Abstract
In the asymmetric unit of the title compound, C13H13N3O3, the 2-(2-methoxphenyl)ethenyl unit is connected to the methyl-nitroimidazole 1-methyl-4-nitro-1H-imidazole moiety. The molecule is quasi-planar and the planes of the two rings form a dihedral angle of 0.92 (11)°. The crystal packing can be described as layers parallel to the (011) plane, stabilized by intermolecular C—H⋯O hydrogen bonding, resulting in the formation of an infinite three-dimensional network linking these layers. Strong π–π stacking interactions are observed, viz. benzene–benzene, imidazole–imidazole and benzene–imidazole rings, with centroid–centroid distances of 3.528 (2), 3.457 (2) and 3.544 (2) Å, respectively. Intensity statistics indicated twinning by non-merohedry, with refined weighs of the twin components of 0.3687:0.6313.
Keywords: crystal structure; hydrogen bonding; π–π stacking interactions; nitroimidazoles,
Related literature
For the synthesis and applications of this important class of compounds, see: Hori et al. (1997 ▶); Bourdin-Trunz et al. (2011 ▶). For our previous work on imidazole derivatives, see: Alliouche et al. (2014 ▶); Zama et al. (2013 ▶); Bahnous et al. (2012 ▶).
Experimental
Crystal data
C13H13N3O3
M r = 259.26
Triclinic,
a = 7.9339 (18) Å
b = 8.1994 (19) Å
c = 10.452 (3) Å
α = 68.877 (17)°
β = 75.037 (17)°
γ = 76.182 (17)°
V = 604.7 (2) Å3
Z = 2
Mo Kα radiation
μ = 0.10 mm−1
T = 150 K
0.19 × 0.12 × 0.08 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002 ▶) T min = 0.754, T max = 1.000
5177 measured reflections
5177 independent reflections
3712 reflections with I > 2σ(I)
Refinement
R[F 2 > 2σ(F 2)] = 0.088
wR(F 2) = 0.282
S = 1.06
5171 reflections
176 parameters
H-atom parameters constrained
Δρmax = 0.49 e Å−3
Δρmin = −0.42 e Å−3
Data collection: APEX2 (Bruker, 2006 ▶); cell refinement: SAINT (Bruker, 2006 ▶); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶) and DIAMOND (Brandenburg & Berndt, 2001 ▶); software used to prepare material for publication: WinGX (Farrugia, 2012 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400Isup2.hkl
. DOI: 10.1107/S1600536814017206/hg5400fig1.tif
The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
a . DOI: 10.1107/S1600536814017206/hg5400fig2.tif
A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [C—H⋯O] as dashed line.
CCDC reference: 1015965
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C3—H3⋯O2i | 0.93 | 2.45 | 3.271 (4) | 147 |
| C4—H4B⋯O1ii | 0.96 | 2.53 | 3.465 (5) | 165 |
| C6—H6⋯O3 | 0.93 | 2.31 | 2.685 (4) | 103 |
| C6—H6⋯N2 | 0.93 | 2.60 | 2.935 (4) | 102 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
We are grateful to the personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique, Algérie) for financial support.
supplementary crystallographic information
S1. Comment
Nitroimidazoles are a class of N-heterocyclic compounds which have a wide range of applications in the drug synthesis (Hori, et al., 1997) In fact, Metronidazole (Flagyl) and related N-1 substituted 5-nitroimidazoles such as Tinidazole (Fasigyne), Ornidazole (Tiberal) and Secnidazole (Secnol) still commonly used in medicine. Despite their fewer biological activities compared with 5-nitroimidazoles, a number of 4-nitroimidazoles were reported to exhibit antileishmanial, antiamebic and anti-parasitic activities (Bourdin-Trunz, et al. 2011). However, only some limited investigations have been carried out using methyl iodide (Alliouche, et al. 2014). In previous work, we have reported the synthesis and structure determination of some new heterocyclic compounds bearing an imidazole unit (Zama, et al., 2013; Bahnous, et al., 2012). Herein, we describe the synthesis and the structure determination of (E)-1-methyl-2-[(2-methoxphenyl)-1-ethenyl]-4-nitroimidazole resulting from the intramolecular transposition reaction of its 5-nitro isomer in the presence of catalytic amounts of methyl iodide in nitrobenzene. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the methoxphenyl-1-ethenyl unit is linked to methyl-nitroimidazole moiety. The molecule is quasi-planar and the two rings of phenyl and imidazol form a dihedral angle of 0.92 (11)°. The crystal packing can be described as layers parallel to (011) plane, along the a axis (Fig. 2). It is stabilized by intermolecular hydrogen bond C—H···O, resulting in the formation of an infinite three-dimensional network linking these layers together and reinforcing cohesion in the structure (Fig. 2). Hydrogen-bonding parameters are listed in Table 1. Strong π-π stacking interactions are observed between phenyl-phenyl, imidazol-imidazol and phenyl-imidazol rings, distances centroid-centroid are Cg—Cg = 3.528 (2), 3.457 (2) and 3.544 (2) Å respetively. The crystal used was a non-merohedral twin, the refined ratio of twin components being 0.3687:0.6313.
S2. Experimental
The title compound was obtained as a yellow-green solid in 83% of yield by heating a solution of (E)-1-methyl-2-[(2-methoxphenyl)-1-ethenyl]-5-nitroimidazole in nitrobenzene at 160°C during 24 h in the presence of catalytic amount of CH3I. Suitable crystal of compound (I) was obtained by slow evaporation from a water/methanol solution at room temperature, and X-ray crystallographic analysis confirmed the structural assignment (Fig. 1).
S3. Refinement
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.93 and 0.96 Å and Uiso(H) = 1.5 or 1.2 (carrier atom).
Figures
Fig. 1.
The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
Fig. 2.
A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [C—H···O] as dashed line.
Crystal data
| C13H13N3O3 | Z = 2 |
| Mr = 259.26 | F(000) = 272 |
| Triclinic, P1 | Dx = 1.424 Mg m−3 |
| a = 7.9339 (18) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.1994 (19) Å | Cell parameters from 1356 reflections |
| c = 10.452 (3) Å | θ = 2.7–24.6° |
| α = 68.877 (17)° | µ = 0.10 mm−1 |
| β = 75.037 (17)° | T = 150 K |
| γ = 76.182 (17)° | Block, yellow |
| V = 604.7 (2) Å3 | 0.19 × 0.12 × 0.08 mm |
Data collection
| Bruker APEXII diffractometer | 3712 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0 |
| CCD rotation images, thin slices scans | θmax = 25.3°, θmin = 2.7° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→9 |
| Tmin = 0.754, Tmax = 1.000 | k = −9→9 |
| 5177 measured reflections | l = −12→12 |
| 5177 independent reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.088 | H-atom parameters constrained |
| wR(F2) = 0.282 | w = 1/[σ2(Fo2) + (0.1745P)2 + 0.1919P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max < 0.001 |
| 5171 reflections | Δρmax = 0.49 e Å−3 |
| 176 parameters | Δρmin = −0.42 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.045 (12) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.4178 (3) | 0.2400 (3) | 0.2786 (3) | 0.0256 (6) | |
| O3 | 1.0969 (3) | 0.6148 (3) | 0.0846 (2) | 0.0219 (6) | |
| O2 | 0.1531 (3) | 0.2922 (3) | 0.3961 (3) | 0.0238 (6) | |
| N1 | 0.3026 (4) | 0.3303 (4) | 0.3420 (3) | 0.0167 (7) | |
| N2 | 0.5059 (3) | 0.5331 (4) | 0.2979 (3) | 0.0162 (7) | |
| N3 | 0.3292 (3) | 0.7076 (3) | 0.4156 (3) | 0.0134 (6) | |
| C1 | 0.3460 (4) | 0.4809 (4) | 0.3545 (3) | 0.0142 (7) | |
| C2 | 0.4934 (4) | 0.6726 (4) | 0.3362 (3) | 0.0125 (7) | |
| C5 | 0.6299 (4) | 0.7796 (5) | 0.3004 (3) | 0.0172 (8) | |
| H5 | 0.6018 | 0.8867 | 0.319 | 0.021* | |
| C6 | 0.7973 (4) | 0.7279 (4) | 0.2408 (3) | 0.0151 (7) | |
| H6 | 0.8198 | 0.6187 | 0.2261 | 0.018* | |
| C7 | 0.9464 (4) | 0.8227 (4) | 0.1968 (3) | 0.0139 (7) | |
| C8 | 1.1027 (4) | 0.7634 (4) | 0.1144 (3) | 0.0159 (8) | |
| C13 | 1.2438 (4) | 0.5580 (5) | −0.0106 (4) | 0.0273 (9) | |
| H13C | 1.2622 | 0.6542 | −0.0961 | 0.041* | |
| H13A | 1.22 | 0.4604 | −0.0296 | 0.041* | |
| H13B | 1.3478 | 0.5214 | 0.0299 | 0.041* | |
| C4 | 0.2711 (4) | 0.8439 (5) | 0.4845 (3) | 0.0196 (8) | |
| H4A | 0.1465 | 0.8508 | 0.5215 | 0.029* | |
| H4B | 0.2948 | 0.9563 | 0.418 | 0.029* | |
| H4C | 0.3339 | 0.814 | 0.5591 | 0.029* | |
| C3 | 0.2328 (4) | 0.5873 (4) | 0.4277 (3) | 0.0139 (7) | |
| H3 | 0.117 | 0.5778 | 0.4744 | 0.017* | |
| C9 | 1.2469 (4) | 0.8506 (5) | 0.0702 (3) | 0.0207 (8) | |
| H9 | 1.349 | 0.81 | 0.0154 | 0.025* | |
| C10 | 1.2392 (5) | 0.9970 (5) | 0.1072 (3) | 0.0233 (8) | |
| H10 | 1.3369 | 1.0544 | 0.0781 | 0.028* | |
| C11 | 1.0871 (4) | 1.0600 (5) | 0.1876 (3) | 0.0211 (8) | |
| H11 | 1.0818 | 1.1602 | 0.2116 | 0.025* | |
| C12 | 0.9434 (4) | 0.9723 (5) | 0.2317 (3) | 0.0199 (8) | |
| H12 | 0.8418 | 1.0144 | 0.2863 | 0.024* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0232 (13) | 0.0238 (14) | 0.0331 (14) | −0.0046 (11) | 0.0055 (11) | −0.0199 (12) |
| O3 | 0.0169 (13) | 0.0238 (14) | 0.0257 (13) | −0.0036 (10) | 0.0029 (10) | −0.0135 (11) |
| O2 | 0.0142 (13) | 0.0280 (15) | 0.0313 (14) | −0.0066 (11) | 0.0037 (11) | −0.0154 (12) |
| N1 | 0.0173 (15) | 0.0150 (15) | 0.0183 (14) | −0.0021 (12) | −0.0013 (12) | −0.0077 (12) |
| N2 | 0.0144 (14) | 0.0181 (15) | 0.0159 (14) | −0.0007 (12) | −0.0022 (11) | −0.0070 (12) |
| N3 | 0.0139 (14) | 0.0113 (14) | 0.0162 (13) | −0.0006 (11) | −0.0005 (11) | −0.0083 (11) |
| C1 | 0.0135 (16) | 0.0166 (17) | 0.0122 (16) | −0.0007 (13) | −0.0053 (13) | −0.0032 (13) |
| C2 | 0.0120 (16) | 0.0162 (17) | 0.0099 (14) | −0.0020 (13) | −0.0029 (13) | −0.0043 (13) |
| C5 | 0.0170 (18) | 0.0181 (17) | 0.0207 (17) | −0.0027 (14) | −0.0072 (14) | −0.0086 (15) |
| C6 | 0.0155 (17) | 0.0144 (17) | 0.0177 (16) | 0.0010 (14) | −0.0055 (13) | −0.0084 (14) |
| C7 | 0.0154 (17) | 0.0165 (17) | 0.0089 (15) | −0.0037 (14) | −0.0028 (13) | −0.0018 (13) |
| C8 | 0.0143 (17) | 0.0193 (18) | 0.0134 (16) | −0.0016 (14) | −0.0034 (14) | −0.0047 (14) |
| C13 | 0.0200 (19) | 0.033 (2) | 0.0253 (19) | 0.0037 (17) | 0.0043 (15) | −0.0167 (17) |
| C4 | 0.0171 (17) | 0.0219 (18) | 0.0232 (17) | −0.0021 (15) | −0.0010 (14) | −0.0137 (15) |
| C3 | 0.0126 (17) | 0.0178 (18) | 0.0129 (15) | −0.0037 (14) | −0.0026 (13) | −0.0058 (13) |
| C9 | 0.0150 (17) | 0.029 (2) | 0.0163 (17) | −0.0043 (15) | −0.0043 (14) | −0.0036 (15) |
| C10 | 0.026 (2) | 0.030 (2) | 0.0173 (17) | −0.0148 (16) | −0.0081 (15) | −0.0020 (16) |
| C11 | 0.0237 (19) | 0.025 (2) | 0.0201 (17) | −0.0062 (16) | −0.0086 (15) | −0.0092 (16) |
| C12 | 0.0187 (18) | 0.025 (2) | 0.0176 (17) | −0.0039 (15) | −0.0067 (14) | −0.0068 (15) |
Geometric parameters (Å, º)
| O1—N1 | 1.241 (3) | C7—C8 | 1.406 (4) |
| O3—C8 | 1.375 (4) | C8—C9 | 1.383 (5) |
| O3—C13 | 1.429 (4) | C13—H13C | 0.96 |
| O2—N1 | 1.236 (3) | C13—H13A | 0.96 |
| N1—C1 | 1.415 (4) | C13—H13B | 0.96 |
| N2—C2 | 1.317 (4) | C4—H4A | 0.96 |
| N2—C1 | 1.354 (4) | C4—H4B | 0.96 |
| N3—C3 | 1.339 (4) | C4—H4C | 0.96 |
| N3—C2 | 1.380 (4) | C3—H3 | 0.93 |
| N3—C4 | 1.464 (4) | C9—C10 | 1.372 (5) |
| C1—C3 | 1.380 (4) | C9—H9 | 0.93 |
| C2—C5 | 1.445 (5) | C10—C11 | 1.386 (5) |
| C5—C6 | 1.351 (5) | C10—H10 | 0.93 |
| C5—H5 | 0.93 | C11—C12 | 1.382 (5) |
| C6—C7 | 1.455 (5) | C11—H11 | 0.93 |
| C6—H6 | 0.93 | C12—H12 | 0.93 |
| C7—C12 | 1.394 (5) | ||
| C8—O3—C13 | 117.1 (3) | O3—C13—H13A | 109.5 |
| O2—N1—O1 | 122.5 (3) | H13C—C13—H13A | 109.5 |
| O2—N1—C1 | 119.0 (3) | O3—C13—H13B | 109.5 |
| O1—N1—C1 | 118.4 (3) | H13C—C13—H13B | 109.5 |
| C2—N2—C1 | 103.9 (3) | H13A—C13—H13B | 109.5 |
| C3—N3—C2 | 108.4 (2) | N3—C4—H4A | 109.5 |
| C3—N3—C4 | 124.7 (3) | N3—C4—H4B | 109.5 |
| C2—N3—C4 | 126.7 (3) | H4A—C4—H4B | 109.5 |
| N2—C1—C3 | 112.9 (3) | N3—C4—H4C | 109.5 |
| N2—C1—N1 | 123.0 (3) | H4A—C4—H4C | 109.5 |
| C3—C1—N1 | 124.1 (3) | H4B—C4—H4C | 109.5 |
| N2—C2—N3 | 111.1 (3) | N3—C3—C1 | 103.7 (3) |
| N2—C2—C5 | 125.9 (3) | N3—C3—H3 | 128.1 |
| N3—C2—C5 | 123.0 (3) | C1—C3—H3 | 128.1 |
| C6—C5—C2 | 121.7 (3) | C10—C9—C8 | 120.0 (3) |
| C6—C5—H5 | 119.2 | C10—C9—H9 | 120 |
| C2—C5—H5 | 119.2 | C8—C9—H9 | 120 |
| C5—C6—C7 | 127.7 (3) | C9—C10—C11 | 120.6 (3) |
| C5—C6—H6 | 116.1 | C9—C10—H10 | 119.7 |
| C7—C6—H6 | 116.1 | C11—C10—H10 | 119.7 |
| C12—C7—C8 | 117.2 (3) | C12—C11—C10 | 119.2 (3) |
| C12—C7—C6 | 123.3 (3) | C12—C11—H11 | 120.4 |
| C8—C7—C6 | 119.5 (3) | C10—C11—H11 | 120.4 |
| O3—C8—C9 | 124.8 (3) | C11—C12—C7 | 121.9 (3) |
| O3—C8—C7 | 114.1 (3) | C11—C12—H12 | 119 |
| C9—C8—C7 | 121.1 (3) | C7—C12—H12 | 119 |
| O3—C13—H13C | 109.5 | ||
| C2—N2—C1—C3 | 0.3 (3) | C13—O3—C8—C9 | −6.8 (5) |
| C2—N2—C1—N1 | −178.3 (3) | C13—O3—C8—C7 | 173.6 (3) |
| O2—N1—C1—N2 | −179.5 (3) | C12—C7—C8—O3 | 179.6 (3) |
| O1—N1—C1—N2 | 1.5 (4) | C6—C7—C8—O3 | −0.6 (4) |
| O2—N1—C1—C3 | 2.0 (5) | C12—C7—C8—C9 | −0.1 (5) |
| O1—N1—C1—C3 | −176.9 (3) | C6—C7—C8—C9 | 179.8 (3) |
| C1—N2—C2—N3 | 0.1 (3) | C2—N3—C3—C1 | 0.6 (3) |
| C1—N2—C2—C5 | −179.2 (3) | C4—N3—C3—C1 | −175.4 (3) |
| C3—N3—C2—N2 | −0.5 (3) | N2—C1—C3—N3 | −0.5 (3) |
| C4—N3—C2—N2 | 175.4 (3) | N1—C1—C3—N3 | 178.1 (3) |
| C3—N3—C2—C5 | 178.9 (3) | O3—C8—C9—C10 | −179.3 (3) |
| C4—N3—C2—C5 | −5.3 (5) | C7—C8—C9—C10 | 0.3 (5) |
| N2—C2—C5—C6 | −10.8 (5) | C8—C9—C10—C11 | −0.7 (5) |
| N3—C2—C5—C6 | 170.0 (3) | C9—C10—C11—C12 | 0.8 (5) |
| C2—C5—C6—C7 | 178.6 (3) | C10—C11—C12—C7 | −0.5 (5) |
| C5—C6—C7—C12 | 11.0 (5) | C8—C7—C12—C11 | 0.1 (5) |
| C5—C6—C7—C8 | −168.8 (3) | C6—C7—C12—C11 | −179.7 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C3—H3···O2i | 0.93 | 2.45 | 3.271 (4) | 147 |
| C4—H4B···O1ii | 0.96 | 2.53 | 3.465 (5) | 165 |
| C6—H6···O3 | 0.93 | 2.31 | 2.685 (4) | 103 |
| C6—H6···N2 | 0.93 | 2.60 | 2.935 (4) | 102 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5400).
References
- Alliouche, H., Bouraiou, A., Bouacida, S., Bahnous, M., Roisnel, T. & Belfaitah, A. (2014). Lett. Org. Chem. 11, 174–179.
- Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391. [DOI] [PMC free article] [PubMed]
- Bourdin-Trunz, B., Jedrysiak, R., Tweats, D., Brun, R., Kaiser, M., Suwiński, J. & Torreele, E. (2011). Eur. J. Med. Chem. 46, 1524–1534. [DOI] [PubMed]
- Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
- Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Hori, H., Jin, C. Z., Kiyono, M., Kasai, S., Shimamura, M. & Inayama, S. (1997). Bioorg. Med. Chem. 5, 591–599. [DOI] [PubMed]
- Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400Isup2.hkl
. DOI: 10.1107/S1600536814017206/hg5400fig1.tif
The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
a . DOI: 10.1107/S1600536814017206/hg5400fig2.tif
A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [C—H⋯O] as dashed line.
CCDC reference: 1015965
Additional supporting information: crystallographic information; 3D view; checkCIF report


