Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 30;70(Pt 9):o1067–o1068. doi: 10.1107/S1600536814019217

Crystal structure of 5-chloro-3-cyclo­hexyl­sulfinyl-2,4,6-trimethyl-1-benzo­furan

Hong Dae Choi a, Uk Lee b,*
PMCID: PMC4186066  PMID: 25309229

Abstract

In the title compound, C17H21ClO2S, the cyclo­hexyl ring adopts a chair conformation with the C—S bond in an equatorial orientation. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯π hydrogen bonds and a Cl⋯π [3.594 (2) Å] contact into chains along the a-axis direction.

Keywords: crystal structure, benzo­furan, cyclo­hex­yl, C—H⋯O hydrogen bonds, C—H⋯π inter­actions

Related literature  

For the biological activity of benzo­furan compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Khan et al. (2005); Ono et al. (2002). For natural products with a benzo­furan ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material 5-chloro-3-cyclo­hexyl­sulfanyl-2,4,6-trimethyl-1-benzo­furan, see: Choi et al. (1999). For a related structure, see: Choi et al. (2011).graphic file with name e-70-o1067-scheme1.jpg

Experimental  

Crystal data  

  • C17H21ClO2S

  • M r = 324.85

  • Triclinic, Inline graphic

  • a = 5.8612 (1) Å

  • b = 11.6832 (2) Å

  • c = 12.6432 (2) Å

  • α = 65.292 (1)°

  • β = 85.902 (1)°

  • γ = 83.229 (1)°

  • V = 780.79 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 K

  • 0.31 × 0.24 × 0.23 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.892, T max = 0.917

  • 13925 measured reflections

  • 3588 independent reflections

  • 3221 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.102

  • S = 1.03

  • 3588 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814019217/hb7277sup1.cif

e-70-o1067-sup1.cif (420.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019217/hb7277Isup2.hkl

e-70-o1067-Isup2.hkl (175.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019217/hb7277Isup3.cml

. DOI: 10.1107/S1600536814019217/hb7277fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

x y z x y z . DOI: 10.1107/S1600536814019217/hb7277fig2.tif

A view of the C—H⋯O, C—H⋯π and C—Cl⋯π inter­actions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z.]

CCDC reference: 1021106

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.98 2.53 3.438 (2) 154
C12—H12⋯O2i 1.00 2.39 3.3072 (19) 152
C11—H11b⋯Cg2i 0.98 2.83 3.533 (2) 129

Symmetry code: (i) Inline graphic.

Acknowledgments

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

supplementary crystallographic information

S1. Comment

Benzofuran compounds show significant pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al. 2009, Galal et al., 2009, Khan et al. , 2005), and inhibitor of β-amyloid aggregation (Howlett et al., 1999, Ono et al., 2002). These many benzofurans occur in a great number of natural products (Akgul & Anil, 2003, Soekamto et al., 2003). As a part of our ongoing project of 5-chloro-3-cyclohexylsulfinyl-1-benzofuran derivatives containing methyl substituent in 2-position (Choi et al., 2011), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.014 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form and the arylsulfinyl moiety is positioned equatorially relative to the cyclohexyl group. In the crystal structure (Fig. 2), molecules are linked by C—H···O and C—H···π hydrogen bonds (Table 1, Cg2 is the centroid of the C2–C7 benzene ring). The molecules are stacked along the a-axis. A Cl···π contact between the chlorine atom and the furan ring of an adjacent molecule, with Cl1···Cg1i [3.594 (2) Å] (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring) is observed, compared to the van der Waals' separation of 3.55Å for these species.

S2. Experimental

The starting material 5-chloro-3-cyclohexylsulfanyl-2,4,6-trimethyl-1-benzofuran was prepared by literature method (Choi et al. 1999). 3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-chloro-3-cyclohexylsulfanyl-2,4,6-trimethyl-1-benzofuran (278 mg, 0.9 mmol) in dichloromethane (20 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution (2 × 10 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 77% (250 mg); m.p. 449–450 K; Rf = 0.61 (hexane–ethyl acetate, 2:1 v/v)]. Colourless blocks were prepared by slow evaporation of a solution of the title compound (26 mg) in ethyl acetate (10 ml) at room temperature.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Åfor methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq for methyl H atoms. The positions of methyl and methylene hydrogens were optimized using the SHELXL-97 command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the C—H···O, C—H···π and C—Cl···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]

Crystal data

C17H21ClO2S Z = 2
Mr = 324.85 F(000) = 344
Triclinic, P1 Dx = 1.382 Mg m3
Hall symbol: -P 1 Melting point = 417–416 K
a = 5.8612 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.6832 (2) Å Cell parameters from 5736 reflections
c = 12.6432 (2) Å θ = 3.1–27.5°
α = 65.292 (1)° µ = 0.38 mm1
β = 85.902 (1)° T = 173 K
γ = 83.229 (1)° Block, colourless
V = 780.79 (2) Å3 0.31 × 0.24 × 0.23 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3588 independent reflections
Radiation source: rotating anode 3221 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.024
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 1.8°
φ and ω scans h = −7→6
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −15→15
Tmin = 0.892, Tmax = 0.917 l = −16→16
13925 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: difference Fourier map
wR(F2) = 0.102 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.403P] where P = (Fo2 + 2Fc2)/3
3588 reflections (Δ/σ)max = 0.001
193 parameters Δρmax = 0.77 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.19 (s, 1H), 2.73 (s, 3H), 2.36 (s, 3H), 2.31 (s, 3H), 1.63-2.12 (m, 5H), 1.10-1.58 (m, 6H).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.27225 (7) 0.86676 (4) 0.02495 (4) 0.03675 (13)
S1 0.57459 (7) 0.47693 (4) 0.17641 (4) 0.02576 (12)
O1 0.47568 (19) 0.69596 (10) 0.34877 (10) 0.0266 (2)
O2 0.8052 (2) 0.41466 (12) 0.22085 (12) 0.0382 (3)
C1 0.4841 (3) 0.58674 (14) 0.23789 (13) 0.0218 (3)
C2 0.2864 (2) 0.68140 (14) 0.20410 (13) 0.0213 (3)
C3 0.1136 (3) 0.71923 (14) 0.12166 (13) 0.0225 (3)
C4 −0.0488 (3) 0.81617 (15) 0.12320 (14) 0.0257 (3)
C5 −0.0466 (3) 0.87677 (14) 0.19854 (15) 0.0282 (3)
C6 0.1294 (3) 0.83926 (15) 0.27712 (15) 0.0277 (3)
H6 0.1388 0.8783 0.3290 0.033*
C7 0.2904 (3) 0.74323 (14) 0.27712 (13) 0.0238 (3)
C8 0.5900 (3) 0.60035 (14) 0.32321 (14) 0.0243 (3)
C9 0.1048 (3) 0.66135 (16) 0.03624 (14) 0.0283 (3)
H9A −0.0059 0.5977 0.0645 0.042*
H9B 0.2574 0.6211 0.0279 0.042*
H9C 0.0572 0.7275 −0.0395 0.042*
C10 −0.2283 (3) 0.98104 (17) 0.19422 (18) 0.0377 (4)
H10A −0.1957 1.0125 0.2517 0.056*
H10B −0.3792 0.9481 0.2119 0.056*
H10C −0.2281 1.0503 0.1162 0.056*
C11 0.7959 (3) 0.53609 (17) 0.39374 (15) 0.0318 (4)
H11A 0.7481 0.4858 0.4744 0.048*
H11B 0.8933 0.5996 0.3919 0.048*
H11C 0.8826 0.4803 0.3616 0.048*
C12 0.3682 (3) 0.36179 (14) 0.25301 (13) 0.0220 (3)
H12 0.2101 0.4071 0.2406 0.026*
C16 0.2432 (4) 0.19538 (17) 0.44265 (15) 0.0383 (4)
H16A 0.2776 0.1507 0.5265 0.046*
H16B 0.0837 0.2361 0.4357 0.046*
C17 0.4088 (3) 0.29673 (16) 0.38293 (14) 0.0318 (4)
H17A 0.3861 0.3601 0.4166 0.038*
H17B 0.5691 0.2573 0.3966 0.038*
C13 0.3866 (3) 0.26742 (15) 0.19771 (14) 0.0274 (3)
H13A 0.3500 0.3125 0.1142 0.033*
H13B 0.5459 0.2267 0.2036 0.033*
C14 0.2215 (3) 0.16667 (16) 0.25851 (15) 0.0325 (4)
H14A 0.0614 0.2066 0.2458 0.039*
H14B 0.2415 0.1037 0.2243 0.039*
C15 0.2635 (4) 0.10016 (16) 0.38823 (16) 0.0382 (4)
H15A 0.4190 0.0539 0.4013 0.046*
H15B 0.1500 0.0378 0.4260 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0255 (2) 0.0385 (2) 0.0353 (2) 0.00422 (17) −0.00709 (17) −0.00539 (18)
S1 0.0211 (2) 0.0256 (2) 0.0315 (2) −0.00217 (14) 0.00493 (15) −0.01365 (16)
O1 0.0263 (6) 0.0269 (6) 0.0297 (6) −0.0042 (4) −0.0037 (5) −0.0137 (5)
O2 0.0201 (6) 0.0393 (7) 0.0566 (8) 0.0026 (5) 0.0011 (5) −0.0231 (6)
C1 0.0180 (7) 0.0213 (7) 0.0255 (7) −0.0026 (5) 0.0000 (5) −0.0088 (6)
C2 0.0181 (7) 0.0201 (7) 0.0245 (7) −0.0038 (5) 0.0022 (6) −0.0078 (6)
C3 0.0203 (7) 0.0218 (7) 0.0225 (7) −0.0044 (6) 0.0019 (6) −0.0060 (6)
C4 0.0195 (7) 0.0243 (7) 0.0259 (8) −0.0019 (6) −0.0001 (6) −0.0033 (6)
C5 0.0256 (8) 0.0198 (7) 0.0330 (8) −0.0020 (6) 0.0059 (6) −0.0057 (6)
C6 0.0308 (8) 0.0225 (7) 0.0319 (8) −0.0057 (6) 0.0049 (7) −0.0133 (6)
C7 0.0227 (7) 0.0226 (7) 0.0258 (7) −0.0049 (6) 0.0002 (6) −0.0092 (6)
C8 0.0209 (7) 0.0231 (7) 0.0283 (8) −0.0044 (6) 0.0001 (6) −0.0096 (6)
C9 0.0266 (8) 0.0322 (8) 0.0259 (8) −0.0018 (6) −0.0032 (6) −0.0116 (7)
C10 0.0320 (9) 0.0264 (8) 0.0490 (11) 0.0030 (7) 0.0068 (8) −0.0128 (8)
C11 0.0247 (8) 0.0352 (9) 0.0323 (9) −0.0022 (7) −0.0074 (7) −0.0100 (7)
C12 0.0192 (7) 0.0222 (7) 0.0247 (7) −0.0009 (5) 0.0002 (5) −0.0102 (6)
C16 0.0529 (12) 0.0331 (9) 0.0266 (9) −0.0095 (8) 0.0087 (8) −0.0101 (7)
C17 0.0410 (10) 0.0318 (9) 0.0244 (8) −0.0058 (7) −0.0009 (7) −0.0128 (7)
C13 0.0326 (9) 0.0262 (8) 0.0256 (8) −0.0027 (6) 0.0008 (6) −0.0130 (6)
C14 0.0376 (9) 0.0267 (8) 0.0358 (9) −0.0067 (7) 0.0010 (7) −0.0150 (7)
C15 0.0514 (12) 0.0244 (8) 0.0347 (9) −0.0078 (8) 0.0070 (8) −0.0084 (7)

Geometric parameters (Å, º)

Cl1—C4 1.7444 (16) C10—H10B 0.9800
S1—O2 1.4857 (12) C10—H10C 0.9800
S1—C1 1.7737 (16) C11—H11A 0.9800
S1—C12 1.8268 (16) C11—H11B 0.9800
O1—C7 1.3734 (19) C11—H11C 0.9800
O1—C8 1.3768 (19) C12—C17 1.517 (2)
C1—C8 1.355 (2) C12—C13 1.524 (2)
C1—C2 1.456 (2) C12—H12 1.0000
C2—C7 1.392 (2) C16—C15 1.524 (3)
C2—C3 1.403 (2) C16—C17 1.527 (3)
C3—C4 1.397 (2) C16—H16A 0.9900
C3—C9 1.501 (2) C16—H16B 0.9900
C4—C5 1.406 (2) C17—H17A 0.9900
C5—C6 1.385 (2) C17—H17B 0.9900
C5—C10 1.506 (2) C13—C14 1.523 (2)
C6—C7 1.378 (2) C13—H13A 0.9900
C6—H6 0.9500 C13—H13B 0.9900
C8—C11 1.482 (2) C14—C15 1.517 (2)
C9—H9A 0.9800 C14—H14A 0.9900
C9—H9B 0.9800 C14—H14B 0.9900
C9—H9C 0.9800 C15—H15A 0.9900
C10—H10A 0.9800 C15—H15B 0.9900
O2—S1—C1 108.70 (7) C8—C11—H11B 109.5
O2—S1—C12 106.89 (7) H11A—C11—H11B 109.5
C1—S1—C12 98.02 (7) C8—C11—H11C 109.5
C7—O1—C8 106.43 (12) H11A—C11—H11C 109.5
C8—C1—C2 107.18 (13) H11B—C11—H11C 109.5
C8—C1—S1 126.24 (12) C17—C12—C13 111.82 (13)
C2—C1—S1 126.56 (12) C17—C12—S1 112.03 (11)
C7—C2—C3 119.57 (14) C13—C12—S1 107.37 (10)
C7—C2—C1 104.35 (13) C17—C12—H12 108.5
C3—C2—C1 136.08 (14) C13—C12—H12 108.5
C4—C3—C2 115.37 (14) S1—C12—H12 108.5
C4—C3—C9 122.03 (14) C15—C16—C17 111.07 (15)
C2—C3—C9 122.59 (14) C15—C16—H16A 109.4
C3—C4—C5 124.84 (15) C17—C16—H16A 109.4
C3—C4—Cl1 118.17 (13) C15—C16—H16B 109.4
C5—C4—Cl1 116.99 (12) C17—C16—H16B 109.4
C6—C5—C4 118.38 (14) H16A—C16—H16B 108.0
C6—C5—C10 120.13 (16) C12—C17—C16 110.44 (14)
C4—C5—C10 121.48 (16) C12—C17—H17A 109.6
C7—C6—C5 117.47 (15) C16—C17—H17A 109.6
C7—C6—H6 121.3 C12—C17—H17B 109.6
C5—C6—H6 121.3 C16—C17—H17B 109.6
O1—C7—C6 124.62 (15) H17A—C17—H17B 108.1
O1—C7—C2 111.05 (13) C14—C13—C12 110.48 (13)
C6—C7—C2 124.33 (15) C14—C13—H13A 109.6
C1—C8—O1 110.96 (13) C12—C13—H13A 109.6
C1—C8—C11 134.70 (15) C14—C13—H13B 109.6
O1—C8—C11 114.33 (14) C12—C13—H13B 109.6
C3—C9—H9A 109.5 H13A—C13—H13B 108.1
C3—C9—H9B 109.5 C15—C14—C13 111.19 (15)
H9A—C9—H9B 109.5 C15—C14—H14A 109.4
C3—C9—H9C 109.5 C13—C14—H14A 109.4
H9A—C9—H9C 109.5 C15—C14—H14B 109.4
H9B—C9—H9C 109.5 C13—C14—H14B 109.4
C5—C10—H10A 109.5 H14A—C14—H14B 108.0
C5—C10—H10B 109.5 C14—C15—C16 110.65 (14)
H10A—C10—H10B 109.5 C14—C15—H15A 109.5
C5—C10—H10C 109.5 C16—C15—H15A 109.5
H10A—C10—H10C 109.5 C14—C15—H15B 109.5
H10B—C10—H10C 109.5 C16—C15—H15B 109.5
C8—C11—H11A 109.5 H15A—C15—H15B 108.1
O2—S1—C1—C8 −8.41 (17) C5—C6—C7—O1 179.49 (14)
C12—S1—C1—C8 102.54 (15) C5—C6—C7—C2 −0.4 (2)
O2—S1—C1—C2 169.73 (13) C3—C2—C7—O1 −177.97 (13)
C12—S1—C1—C2 −79.33 (14) C1—C2—C7—O1 1.59 (17)
C8—C1—C2—C7 −1.28 (17) C3—C2—C7—C6 2.0 (2)
S1—C1—C2—C7 −179.71 (11) C1—C2—C7—C6 −178.49 (15)
C8—C1—C2—C3 178.16 (17) C2—C1—C8—O1 0.56 (17)
S1—C1—C2—C3 −0.3 (3) S1—C1—C8—O1 178.99 (11)
C7—C2—C3—C4 −2.1 (2) C2—C1—C8—C11 −179.83 (17)
C1—C2—C3—C4 178.50 (16) S1—C1—C8—C11 −1.4 (3)
C7—C2—C3—C9 176.98 (14) C7—O1—C8—C1 0.42 (17)
C1—C2—C3—C9 −2.4 (3) C7—O1—C8—C11 −179.28 (13)
C2—C3—C4—C5 1.0 (2) O2—S1—C12—C17 45.90 (13)
C9—C3—C4—C5 −178.09 (15) C1—S1—C12—C17 −66.51 (12)
C2—C3—C4—Cl1 −178.93 (11) O2—S1—C12—C13 −77.25 (12)
C9—C3—C4—Cl1 2.0 (2) C1—S1—C12—C13 170.35 (11)
C3—C4—C5—C6 0.4 (2) C13—C12—C17—C16 −55.75 (19)
Cl1—C4—C5—C6 −179.62 (12) S1—C12—C17—C16 −176.35 (12)
C3—C4—C5—C10 179.79 (15) C15—C16—C17—C12 56.0 (2)
Cl1—C4—C5—C10 −0.3 (2) C17—C12—C13—C14 55.82 (18)
C4—C5—C6—C7 −0.7 (2) S1—C12—C13—C14 179.10 (11)
C10—C5—C6—C7 179.89 (15) C12—C13—C14—C15 −56.10 (19)
C8—O1—C7—C6 178.78 (15) C13—C14—C15—C16 56.9 (2)
C8—O1—C7—C2 −1.29 (17) C17—C16—C15—C14 −56.7 (2)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C2–C7 benzene ring.

D—H···A D—H H···A D···A D—H···A
C9—H9A···O2i 0.98 2.53 3.438 (2) 154
C12—H12···O2i 1.00 2.39 3.3072 (19) 152
C11—H11b···Cg2i 0.98 2.83 3.533 (2) 129

Symmetry code: (i) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7277).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc 43, 606–608.
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o804. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  9. Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289. [PMC free article] [PubMed]
  10. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  11. Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol 29, 633–642. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814019217/hb7277sup1.cif

e-70-o1067-sup1.cif (420.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019217/hb7277Isup2.hkl

e-70-o1067-Isup2.hkl (175.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019217/hb7277Isup3.cml

. DOI: 10.1107/S1600536814019217/hb7277fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

x y z x y z . DOI: 10.1107/S1600536814019217/hb7277fig2.tif

A view of the C—H⋯O, C—H⋯π and C—Cl⋯π inter­actions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z.]

CCDC reference: 1021106

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES