Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o966–o967. doi: 10.1107/S1600536814017206

Crystal structure of (E)-1-methyl-2-[2-(2-methoxphen­yl)ethen­yl]-4-nitro-1H-imidazole

Hayette Alliouche a, Abdelmalek Bouraiou a, Sofiane Bouacida b,c,*, Hocine Merazig b, Ali Belfaitah a
PMCID: PMC4186069  PMID: 25309283

Abstract

In the asymmetric unit of the title compound, C13H13N3O3, the 2-(2-methoxphen­yl)ethenyl unit is connected to the methyl-nitro­imidazole 1-methyl-4-nitro-1H-imidazole moiety. The mol­ecule is quasi-planar and the planes of the two rings form a dihedral angle of 0.92 (11)°. The crystal packing can be described as layers parallel to the (011) plane, stabilized by inter­molecular C—H⋯O hydrogen bonding, resulting in the formation of an infinite three-dimensional network linking these layers. Strong π–π stacking inter­actions are observed, viz. benzene–benzene, imidazole–imidazole and benzene–imidazole rings, with centroid–centroid distances of 3.528 (2), 3.457 (2) and 3.544 (2) Å, respectively. Intensity statistics indicated twinning by non-merohedry, with refined weighs of the twin components of 0.3687:0.6313.

Keywords: crystal structure; hydrogen bonding; π–π stacking inter­actions; nitro­imidazoles,

Related literature  

For the synthesis and applications of this important class of compounds, see: Hori et al. (1997); Bourdin-Trunz et al. (2011). For our previous work on imidazole derivatives, see: Alliouche et al. (2014); Zama et al. (2013); Bahnous et al. (2012).graphic file with name e-70-0o966-scheme1.jpg

Experimental  

Crystal data  

  • C13H13N3O3

  • M r = 259.26

  • Triclinic, Inline graphic

  • a = 7.9339 (18) Å

  • b = 8.1994 (19) Å

  • c = 10.452 (3) Å

  • α = 68.877 (17)°

  • β = 75.037 (17)°

  • γ = 76.182 (17)°

  • V = 604.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.19 × 0.12 × 0.08 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.754, T max = 1.000

  • 5177 measured reflections

  • 5177 independent reflections

  • 3712 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.088

  • wR(F 2) = 0.282

  • S = 1.06

  • 5171 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400sup1.cif

e-70-0o966-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400Isup2.hkl

e-70-0o966-Isup2.hkl (248.4KB, hkl)

. DOI: 10.1107/S1600536814017206/hg5400fig1.tif

The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

a . DOI: 10.1107/S1600536814017206/hg5400fig2.tif

A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [C—H⋯O] as dashed line.

CCDC reference: 1015965

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.45 3.271 (4) 147
C4—H4B⋯O1ii 0.96 2.53 3.465 (5) 165
C6—H6⋯O3 0.93 2.31 2.685 (4) 103
C6—H6⋯N2 0.93 2.60 2.935 (4) 102

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique, Algérie) for financial support.

supplementary crystallographic information

S1. Comment

Nitroimidazoles are a class of N-heterocyclic compounds which have a wide range of applications in the drug synthesis (Hori, et al., 1997) In fact, Metronidazole (Flagyl) and related N-1 substituted 5-nitroimidazoles such as Tinidazole (Fasigyne), Ornidazole (Tiberal) and Secnidazole (Secnol) still commonly used in medicine. Despite their fewer biological activities compared with 5-nitroimidazoles, a number of 4-nitroimidazoles were reported to exhibit antileishmanial, antiamebic and anti-parasitic activities (Bourdin-Trunz, et al. 2011). However, only some limited investigations have been carried out using methyl iodide (Alliouche, et al. 2014). In previous work, we have reported the synthesis and structure determination of some new heterocyclic compounds bearing an imidazole unit (Zama, et al., 2013; Bahnous, et al., 2012). Herein, we describe the synthesis and the structure determination of (E)-1-methyl-2-[(2-methoxphenyl)-1-ethenyl]-4-nitroimidazole resulting from the intramolecular transposition reaction of its 5-nitro isomer in the presence of catalytic amounts of methyl iodide in nitrobenzene. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the methoxphenyl-1-ethenyl unit is linked to methyl-nitroimidazole moiety. The molecule is quasi-planar and the two rings of phenyl and imidazol form a dihedral angle of 0.92 (11)°. The crystal packing can be described as layers parallel to (011) plane, along the a axis (Fig. 2). It is stabilized by intermolecular hydrogen bond C—H···O, resulting in the formation of an infinite three-dimensional network linking these layers together and reinforcing cohesion in the structure (Fig. 2). Hydrogen-bonding parameters are listed in Table 1. Strong π-π stacking interactions are observed between phenyl-phenyl, imidazol-imidazol and phenyl-imidazol rings, distances centroid-centroid are CgCg = 3.528 (2), 3.457 (2) and 3.544 (2) Å respetively. The crystal used was a non-merohedral twin, the refined ratio of twin components being 0.3687:0.6313.

S2. Experimental

The title compound was obtained as a yellow-green solid in 83% of yield by heating a solution of (E)-1-methyl-2-[(2-methoxphenyl)-1-ethenyl]-5-nitroimidazole in nitrobenzene at 160°C during 24 h in the presence of catalytic amount of CH3I. Suitable crystal of compound (I) was obtained by slow evaporation from a water/methanol solution at room temperature, and X-ray crystallographic analysis confirmed the structural assignment (Fig. 1).

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.93 and 0.96 Å and Uiso(H) = 1.5 or 1.2 (carrier atom).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [C—H···O] as dashed line.

Crystal data

C13H13N3O3 Z = 2
Mr = 259.26 F(000) = 272
Triclinic, P1 Dx = 1.424 Mg m3
a = 7.9339 (18) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1994 (19) Å Cell parameters from 1356 reflections
c = 10.452 (3) Å θ = 2.7–24.6°
α = 68.877 (17)° µ = 0.10 mm1
β = 75.037 (17)° T = 150 K
γ = 76.182 (17)° Block, yellow
V = 604.7 (2) Å3 0.19 × 0.12 × 0.08 mm

Data collection

Bruker APEXII diffractometer 3712 reflections with I > 2σ(I)
Graphite monochromator Rint = 0
CCD rotation images, thin slices scans θmax = 25.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −9→9
Tmin = 0.754, Tmax = 1.000 k = −9→9
5177 measured reflections l = −12→12
5177 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.088 H-atom parameters constrained
wR(F2) = 0.282 w = 1/[σ2(Fo2) + (0.1745P)2 + 0.1919P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5171 reflections Δρmax = 0.49 e Å3
176 parameters Δρmin = −0.42 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.045 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4178 (3) 0.2400 (3) 0.2786 (3) 0.0256 (6)
O3 1.0969 (3) 0.6148 (3) 0.0846 (2) 0.0219 (6)
O2 0.1531 (3) 0.2922 (3) 0.3961 (3) 0.0238 (6)
N1 0.3026 (4) 0.3303 (4) 0.3420 (3) 0.0167 (7)
N2 0.5059 (3) 0.5331 (4) 0.2979 (3) 0.0162 (7)
N3 0.3292 (3) 0.7076 (3) 0.4156 (3) 0.0134 (6)
C1 0.3460 (4) 0.4809 (4) 0.3545 (3) 0.0142 (7)
C2 0.4934 (4) 0.6726 (4) 0.3362 (3) 0.0125 (7)
C5 0.6299 (4) 0.7796 (5) 0.3004 (3) 0.0172 (8)
H5 0.6018 0.8867 0.319 0.021*
C6 0.7973 (4) 0.7279 (4) 0.2408 (3) 0.0151 (7)
H6 0.8198 0.6187 0.2261 0.018*
C7 0.9464 (4) 0.8227 (4) 0.1968 (3) 0.0139 (7)
C8 1.1027 (4) 0.7634 (4) 0.1144 (3) 0.0159 (8)
C13 1.2438 (4) 0.5580 (5) −0.0106 (4) 0.0273 (9)
H13C 1.2622 0.6542 −0.0961 0.041*
H13A 1.22 0.4604 −0.0296 0.041*
H13B 1.3478 0.5214 0.0299 0.041*
C4 0.2711 (4) 0.8439 (5) 0.4845 (3) 0.0196 (8)
H4A 0.1465 0.8508 0.5215 0.029*
H4B 0.2948 0.9563 0.418 0.029*
H4C 0.3339 0.814 0.5591 0.029*
C3 0.2328 (4) 0.5873 (4) 0.4277 (3) 0.0139 (7)
H3 0.117 0.5778 0.4744 0.017*
C9 1.2469 (4) 0.8506 (5) 0.0702 (3) 0.0207 (8)
H9 1.349 0.81 0.0154 0.025*
C10 1.2392 (5) 0.9970 (5) 0.1072 (3) 0.0233 (8)
H10 1.3369 1.0544 0.0781 0.028*
C11 1.0871 (4) 1.0600 (5) 0.1876 (3) 0.0211 (8)
H11 1.0818 1.1602 0.2116 0.025*
C12 0.9434 (4) 0.9723 (5) 0.2317 (3) 0.0199 (8)
H12 0.8418 1.0144 0.2863 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0232 (13) 0.0238 (14) 0.0331 (14) −0.0046 (11) 0.0055 (11) −0.0199 (12)
O3 0.0169 (13) 0.0238 (14) 0.0257 (13) −0.0036 (10) 0.0029 (10) −0.0135 (11)
O2 0.0142 (13) 0.0280 (15) 0.0313 (14) −0.0066 (11) 0.0037 (11) −0.0154 (12)
N1 0.0173 (15) 0.0150 (15) 0.0183 (14) −0.0021 (12) −0.0013 (12) −0.0077 (12)
N2 0.0144 (14) 0.0181 (15) 0.0159 (14) −0.0007 (12) −0.0022 (11) −0.0070 (12)
N3 0.0139 (14) 0.0113 (14) 0.0162 (13) −0.0006 (11) −0.0005 (11) −0.0083 (11)
C1 0.0135 (16) 0.0166 (17) 0.0122 (16) −0.0007 (13) −0.0053 (13) −0.0032 (13)
C2 0.0120 (16) 0.0162 (17) 0.0099 (14) −0.0020 (13) −0.0029 (13) −0.0043 (13)
C5 0.0170 (18) 0.0181 (17) 0.0207 (17) −0.0027 (14) −0.0072 (14) −0.0086 (15)
C6 0.0155 (17) 0.0144 (17) 0.0177 (16) 0.0010 (14) −0.0055 (13) −0.0084 (14)
C7 0.0154 (17) 0.0165 (17) 0.0089 (15) −0.0037 (14) −0.0028 (13) −0.0018 (13)
C8 0.0143 (17) 0.0193 (18) 0.0134 (16) −0.0016 (14) −0.0034 (14) −0.0047 (14)
C13 0.0200 (19) 0.033 (2) 0.0253 (19) 0.0037 (17) 0.0043 (15) −0.0167 (17)
C4 0.0171 (17) 0.0219 (18) 0.0232 (17) −0.0021 (15) −0.0010 (14) −0.0137 (15)
C3 0.0126 (17) 0.0178 (18) 0.0129 (15) −0.0037 (14) −0.0026 (13) −0.0058 (13)
C9 0.0150 (17) 0.029 (2) 0.0163 (17) −0.0043 (15) −0.0043 (14) −0.0036 (15)
C10 0.026 (2) 0.030 (2) 0.0173 (17) −0.0148 (16) −0.0081 (15) −0.0020 (16)
C11 0.0237 (19) 0.025 (2) 0.0201 (17) −0.0062 (16) −0.0086 (15) −0.0092 (16)
C12 0.0187 (18) 0.025 (2) 0.0176 (17) −0.0039 (15) −0.0067 (14) −0.0068 (15)

Geometric parameters (Å, º)

O1—N1 1.241 (3) C7—C8 1.406 (4)
O3—C8 1.375 (4) C8—C9 1.383 (5)
O3—C13 1.429 (4) C13—H13C 0.96
O2—N1 1.236 (3) C13—H13A 0.96
N1—C1 1.415 (4) C13—H13B 0.96
N2—C2 1.317 (4) C4—H4A 0.96
N2—C1 1.354 (4) C4—H4B 0.96
N3—C3 1.339 (4) C4—H4C 0.96
N3—C2 1.380 (4) C3—H3 0.93
N3—C4 1.464 (4) C9—C10 1.372 (5)
C1—C3 1.380 (4) C9—H9 0.93
C2—C5 1.445 (5) C10—C11 1.386 (5)
C5—C6 1.351 (5) C10—H10 0.93
C5—H5 0.93 C11—C12 1.382 (5)
C6—C7 1.455 (5) C11—H11 0.93
C6—H6 0.93 C12—H12 0.93
C7—C12 1.394 (5)
C8—O3—C13 117.1 (3) O3—C13—H13A 109.5
O2—N1—O1 122.5 (3) H13C—C13—H13A 109.5
O2—N1—C1 119.0 (3) O3—C13—H13B 109.5
O1—N1—C1 118.4 (3) H13C—C13—H13B 109.5
C2—N2—C1 103.9 (3) H13A—C13—H13B 109.5
C3—N3—C2 108.4 (2) N3—C4—H4A 109.5
C3—N3—C4 124.7 (3) N3—C4—H4B 109.5
C2—N3—C4 126.7 (3) H4A—C4—H4B 109.5
N2—C1—C3 112.9 (3) N3—C4—H4C 109.5
N2—C1—N1 123.0 (3) H4A—C4—H4C 109.5
C3—C1—N1 124.1 (3) H4B—C4—H4C 109.5
N2—C2—N3 111.1 (3) N3—C3—C1 103.7 (3)
N2—C2—C5 125.9 (3) N3—C3—H3 128.1
N3—C2—C5 123.0 (3) C1—C3—H3 128.1
C6—C5—C2 121.7 (3) C10—C9—C8 120.0 (3)
C6—C5—H5 119.2 C10—C9—H9 120
C2—C5—H5 119.2 C8—C9—H9 120
C5—C6—C7 127.7 (3) C9—C10—C11 120.6 (3)
C5—C6—H6 116.1 C9—C10—H10 119.7
C7—C6—H6 116.1 C11—C10—H10 119.7
C12—C7—C8 117.2 (3) C12—C11—C10 119.2 (3)
C12—C7—C6 123.3 (3) C12—C11—H11 120.4
C8—C7—C6 119.5 (3) C10—C11—H11 120.4
O3—C8—C9 124.8 (3) C11—C12—C7 121.9 (3)
O3—C8—C7 114.1 (3) C11—C12—H12 119
C9—C8—C7 121.1 (3) C7—C12—H12 119
O3—C13—H13C 109.5
C2—N2—C1—C3 0.3 (3) C13—O3—C8—C9 −6.8 (5)
C2—N2—C1—N1 −178.3 (3) C13—O3—C8—C7 173.6 (3)
O2—N1—C1—N2 −179.5 (3) C12—C7—C8—O3 179.6 (3)
O1—N1—C1—N2 1.5 (4) C6—C7—C8—O3 −0.6 (4)
O2—N1—C1—C3 2.0 (5) C12—C7—C8—C9 −0.1 (5)
O1—N1—C1—C3 −176.9 (3) C6—C7—C8—C9 179.8 (3)
C1—N2—C2—N3 0.1 (3) C2—N3—C3—C1 0.6 (3)
C1—N2—C2—C5 −179.2 (3) C4—N3—C3—C1 −175.4 (3)
C3—N3—C2—N2 −0.5 (3) N2—C1—C3—N3 −0.5 (3)
C4—N3—C2—N2 175.4 (3) N1—C1—C3—N3 178.1 (3)
C3—N3—C2—C5 178.9 (3) O3—C8—C9—C10 −179.3 (3)
C4—N3—C2—C5 −5.3 (5) C7—C8—C9—C10 0.3 (5)
N2—C2—C5—C6 −10.8 (5) C8—C9—C10—C11 −0.7 (5)
N3—C2—C5—C6 170.0 (3) C9—C10—C11—C12 0.8 (5)
C2—C5—C6—C7 178.6 (3) C10—C11—C12—C7 −0.5 (5)
C5—C6—C7—C12 11.0 (5) C8—C7—C12—C11 0.1 (5)
C5—C6—C7—C8 −168.8 (3) C6—C7—C12—C11 −179.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O2i 0.93 2.45 3.271 (4) 147
C4—H4B···O1ii 0.96 2.53 3.465 (5) 165
C6—H6···O3 0.93 2.31 2.685 (4) 103
C6—H6···N2 0.93 2.60 2.935 (4) 102

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5400).

References

  1. Alliouche, H., Bouraiou, A., Bouacida, S., Bahnous, M., Roisnel, T. & Belfaitah, A. (2014). Lett. Org. Chem. 11, 174–179.
  2. Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391. [DOI] [PMC free article] [PubMed]
  3. Bourdin-Trunz, B., Jedrysiak, R., Tweats, D., Brun, R., Kaiser, M., Suwiński, J. & Torreele, E. (2011). Eur. J. Med. Chem. 46, 1524–1534. [DOI] [PubMed]
  4. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  5. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Hori, H., Jin, C. Z., Kiyono, M., Kasai, S., Shimamura, M. & Inayama, S. (1997). Bioorg. Med. Chem. 5, 591–599. [DOI] [PubMed]
  9. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400sup1.cif

e-70-0o966-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017206/hg5400Isup2.hkl

e-70-0o966-Isup2.hkl (248.4KB, hkl)

. DOI: 10.1107/S1600536814017206/hg5400fig1.tif

The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

a . DOI: 10.1107/S1600536814017206/hg5400fig2.tif

A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [C—H⋯O] as dashed line.

CCDC reference: 1015965

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES