Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 16;70(Pt 9):o1025. doi: 10.1107/S1600536814017280

Crystal structure of ethyl (E)-4-(4-chlorophen­yl)-4-meth­oxy-2-oxobut-3-enoate

Darlene Correia Flores a,*, Juliano Rosa de Menezes Vicenti a, Bruna Ávila Pereira a, Gabriele Marques Dias da Silva a, Priscilla Jussiane Zambiazi b
PMCID: PMC4186072  PMID: 25309205

Abstract

In the title compound, C13H13ClO4, the dihedral angle between the chloro­benezene ring and the least-squares plane through the 4-meth­oxy-2-oxobut-3-enoate ethyl ester residue (r.m.s. deviation = 0.0975 Å) is 54.10 (5)°. In the crystal, mol­ecules are connected by meth­oxy–ketone and benzene–carboxyl­ate carbonyl C—H⋯O inter­actions, generating a supra­molecular layer in the ac plane.

Keywords: crystal structure, meth­oxy–ketone inter­actions, benzene–carboxyl­ate carbonyl inter­actions, 4-meth­oxy-2-oxobut-3-enoate ethyl ester

Related literature  

For background to 1,2,4-trielectrophile systems, see: Machado et al. (2007); Siddiqui et al. (2013). For C—H⋯O inter­actions, see: Thakur et al. (2010).graphic file with name e-70-o1025-scheme1.jpg

Experimental  

Crystal data  

  • C13H13ClO4

  • M r = 268.68

  • Monoclinic, Inline graphic

  • a = 9.4557 (4) Å

  • b = 16.6411 (7) Å

  • c = 8.4319 (3) Å

  • β = 105.644 (2)°

  • V = 1277.64 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.76 × 0.67 × 0.59 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: gaussian (XPREP; Bruker, 2009) T min = 0.667, T max = 0.746

  • 30885 measured reflections

  • 3130 independent reflections

  • 2613 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.135

  • S = 1.07

  • 3130 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332sup1.cif

e-70-o1025-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332Isup2.hkl

e-70-o1025-Isup2.hkl (150.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017280/tk5332Isup3.cml

. DOI: 10.1107/S1600536814017280/tk5332fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

. DOI: 10.1107/S1600536814017280/tk5332fig2.tif

Arrangement between planes within the mol­ecule.

CCDC reference: 1016203

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H71⋯O2i 0.96 2.54 3.434 (2) 155
C3—H3⋯O3ii 0.93 2.60 3.479 (2) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support and fellowships (PIBIC and PROBIC).

supplementary crystallographic information

S1. Comment

Ethyl-4-aryl-4-methoxy-2-oxo-3-butenoates are interesting precursors for heterocyclic compounds. These 1, 2, 4-trielectrophile systems are synthetic equivalents to 4-aryl-2,4-di,oxobutanoat es (Siddiqui et al., 2013) and were used to produce 1H-pyrazoles (Machado et al., 2007). In the title compound (E)-Ethyl-4-(4-chlorophenyl)-4-methoxy-2-oxo-3-butenoate, C13H13O4Cl, the whole molecule matches the asymmetric unit (Fig. 1). The molecule presents two almost planar sites (Fig. 2): C7/O1/C8/C9/C10/O2/C11/O3/O4/C12/C13 showed a r.m.s. value of 0.0975 Å with maximum deviation from the mean plane observed for O2 (0.1865 (14) Å). The dihedral angle of 54.10 (5)° confirms that these two fragments are not perfectly perpendicular, suggesting probably the influence of the crystal packing. In the solid state, molecules are connected only through weak non-classical hydrogen bond interactions of the type C—H···O (Thakur et al., 2010), Table 1, generating a supramolecular layer in the ac plane.

S2. Experimental

To a stirred solution of ethyl oxalyl chloride (4.6 ml, 41 mmol) in dry CHCl3 (25 ml) at 0 °C, a solution containing the acetal (20 mmol), CHCl3 (15 ml) and pyridine (3.25 ml, 41 mmol) were added dropwise. The mixture was left to cool for at least 1 h, then was allowed to warm to room temperature and refluxed for 5 h. The mixture was washed with distilled water (3 times 10 ml) and dried over Na2SO4. The solvent was evaporated and methyl ethyl oxalate formed was distilled at 80 °C (10 mbar) and solid residue was recrystallized from a diluted solution CHCl3. Yield: 14.8 mmol (74%); M.pt: 85–87 °C; 1H NMR (400 MHz, CDCl3): δ 1.31 (t, 3H, CH3), 3.95 (s, 3H, OCH3), 4.17 (q, 2H, OCH2), 6.28 (s, 1H, C9—H), 7.37 (m, 2H, Ph), 7.43 (m, 2H, Ph); 13C NMR (100 MHz, CDCl3): δ p.p.m. 13.8 (CH3), 57.1 (OCH3), 62.1 (OCH2), 96.7 (C9), 128.1, 130.5, 132.5, 136.9 (Ph), 163.2 (C11), 174.4 (C8), 180.9 (C10).

S3. Refinement

With exception of H9 (refined freely), all H atoms attached to C atoms were positioned with idealized geometry (C—H = 0.96 Å for CH3, 0.97 Å for CH2, and 0.93 Å for aromatic CH) and were refined isotropically with Ueq(H) set to 1.5Ueq(C) for CH3 groups, and 1.2 otherwise.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Arrangement between planes within the molecule.

Crystal data

C13H13ClO4 F(000) = 560
Mr = 268.68 Dx = 1.397 Mg m3
Monoclinic, P21/c Melting point: 358 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 9.4557 (4) Å Cell parameters from 9103 reflections
b = 16.6411 (7) Å θ = 2.2–28.3°
c = 8.4319 (3) Å µ = 0.30 mm1
β = 105.644 (2)° T = 293 K
V = 1277.64 (9) Å3 Block, yellow
Z = 4 0.76 × 0.67 × 0.59 mm

Data collection

Bruker APEXII CCD diffractometer 3130 independent reflections
Radiation source: fine-focus sealed tube 2613 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: gaussian (XPREP; Bruker, 2009) h = −12→12
Tmin = 0.667, Tmax = 0.746 k = −21→22
30885 measured reflections l = −7→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4231P] where P = (Fo2 + 2Fc2)/3
3130 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. Absorption correction: XPREP (Bruker, 2009) was used to perform the Gaussian absorption correction based on the face-indexed crystal size.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.19495 (5) 0.25347 (3) 0.03984 (7) 0.06279 (18)
O1 0.63288 (14) 0.15936 (9) 0.30504 (14) 0.0569 (3)
O4 0.32749 (13) 0.05109 (8) −0.38027 (14) 0.0510 (3)
O3 0.23337 (14) 0.06369 (8) −0.16544 (17) 0.0563 (3)
O2 0.56617 (15) 0.12613 (11) −0.21718 (15) 0.0712 (5)
C9 0.50581 (17) 0.11348 (10) 0.03902 (18) 0.0415 (3)
C11 0.33264 (17) 0.07073 (9) −0.22767 (19) 0.0399 (3)
C4 1.02876 (16) 0.22136 (10) 0.06886 (18) 0.0409 (3)
C8 0.62536 (17) 0.14559 (10) 0.14599 (17) 0.0398 (3)
C2 0.84722 (17) 0.11991 (9) 0.04448 (19) 0.0409 (3)
H2 0.8124 0.0685 0.0121 0.049*
C1 0.76449 (16) 0.17142 (9) 0.11332 (16) 0.0372 (3)
C3 0.98081 (17) 0.14431 (10) 0.02372 (19) 0.0423 (3)
H3 1.0373 0.1094 −0.0199 0.051*
C5 0.94873 (19) 0.27354 (10) 0.1372 (2) 0.0459 (4)
H5 0.9828 0.3253 0.1666 0.055*
C6 0.81702 (19) 0.24804 (10) 0.1614 (2) 0.0440 (4)
H6 0.7633 0.2824 0.2101 0.053*
C10 0.48443 (16) 0.10629 (10) −0.13642 (18) 0.0415 (3)
C12 0.1854 (2) 0.01897 (14) −0.4754 (2) 0.0622 (5)
H121 0.1646 −0.0310 −0.4269 0.075*
H122 0.1078 0.0569 −0.4745 0.075*
C7 0.5069 (2) 0.14405 (18) 0.3642 (2) 0.0710 (6)
H71 0.5297 0.1566 0.4794 0.107*
H73 0.4802 0.0884 0.3478 0.107*
H72 0.4266 0.1769 0.3049 0.107*
C13 0.1921 (3) 0.00503 (18) −0.6446 (3) 0.0811 (7)
H131 0.0998 −0.0161 −0.7084 0.122*
H132 0.2689 −0.0327 −0.6444 0.122*
H133 0.2119 0.0548 −0.6919 0.122*
H9 0.420 (2) 0.0960 (13) 0.077 (3) 0.056 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0423 (3) 0.0725 (3) 0.0767 (3) −0.0126 (2) 0.0215 (2) −0.0086 (2)
O1 0.0497 (7) 0.0898 (10) 0.0324 (5) −0.0089 (7) 0.0130 (5) −0.0059 (6)
O4 0.0392 (6) 0.0679 (8) 0.0440 (6) −0.0100 (5) 0.0080 (5) −0.0148 (5)
O3 0.0433 (6) 0.0666 (8) 0.0639 (7) −0.0125 (6) 0.0232 (6) −0.0090 (6)
O2 0.0506 (7) 0.1280 (14) 0.0374 (6) −0.0351 (8) 0.0159 (5) −0.0089 (7)
C9 0.0393 (8) 0.0500 (9) 0.0372 (7) −0.0039 (6) 0.0136 (6) −0.0013 (6)
C11 0.0365 (7) 0.0392 (7) 0.0438 (7) −0.0025 (6) 0.0106 (6) −0.0032 (6)
C4 0.0335 (7) 0.0478 (8) 0.0392 (7) −0.0022 (6) 0.0060 (5) 0.0011 (6)
C8 0.0406 (8) 0.0463 (8) 0.0331 (7) 0.0010 (6) 0.0109 (6) 0.0009 (6)
C2 0.0446 (8) 0.0370 (7) 0.0413 (7) −0.0013 (6) 0.0121 (6) −0.0015 (6)
C1 0.0355 (7) 0.0440 (8) 0.0304 (6) 0.0000 (6) 0.0061 (5) 0.0008 (5)
C3 0.0409 (8) 0.0425 (8) 0.0441 (8) 0.0052 (6) 0.0128 (6) −0.0016 (6)
C5 0.0443 (8) 0.0431 (8) 0.0491 (8) −0.0054 (7) 0.0101 (7) −0.0088 (7)
C6 0.0423 (8) 0.0460 (9) 0.0433 (8) 0.0025 (6) 0.0110 (6) −0.0090 (6)
C10 0.0361 (7) 0.0510 (9) 0.0387 (7) −0.0075 (6) 0.0120 (6) −0.0043 (6)
C12 0.0446 (9) 0.0753 (13) 0.0604 (11) −0.0159 (9) 0.0032 (8) −0.0172 (9)
C7 0.0589 (12) 0.120 (2) 0.0396 (9) −0.0031 (12) 0.0235 (8) −0.0041 (10)
C13 0.0690 (14) 0.108 (2) 0.0559 (11) −0.0218 (13) −0.0014 (10) −0.0194 (12)

Geometric parameters (Å, º)

Cl1—C4 1.7386 (16) C2—H2 0.9300
O1—C8 1.3434 (18) C1—C6 1.388 (2)
O1—C7 1.432 (2) C3—H3 0.9300
O4—C11 1.3156 (19) C5—C6 1.382 (2)
O4—C12 1.4669 (19) C5—H5 0.9300
O3—C11 1.198 (2) C6—H6 0.9300
O2—C10 1.2058 (19) C12—C13 1.463 (3)
C9—C8 1.352 (2) C12—H121 0.9700
C9—C10 1.443 (2) C12—H122 0.9700
C9—H9 0.99 (2) C7—H71 0.9600
C11—C10 1.551 (2) C7—H73 0.9600
C4—C5 1.376 (2) C7—H72 0.9600
C4—C3 1.379 (2) C13—H131 0.9600
C8—C1 1.479 (2) C13—H132 0.9600
C2—C3 1.382 (2) C13—H133 0.9600
C2—C1 1.389 (2)
C8—O1—C7 119.46 (14) C6—C5—H5 120.4
C11—O4—C12 114.34 (13) C5—C6—C1 120.31 (15)
C8—C9—C10 125.29 (14) C5—C6—H6 119.8
C8—C9—H9 120.5 (12) C1—C6—H6 119.8
C10—C9—H9 114.0 (12) O2—C10—C9 128.48 (15)
O3—C11—O4 125.25 (15) O2—C10—C11 118.20 (14)
O3—C11—C10 123.32 (14) C9—C10—C11 113.28 (13)
O4—C11—C10 111.42 (13) C13—C12—O4 108.48 (17)
C5—C4—C3 121.70 (15) C13—C12—H121 110.0
C5—C4—Cl1 119.01 (13) O4—C12—H121 110.0
C3—C4—Cl1 119.30 (13) C13—C12—H122 110.0
O1—C8—C9 122.91 (14) O4—C12—H122 110.0
O1—C8—C1 109.03 (12) H121—C12—H122 108.4
C9—C8—C1 128.07 (13) O1—C7—H71 109.5
C3—C2—C1 120.57 (14) O1—C7—H73 109.5
C3—C2—H2 119.7 H71—C7—H73 109.5
C1—C2—H2 119.7 O1—C7—H72 109.5
C6—C1—C2 119.42 (14) H71—C7—H72 109.5
C6—C1—C8 118.61 (14) H73—C7—H72 109.5
C2—C1—C8 121.87 (14) C12—C13—H131 109.5
C4—C3—C2 118.81 (14) C12—C13—H132 109.5
C4—C3—H3 120.6 H131—C13—H132 109.5
C2—C3—H3 120.6 C12—C13—H133 109.5
C4—C5—C6 119.16 (15) H131—C13—H133 109.5
C4—C5—H5 120.4 H132—C13—H133 109.5
C12—O4—C11—O3 0.5 (2) C1—C2—C3—C4 −1.6 (2)
C12—O4—C11—C10 −178.46 (15) C3—C4—C5—C6 0.1 (3)
C7—O1—C8—C9 −3.7 (3) Cl1—C4—C5—C6 −179.59 (13)
C7—O1—C8—C1 175.94 (18) C4—C5—C6—C1 −1.7 (3)
C10—C9—C8—O1 172.10 (16) C2—C1—C6—C5 1.6 (2)
C10—C9—C8—C1 −7.4 (3) C8—C1—C6—C5 178.17 (15)
C3—C2—C1—C6 0.0 (2) C8—C9—C10—O2 0.6 (3)
C3—C2—C1—C8 −176.42 (13) C8—C9—C10—C11 −177.11 (15)
O1—C8—C1—C6 −50.98 (19) O3—C11—C10—O2 −165.08 (18)
C9—C8—C1—C6 128.62 (18) O4—C11—C10—O2 13.9 (2)
O1—C8—C1—C2 125.51 (16) O3—C11—C10—C9 12.9 (2)
C9—C8—C1—C2 −54.9 (2) O4—C11—C10—C9 −168.14 (14)
C5—C4—C3—C2 1.5 (2) C11—O4—C12—C13 176.14 (19)
Cl1—C4—C3—C2 −178.80 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H71···O2i 0.96 2.54 3.434 (2) 155
C3—H3···O3ii 0.93 2.60 3.479 (2) 158

Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5332).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Machado, P., Rossato, M., Sant’Anna, G. S., Sauzem, P. D., Silva, R. M. S., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2007). Arkivoc, 16, 281–297.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siddiqui, N.-J., Idrees, M., Khati, N. T. & Dhonde, M. G. (2013). S. Afr. J. Chem. 66, 248–253.
  6. Thakur, T. S., Azim, Y., Srinu, T. & Desiraju, G. R. (2010). Curr. Sci. 98, 793–802.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332sup1.cif

e-70-o1025-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017280/tk5332Isup2.hkl

e-70-o1025-Isup2.hkl (150.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017280/tk5332Isup3.cml

. DOI: 10.1107/S1600536814017280/tk5332fig1.tif

The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

. DOI: 10.1107/S1600536814017280/tk5332fig2.tif

Arrangement between planes within the mol­ecule.

CCDC reference: 1016203

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES