Abstract
In the title compound, C13H13ClO4, the dihedral angle between the chlorobenezene ring and the least-squares plane through the 4-methoxy-2-oxobut-3-enoate ethyl ester residue (r.m.s. deviation = 0.0975 Å) is 54.10 (5)°. In the crystal, molecules are connected by methoxy–ketone and benzene–carboxylate carbonyl C—H⋯O interactions, generating a supramolecular layer in the ac plane.
Keywords: crystal structure, methoxy–ketone interactions, benzene–carboxylate carbonyl interactions, 4-methoxy-2-oxobut-3-enoate ethyl ester
Related literature
For background to 1,2,4-trielectrophile systems, see: Machado et al. (2007 ▶); Siddiqui et al. (2013 ▶). For C—H⋯O interactions, see: Thakur et al. (2010 ▶).
Experimental
Crystal data
C13H13ClO4
M r = 268.68
Monoclinic,
a = 9.4557 (4) Å
b = 16.6411 (7) Å
c = 8.4319 (3) Å
β = 105.644 (2)°
V = 1277.64 (9) Å3
Z = 4
Mo Kα radiation
μ = 0.30 mm−1
T = 293 K
0.76 × 0.67 × 0.59 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: gaussian (XPREP; Bruker, 2009 ▶) T min = 0.667, T max = 0.746
30885 measured reflections
3130 independent reflections
2613 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.045
wR(F 2) = 0.135
S = 1.07
3130 reflections
167 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.40 e Å−3
Δρmin = −0.24 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017280/tk5332Isup3.cml
. DOI: 10.1107/S1600536814017280/tk5332fig1.tif
The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
. DOI: 10.1107/S1600536814017280/tk5332fig2.tif
Arrangement between planes within the molecule.
CCDC reference: 1016203
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C7—H71⋯O2i | 0.96 | 2.54 | 3.434 (2) | 155 |
| C3—H3⋯O3ii | 0.93 | 2.60 | 3.479 (2) | 158 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support and fellowships (PIBIC and PROBIC).
supplementary crystallographic information
S1. Comment
Ethyl-4-aryl-4-methoxy-2-oxo-3-butenoates are interesting precursors for heterocyclic compounds. These 1, 2, 4-trielectrophile systems are synthetic equivalents to 4-aryl-2,4-di,oxobutanoat es (Siddiqui et al., 2013) and were used to produce 1H-pyrazoles (Machado et al., 2007). In the title compound (E)-Ethyl-4-(4-chlorophenyl)-4-methoxy-2-oxo-3-butenoate, C13H13O4Cl, the whole molecule matches the asymmetric unit (Fig. 1). The molecule presents two almost planar sites (Fig. 2): C7/O1/C8/C9/C10/O2/C11/O3/O4/C12/C13 showed a r.m.s. value of 0.0975 Å with maximum deviation from the mean plane observed for O2 (0.1865 (14) Å). The dihedral angle of 54.10 (5)° confirms that these two fragments are not perfectly perpendicular, suggesting probably the influence of the crystal packing. In the solid state, molecules are connected only through weak non-classical hydrogen bond interactions of the type C—H···O (Thakur et al., 2010), Table 1, generating a supramolecular layer in the ac plane.
S2. Experimental
To a stirred solution of ethyl oxalyl chloride (4.6 ml, 41 mmol) in dry CHCl3 (25 ml) at 0 °C, a solution containing the acetal (20 mmol), CHCl3 (15 ml) and pyridine (3.25 ml, 41 mmol) were added dropwise. The mixture was left to cool for at least 1 h, then was allowed to warm to room temperature and refluxed for 5 h. The mixture was washed with distilled water (3 times 10 ml) and dried over Na2SO4. The solvent was evaporated and methyl ethyl oxalate formed was distilled at 80 °C (10 mbar) and solid residue was recrystallized from a diluted solution CHCl3. Yield: 14.8 mmol (74%); M.pt: 85–87 °C; 1H NMR (400 MHz, CDCl3): δ 1.31 (t, 3H, CH3), 3.95 (s, 3H, OCH3), 4.17 (q, 2H, OCH2), 6.28 (s, 1H, C9—H), 7.37 (m, 2H, Ph), 7.43 (m, 2H, Ph); 13C NMR (100 MHz, CDCl3): δ p.p.m. 13.8 (CH3), 57.1 (OCH3), 62.1 (OCH2), 96.7 (C9), 128.1, 130.5, 132.5, 136.9 (Ph), 163.2 (C11), 174.4 (C8), 180.9 (C10).
S3. Refinement
With exception of H9 (refined freely), all H atoms attached to C atoms were positioned with idealized geometry (C—H = 0.96 Å for CH3, 0.97 Å for CH2, and 0.93 Å for aromatic CH) and were refined isotropically with Ueq(H) set to 1.5Ueq(C) for CH3 groups, and 1.2 otherwise.
Figures
Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.

Arrangement between planes within the molecule.
Crystal data
| C13H13ClO4 | F(000) = 560 |
| Mr = 268.68 | Dx = 1.397 Mg m−3 |
| Monoclinic, P21/c | Melting point: 358 K |
| Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
| a = 9.4557 (4) Å | Cell parameters from 9103 reflections |
| b = 16.6411 (7) Å | θ = 2.2–28.3° |
| c = 8.4319 (3) Å | µ = 0.30 mm−1 |
| β = 105.644 (2)° | T = 293 K |
| V = 1277.64 (9) Å3 | Block, yellow |
| Z = 4 | 0.76 × 0.67 × 0.59 mm |
Data collection
| Bruker APEXII CCD diffractometer | 3130 independent reflections |
| Radiation source: fine-focus sealed tube | 2613 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.023 |
| φ and ω scans | θmax = 28.3°, θmin = 2.2° |
| Absorption correction: gaussian (XPREP; Bruker, 2009) | h = −12→12 |
| Tmin = 0.667, Tmax = 0.746 | k = −21→22 |
| 30885 measured reflections | l = −7→11 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4231P] where P = (Fo2 + 2Fc2)/3 |
| 3130 reflections | (Δ/σ)max < 0.001 |
| 167 parameters | Δρmax = 0.40 e Å−3 |
| 0 restraints | Δρmin = −0.24 e Å−3 |
Special details
| Experimental. Absorption correction: XPREP (Bruker, 2009) was used to perform the Gaussian absorption correction based on the face-indexed crystal size. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 1.19495 (5) | 0.25347 (3) | 0.03984 (7) | 0.06279 (18) | |
| O1 | 0.63288 (14) | 0.15936 (9) | 0.30504 (14) | 0.0569 (3) | |
| O4 | 0.32749 (13) | 0.05109 (8) | −0.38027 (14) | 0.0510 (3) | |
| O3 | 0.23337 (14) | 0.06369 (8) | −0.16544 (17) | 0.0563 (3) | |
| O2 | 0.56617 (15) | 0.12613 (11) | −0.21718 (15) | 0.0712 (5) | |
| C9 | 0.50581 (17) | 0.11348 (10) | 0.03902 (18) | 0.0415 (3) | |
| C11 | 0.33264 (17) | 0.07073 (9) | −0.22767 (19) | 0.0399 (3) | |
| C4 | 1.02876 (16) | 0.22136 (10) | 0.06886 (18) | 0.0409 (3) | |
| C8 | 0.62536 (17) | 0.14559 (10) | 0.14599 (17) | 0.0398 (3) | |
| C2 | 0.84722 (17) | 0.11991 (9) | 0.04448 (19) | 0.0409 (3) | |
| H2 | 0.8124 | 0.0685 | 0.0121 | 0.049* | |
| C1 | 0.76449 (16) | 0.17142 (9) | 0.11332 (16) | 0.0372 (3) | |
| C3 | 0.98081 (17) | 0.14431 (10) | 0.02372 (19) | 0.0423 (3) | |
| H3 | 1.0373 | 0.1094 | −0.0199 | 0.051* | |
| C5 | 0.94873 (19) | 0.27354 (10) | 0.1372 (2) | 0.0459 (4) | |
| H5 | 0.9828 | 0.3253 | 0.1666 | 0.055* | |
| C6 | 0.81702 (19) | 0.24804 (10) | 0.1614 (2) | 0.0440 (4) | |
| H6 | 0.7633 | 0.2824 | 0.2101 | 0.053* | |
| C10 | 0.48443 (16) | 0.10629 (10) | −0.13642 (18) | 0.0415 (3) | |
| C12 | 0.1854 (2) | 0.01897 (14) | −0.4754 (2) | 0.0622 (5) | |
| H121 | 0.1646 | −0.0310 | −0.4269 | 0.075* | |
| H122 | 0.1078 | 0.0569 | −0.4745 | 0.075* | |
| C7 | 0.5069 (2) | 0.14405 (18) | 0.3642 (2) | 0.0710 (6) | |
| H71 | 0.5297 | 0.1566 | 0.4794 | 0.107* | |
| H73 | 0.4802 | 0.0884 | 0.3478 | 0.107* | |
| H72 | 0.4266 | 0.1769 | 0.3049 | 0.107* | |
| C13 | 0.1921 (3) | 0.00503 (18) | −0.6446 (3) | 0.0811 (7) | |
| H131 | 0.0998 | −0.0161 | −0.7084 | 0.122* | |
| H132 | 0.2689 | −0.0327 | −0.6444 | 0.122* | |
| H133 | 0.2119 | 0.0548 | −0.6919 | 0.122* | |
| H9 | 0.420 (2) | 0.0960 (13) | 0.077 (3) | 0.056 (5)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0423 (3) | 0.0725 (3) | 0.0767 (3) | −0.0126 (2) | 0.0215 (2) | −0.0086 (2) |
| O1 | 0.0497 (7) | 0.0898 (10) | 0.0324 (5) | −0.0089 (7) | 0.0130 (5) | −0.0059 (6) |
| O4 | 0.0392 (6) | 0.0679 (8) | 0.0440 (6) | −0.0100 (5) | 0.0080 (5) | −0.0148 (5) |
| O3 | 0.0433 (6) | 0.0666 (8) | 0.0639 (7) | −0.0125 (6) | 0.0232 (6) | −0.0090 (6) |
| O2 | 0.0506 (7) | 0.1280 (14) | 0.0374 (6) | −0.0351 (8) | 0.0159 (5) | −0.0089 (7) |
| C9 | 0.0393 (8) | 0.0500 (9) | 0.0372 (7) | −0.0039 (6) | 0.0136 (6) | −0.0013 (6) |
| C11 | 0.0365 (7) | 0.0392 (7) | 0.0438 (7) | −0.0025 (6) | 0.0106 (6) | −0.0032 (6) |
| C4 | 0.0335 (7) | 0.0478 (8) | 0.0392 (7) | −0.0022 (6) | 0.0060 (5) | 0.0011 (6) |
| C8 | 0.0406 (8) | 0.0463 (8) | 0.0331 (7) | 0.0010 (6) | 0.0109 (6) | 0.0009 (6) |
| C2 | 0.0446 (8) | 0.0370 (7) | 0.0413 (7) | −0.0013 (6) | 0.0121 (6) | −0.0015 (6) |
| C1 | 0.0355 (7) | 0.0440 (8) | 0.0304 (6) | 0.0000 (6) | 0.0061 (5) | 0.0008 (5) |
| C3 | 0.0409 (8) | 0.0425 (8) | 0.0441 (8) | 0.0052 (6) | 0.0128 (6) | −0.0016 (6) |
| C5 | 0.0443 (8) | 0.0431 (8) | 0.0491 (8) | −0.0054 (7) | 0.0101 (7) | −0.0088 (7) |
| C6 | 0.0423 (8) | 0.0460 (9) | 0.0433 (8) | 0.0025 (6) | 0.0110 (6) | −0.0090 (6) |
| C10 | 0.0361 (7) | 0.0510 (9) | 0.0387 (7) | −0.0075 (6) | 0.0120 (6) | −0.0043 (6) |
| C12 | 0.0446 (9) | 0.0753 (13) | 0.0604 (11) | −0.0159 (9) | 0.0032 (8) | −0.0172 (9) |
| C7 | 0.0589 (12) | 0.120 (2) | 0.0396 (9) | −0.0031 (12) | 0.0235 (8) | −0.0041 (10) |
| C13 | 0.0690 (14) | 0.108 (2) | 0.0559 (11) | −0.0218 (13) | −0.0014 (10) | −0.0194 (12) |
Geometric parameters (Å, º)
| Cl1—C4 | 1.7386 (16) | C2—H2 | 0.9300 |
| O1—C8 | 1.3434 (18) | C1—C6 | 1.388 (2) |
| O1—C7 | 1.432 (2) | C3—H3 | 0.9300 |
| O4—C11 | 1.3156 (19) | C5—C6 | 1.382 (2) |
| O4—C12 | 1.4669 (19) | C5—H5 | 0.9300 |
| O3—C11 | 1.198 (2) | C6—H6 | 0.9300 |
| O2—C10 | 1.2058 (19) | C12—C13 | 1.463 (3) |
| C9—C8 | 1.352 (2) | C12—H121 | 0.9700 |
| C9—C10 | 1.443 (2) | C12—H122 | 0.9700 |
| C9—H9 | 0.99 (2) | C7—H71 | 0.9600 |
| C11—C10 | 1.551 (2) | C7—H73 | 0.9600 |
| C4—C5 | 1.376 (2) | C7—H72 | 0.9600 |
| C4—C3 | 1.379 (2) | C13—H131 | 0.9600 |
| C8—C1 | 1.479 (2) | C13—H132 | 0.9600 |
| C2—C3 | 1.382 (2) | C13—H133 | 0.9600 |
| C2—C1 | 1.389 (2) | ||
| C8—O1—C7 | 119.46 (14) | C6—C5—H5 | 120.4 |
| C11—O4—C12 | 114.34 (13) | C5—C6—C1 | 120.31 (15) |
| C8—C9—C10 | 125.29 (14) | C5—C6—H6 | 119.8 |
| C8—C9—H9 | 120.5 (12) | C1—C6—H6 | 119.8 |
| C10—C9—H9 | 114.0 (12) | O2—C10—C9 | 128.48 (15) |
| O3—C11—O4 | 125.25 (15) | O2—C10—C11 | 118.20 (14) |
| O3—C11—C10 | 123.32 (14) | C9—C10—C11 | 113.28 (13) |
| O4—C11—C10 | 111.42 (13) | C13—C12—O4 | 108.48 (17) |
| C5—C4—C3 | 121.70 (15) | C13—C12—H121 | 110.0 |
| C5—C4—Cl1 | 119.01 (13) | O4—C12—H121 | 110.0 |
| C3—C4—Cl1 | 119.30 (13) | C13—C12—H122 | 110.0 |
| O1—C8—C9 | 122.91 (14) | O4—C12—H122 | 110.0 |
| O1—C8—C1 | 109.03 (12) | H121—C12—H122 | 108.4 |
| C9—C8—C1 | 128.07 (13) | O1—C7—H71 | 109.5 |
| C3—C2—C1 | 120.57 (14) | O1—C7—H73 | 109.5 |
| C3—C2—H2 | 119.7 | H71—C7—H73 | 109.5 |
| C1—C2—H2 | 119.7 | O1—C7—H72 | 109.5 |
| C6—C1—C2 | 119.42 (14) | H71—C7—H72 | 109.5 |
| C6—C1—C8 | 118.61 (14) | H73—C7—H72 | 109.5 |
| C2—C1—C8 | 121.87 (14) | C12—C13—H131 | 109.5 |
| C4—C3—C2 | 118.81 (14) | C12—C13—H132 | 109.5 |
| C4—C3—H3 | 120.6 | H131—C13—H132 | 109.5 |
| C2—C3—H3 | 120.6 | C12—C13—H133 | 109.5 |
| C4—C5—C6 | 119.16 (15) | H131—C13—H133 | 109.5 |
| C4—C5—H5 | 120.4 | H132—C13—H133 | 109.5 |
| C12—O4—C11—O3 | 0.5 (2) | C1—C2—C3—C4 | −1.6 (2) |
| C12—O4—C11—C10 | −178.46 (15) | C3—C4—C5—C6 | 0.1 (3) |
| C7—O1—C8—C9 | −3.7 (3) | Cl1—C4—C5—C6 | −179.59 (13) |
| C7—O1—C8—C1 | 175.94 (18) | C4—C5—C6—C1 | −1.7 (3) |
| C10—C9—C8—O1 | 172.10 (16) | C2—C1—C6—C5 | 1.6 (2) |
| C10—C9—C8—C1 | −7.4 (3) | C8—C1—C6—C5 | 178.17 (15) |
| C3—C2—C1—C6 | 0.0 (2) | C8—C9—C10—O2 | 0.6 (3) |
| C3—C2—C1—C8 | −176.42 (13) | C8—C9—C10—C11 | −177.11 (15) |
| O1—C8—C1—C6 | −50.98 (19) | O3—C11—C10—O2 | −165.08 (18) |
| C9—C8—C1—C6 | 128.62 (18) | O4—C11—C10—O2 | 13.9 (2) |
| O1—C8—C1—C2 | 125.51 (16) | O3—C11—C10—C9 | 12.9 (2) |
| C9—C8—C1—C2 | −54.9 (2) | O4—C11—C10—C9 | −168.14 (14) |
| C5—C4—C3—C2 | 1.5 (2) | C11—O4—C12—C13 | 176.14 (19) |
| Cl1—C4—C3—C2 | −178.80 (12) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C7—H71···O2i | 0.96 | 2.54 | 3.434 (2) | 155 |
| C3—H3···O3ii | 0.93 | 2.60 | 3.479 (2) | 158 |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5332).
References
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bruker (2009). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
- Machado, P., Rossato, M., Sant’Anna, G. S., Sauzem, P. D., Silva, R. M. S., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2007). Arkivoc, 16, 281–297.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Siddiqui, N.-J., Idrees, M., Khati, N. T. & Dhonde, M. G. (2013). S. Afr. J. Chem. 66, 248–253.
- Thakur, T. S., Azim, Y., Srinu, T. & Desiraju, G. R. (2010). Curr. Sci. 98, 793–802.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017280/tk5332Isup3.cml
. DOI: 10.1107/S1600536814017280/tk5332fig1.tif
The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
. DOI: 10.1107/S1600536814017280/tk5332fig2.tif
Arrangement between planes within the molecule.
CCDC reference: 1016203
Additional supporting information: crystallographic information; 3D view; checkCIF report
