Refinement

The H atoms attached to atoms O and N were located in difference electron density maps and were freely refined with isotropic displacement factors [O–H = 1.08 (3) - 1.18 (3) and N–H = 0.90 (2) - 0.95 (2) Å]. The remaining H atoms were positioned geometrically and treated as riding on their parent C atoms, with C–H distances of 0.95 for idealized secondary CH2, 0.95 for CH and 0.99 Å for idealized terminal X=CH2 and with Uiso(H) = 1.2Ueq(C). Probably due to libration, the ending C23═C24 bond appears significantly shorter that its corresponding C13═C14 one.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% displacement ellipsoids. Hydrogen bonds are shown as dotted lines.

Fig. 2.

Fig. 2.

Packing diagram of (I) viewed along the b axis, showing (sideways) the (100) 2D structure defined by the hydrogen-bonding network (dotted lines).

Crystal data

C3H8N+·C4H5O4 Z = 4
Mr = 175.19 F(000) = 376
Triclinic, P1 Dx = 1.344 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5649 (3) Å Cell parameters from 5943 reflections
b = 9.4364 (3) Å θ = 2.9–26.0°
c = 10.8051 (4) Å µ = 0.11 mm1
α = 88.838 (3)° T = 100 K
β = 87.482 (3)° Prism, colourless
γ = 82.843 (3)° 0.30 × 0.20 × 0.15 mm
V = 865.55 (5) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer 2373 reflections with I > 2σI)
Radiation source: fine-focus sealed tube Rint = 0.014
Graphite monochromator θmax = 25.0°, θmin = 2.9°
ω–scan h = −10→10
5454 measured reflections k = −11→11
3013 independent reflections l = −8→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1223P] where P = (Fo2 + 2Fc2)/3
3013 reflections (Δ/σ)max < 0.001
249 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.22162 (17) 0.36564 (17) 0.68154 (14) 0.0143 (3)
H11A 0.240 (2) 0.444 (2) 0.7297 (18) 0.022 (5)*
H11B 0.263 (2) 0.387 (2) 0.601 (2) 0.026 (5)*
H11C 0.275 (3) 0.284 (2) 0.711 (2) 0.035 (6)*
C12 0.0522 (2) 0.34987 (19) 0.67065 (15) 0.0171 (4)
H12A 0.0440 0.2616 0.6284 0.021*
H12B 0.0041 0.4279 0.6199 0.021*
C13 −0.0375 (2) 0.34861 (19) 0.79193 (16) 0.0195 (4)
H13 −0.1441 0.3396 0.7890 0.023*
C14 0.0178 (2) 0.35885 (19) 0.90250 (16) 0.0213 (4)
H14A 0.1236 0.3681 0.9107 0.026*
H14B −0.0491 0.3569 0.9726 0.026*
N21 0.72616 (18) 0.81019 (17) 0.70187 (15) 0.0163 (3)
H21A 0.670 (3) 0.729 (3) 0.699 (2) 0.053 (7)*
H21B 0.675 (2) 0.880 (2) 0.7549 (18) 0.023 (5)*
H21C 0.734 (3) 0.847 (2) 0.623 (2) 0.037 (6)*
C22 0.8872 (2) 0.7596 (2) 0.74249 (19) 0.0266 (5)
H22A 0.9356 0.6839 0.6888 0.032*
H22B 0.8813 0.7213 0.8263 0.032*
C23 0.9854 (3) 0.8799 (3) 0.7381 (3) 0.0480 (7)
H23 1.0230 0.9037 0.6593 0.058*
C24 1.0244 (3) 0.9520 (3) 0.8213 (3) 0.0649 (9)
H24A 0.9915 0.9347 0.9028 0.078*
H24B 1.0869 1.0241 0.8033 0.078*
O31 0.56273 (14) 0.40484 (12) 0.67627 (10) 0.0164 (3)
O32 0.70239 (14) 0.54666 (12) 0.56148 (10) 0.0167 (3)
C33 0.64907 (19) 0.43020 (17) 0.58151 (15) 0.0129 (4)
C34 0.6844 (2) 0.31171 (17) 0.48796 (15) 0.0156 (4)
H34A 0.6139 0.3315 0.4202 0.019*
H34B 0.7911 0.3127 0.4543 0.019*
C35 0.6679 (2) 0.16362 (18) 0.53950 (16) 0.0195 (4)
H35A 0.7512 0.1369 0.5966 0.023*
H35B 0.5683 0.1670 0.5864 0.023*
C36 0.6745 (2) 0.04877 (18) 0.44309 (15) 0.0142 (4)
O37 0.60445 (14) 0.08573 (12) 0.34227 (10) 0.0178 (3)
H37 0.614 (3) −0.012 (3) 0.275 (2) 0.060 (7)*
O38 0.73921 (15) −0.07378 (12) 0.46355 (11) 0.0199 (3)
O41 0.62286 (14) 0.88262 (12) 1.20228 (10) 0.0168 (3)
O42 0.39008 (14) 0.97603 (12) 1.13231 (10) 0.0177 (3)
C43 0.5051 (2) 0.88300 (18) 1.13021 (14) 0.0135 (4)
C44 0.5199 (2) 0.76104 (17) 1.04077 (15) 0.0153 (4)
H44A 0.5367 0.6717 1.0871 0.018*
H44B 0.6118 0.7668 0.9860 0.018*
C45 0.3767 (2) 0.75980 (18) 0.96308 (15) 0.0159 (4)
H45A 0.2854 0.7521 1.0181 0.019*
H45B 0.3586 0.8503 0.9186 0.019*
C46 0.3904 (2) 0.64079 (18) 0.87107 (15) 0.0145 (4)
O47 0.53341 (14) 0.60086 (13) 0.82691 (11) 0.0182 (3)
H47 0.543 (3) 0.518 (3) 0.758 (3) 0.084 (10)*
O48 0.27396 (14) 0.58861 (13) 0.83964 (11) 0.0193 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0163 (8) 0.0133 (8) 0.0138 (8) −0.0028 (6) −0.0011 (6) −0.0018 (6)
C12 0.0158 (9) 0.0179 (9) 0.0181 (9) −0.0025 (7) −0.0045 (7) −0.0022 (7)
C13 0.0149 (9) 0.0204 (10) 0.0235 (10) −0.0042 (7) 0.0008 (8) −0.0010 (8)
C14 0.0201 (10) 0.0238 (10) 0.0211 (10) −0.0081 (8) 0.0034 (8) 0.0000 (8)
N21 0.0194 (8) 0.0115 (8) 0.0177 (8) −0.0008 (7) −0.0016 (7) −0.0008 (7)
C22 0.0207 (10) 0.0257 (11) 0.0321 (11) 0.0027 (8) −0.0028 (8) 0.0018 (9)
C23 0.0229 (12) 0.0636 (17) 0.0608 (16) −0.0184 (12) 0.0116 (11) −0.0269 (14)
C24 0.0543 (18) 0.0384 (16) 0.104 (2) −0.0198 (13) 0.0227 (17) −0.0188 (16)
O31 0.0208 (7) 0.0143 (6) 0.0147 (6) −0.0052 (5) 0.0034 (5) −0.0038 (5)
O32 0.0240 (7) 0.0115 (6) 0.0155 (6) −0.0061 (5) −0.0002 (5) −0.0009 (5)
C33 0.0129 (8) 0.0136 (9) 0.0125 (8) −0.0008 (7) −0.0043 (7) −0.0006 (7)
C34 0.0190 (9) 0.0133 (9) 0.0146 (9) −0.0026 (7) 0.0022 (7) −0.0022 (7)
C35 0.0311 (11) 0.0140 (9) 0.0136 (9) −0.0027 (8) −0.0036 (8) −0.0015 (7)
C36 0.0150 (9) 0.0144 (9) 0.0137 (9) −0.0042 (7) 0.0015 (7) −0.0004 (7)
O37 0.0251 (7) 0.0123 (6) 0.0161 (6) 0.0000 (5) −0.0060 (5) −0.0037 (5)
O38 0.0294 (7) 0.0124 (6) 0.0169 (6) 0.0024 (5) −0.0022 (5) −0.0007 (5)
O41 0.0213 (7) 0.0137 (6) 0.0158 (6) −0.0016 (5) −0.0057 (5) −0.0031 (5)
O42 0.0197 (7) 0.0157 (6) 0.0174 (6) 0.0010 (5) −0.0019 (5) −0.0045 (5)
C43 0.0186 (9) 0.0118 (8) 0.0109 (8) −0.0061 (7) 0.0017 (7) 0.0009 (7)
C44 0.0215 (9) 0.0108 (8) 0.0136 (8) −0.0021 (7) −0.0013 (7) −0.0007 (7)
C45 0.0177 (9) 0.0162 (9) 0.0147 (9) −0.0053 (7) 0.0015 (7) −0.0037 (7)
C46 0.0199 (9) 0.0123 (9) 0.0118 (8) −0.0041 (7) −0.0002 (7) 0.0020 (7)
O47 0.0195 (7) 0.0168 (7) 0.0188 (6) −0.0047 (5) 0.0026 (5) −0.0060 (5)
O48 0.0207 (7) 0.0194 (7) 0.0196 (6) −0.0087 (5) −0.0007 (5) −0.0051 (5)

Geometric parameters (Å, º)

N11—C12 1.487 (2) O32—C33 1.253 (2)
N11—H11A 0.94 (2) C33—C34 1.516 (2)
N11—H11B 0.95 (2) C34—C35 1.515 (2)
N11—H11C 0.90 (2) C34—H34A 0.9700
C12—C13 1.490 (2) C34—H34B 0.9700
C12—H12A 0.9700 C35—C36 1.513 (2)
C12—H12B 0.9700 C35—H35A 0.9700
C13—C14 1.314 (2) C35—H35B 0.9700
C13—H13 0.9300 C36—O38 1.239 (2)
C14—H14A 0.9300 C36—O37 1.288 (2)
C14—H14B 0.9300 O37—H37 1.18 (3)
N21—C22 1.484 (2) O41—C43 1.301 (2)
N21—H21A 0.95 (3) O42—C43 1.235 (2)
N21—H21B 0.93 (2) C43—C44 1.508 (2)
N21—H21C 0.92 (2) C44—C45 1.518 (2)
C22—C23 1.494 (3) C44—H44A 0.9700
C22—H22A 0.9700 C44—H44B 0.9700
C22—H22B 0.9700 C45—C46 1.505 (2)
C23—C24 1.220 (4) C45—H45A 0.9700
C23—H23 0.9300 C45—H45B 0.9700
C24—H24A 0.9300 C46—O48 1.230 (2)
C24—H24B 0.9300 C46—O47 1.308 (2)
O31—C33 1.273 (2) O47—H47 1.08 (3)
O31—H47 1.39 (3)
C12—N11—H11A 113.9 (12) O32—C33—C34 119.48 (14)
C12—N11—H11B 107.5 (12) O31—C33—C34 116.77 (14)
H11A—N11—H11B 104.3 (16) C35—C34—C33 114.54 (14)
C12—N11—H11C 110.7 (14) C35—C34—H34A 108.6
H11A—N11—H11C 110.4 (17) C33—C34—H34A 108.6
H11B—N11—H11C 109.9 (18) C35—C34—H34B 108.6
N11—C12—C13 113.82 (14) C33—C34—H34B 108.6
N11—C12—H12A 108.8 H34A—C34—H34B 107.6
C13—C12—H12A 108.8 C36—C35—C34 114.80 (14)
N11—C12—H12B 108.8 C36—C35—H35A 108.6
C13—C12—H12B 108.8 C34—C35—H35A 108.6
H12A—C12—H12B 107.7 C36—C35—H35B 108.6
C14—C13—C12 127.08 (17) C34—C35—H35B 108.6
C14—C13—H13 116.5 H35A—C35—H35B 107.5
C12—C13—H13 116.5 O38—C36—O37 123.12 (15)
C13—C14—H14A 120.0 O38—C36—C35 121.04 (15)
C13—C14—H14B 120.0 O37—C36—C35 115.80 (15)
H14A—C14—H14B 120.0 C36—O37—H37 110.1 (12)
C22—N21—H21A 108.0 (14) O42—C43—O41 123.53 (15)
C22—N21—H21B 111.4 (12) O42—C43—C44 121.67 (15)
H21A—N21—H21B 111.1 (19) O41—C43—C44 114.79 (14)
C22—N21—H21C 108.6 (14) C43—C44—C45 113.51 (14)
H21A—N21—H21C 108 (2) C43—C44—H44A 108.9
H21B—N21—H21C 110.0 (18) C45—C44—H44A 108.9
N21—C22—C23 110.26 (17) C43—C44—H44B 108.9
N21—C22—H22A 109.6 C45—C44—H44B 108.9
C23—C22—H22A 109.6 H44A—C44—H44B 107.7
N21—C22—H22B 109.6 C46—C45—C44 114.39 (14)
C23—C22—H22B 109.6 C46—C45—H45A 108.7
H22A—C22—H22B 108.1 C44—C45—H45A 108.7
C24—C23—C22 130.4 (3) C46—C45—H45B 108.7
C24—C23—H23 114.8 C44—C45—H45B 108.7
C22—C23—H23 114.8 H45A—C45—H45B 107.6
C23—C24—H24A 120.0 O48—C46—O47 123.71 (15)
C23—C24—H24B 120.0 O48—C46—C45 121.43 (15)
H24A—C24—H24B 120.0 O47—C46—C45 114.85 (15)
C33—O31—H47 112.0 (12) C46—O47—H47 115.2 (16)
O32—C33—O31 123.73 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11A···O48 0.94 (2) 1.89 (2) 2.8275 (19) 174.4 (17)
N11—H11B···O32i 0.95 (2) 1.88 (2) 2.8107 (19) 166.9 (18)
N11—H11C···O41ii 0.90 (2) 1.95 (2) 2.844 (2) 172 (2)
N21—H21A···O32 0.95 (3) 2.28 (3) 2.972 (2) 128.5 (19)
N21—H21A···O47 0.95 (3) 2.21 (3) 2.994 (2) 138.7 (19)
N21—H21B···O42iii 0.93 (2) 1.86 (2) 2.786 (2) 169.2 (17)
N21—H21C···O38iv 0.92 (2) 1.86 (2) 2.7809 (19) 177 (2)
O37—H37···O41v 1.18 (3) 1.28 (3) 2.4510 (15) 180 (3)
O47—H47···O31 1.08 (3) 1.39 (3) 2.4707 (15) 176 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+2, −z+2; (iv) x, y+1, z; (v) x, y−1, z−1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2532).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Barnes, J. C. & Weakley, T. J. R. (2000). Acta Cryst. C56, e346–e347.
  3. Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273–1278. [DOI] [PubMed]
  4. Bruni, G., Maietta, M., Scotti, F., Maggi, L., Bini, M., Ferrari, S., Capsoni, D., Boiocchi, M., Berbenni, V., Milanese, C., Girella, A. & Marini, A. (2013). Acta Cryst. B69, 362–370. [DOI] [PubMed]
  5. Ejsmont, K. (2007). Acta Cryst. E63, o107–o109.
  6. Kashino, S., Taka, J., Yoshida, T., Kubozono, Y., Ishida, H. & Maeda, H. (1998). Acta Cryst. B54, 889–894.
  7. Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1204. [DOI] [PMC free article] [PubMed]
  8. Lemmerer, A. (2011). Cryst. Growth Des. 11, 583–593.
  9. MacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38.
  10. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  11. Saraswathi, N. T. & Vijayan, M. (2002). Acta Cryst. B58, 734–739. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  14. Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.
  15. Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814015633/bg2532sup1.cif

e-70-0o917-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015633/bg2532Isup2.hkl

e-70-0o917-Isup2.hkl (147.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814015633/bg2532Isup3.cml

. DOI: 10.1107/S1600536814015633/bg2532fig1.tif

The mol­ecular structure of (I), showing 50% displacement ellipsoids. Hydrogen bonds are shown as dotted lines.

b . DOI: 10.1107/S1600536814015633/bg2532fig2.tif

Packing diagram of (I) viewed along the b axis, showing (sideways) the (100) 2D structure defined by the hydrogen-bonding network (dotted lines).

CCDC reference: 1012134

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES