Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 30;70(Pt 9):o1069–o1070. doi: 10.1107/S1600536814019321

Crystal structure of 4-(2,2-di­methyl­propanamido)­pyridin-3-yl N,N-diiso­propyl­dithio­carbamate

Gamal A El-Hiti a,*, Keith Smith b, Amany S Hegazy b, Mohammed Baashen c, Benson M Kariuki b,*
PMCID: PMC4186077  PMID: 25309230

Abstract

In the title compound, C17H27N3OS2, the amide group is approximately coplanar with the pyridine ring [dihedral angle = 1.6 (1)°], whereas the di­thio­carbamate group is nearly perpendicular to the pyridine ring [dihedral angle = 76.7 (1)°]. In the crystal, pairs of weak C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

Keywords: crystal structure, di­thio­carbamate, pyridine derivatives, hydrogen bonding

Related literature  

For background to pyridine derivatives, see: Joule & Mills (2000); Smith et al. (1999). For the synthesis of the title compound, see: Smith et al. (1988). For spectroscopic data for this compound, see: Smith et al. (1994). For routes to modify the pyridine ring, see: El-Hiti (2003); Turner (1983). For crystal structures of related compounds, see: El-Hiti et al. (2014); Koch et al. (2008); Mazik & Sicking (2004).graphic file with name e-70-o1069-scheme1.jpg

Experimental  

Crystal data  

  • C17H27N3OS2

  • M r = 353.53

  • Triclinic, Inline graphic

  • a = 7.9776 (7) Å

  • b = 9.5412 (9) Å

  • c = 13.0541 (14) Å

  • α = 83.099 (8)°

  • β = 83.227 (8)°

  • γ = 84.608 (7)°

  • V = 976.33 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.52 mm−1

  • T = 293 K

  • 0.36 × 0.24 × 0.19 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.662, T max = 1.000

  • 6616 measured reflections

  • 3779 independent reflections

  • 3391 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.211

  • S = 1.16

  • 3779 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814019321/xu5816sup1.cif

e-70-o1069-sup1.cif (238.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019321/xu5816Isup2.hkl

e-70-o1069-Isup2.hkl (207.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019321/xu5816Isup3.cml

. DOI: 10.1107/S1600536814019321/xu5816fig1.tif

The symmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids.

. DOI: 10.1107/S1600536814019321/xu5816fig2.tif

Packing in the crystal structure showing C—H⋯O contacts as dotted lines with hydrogen atoms omitted for clarity.

CCDC reference: 1021242

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.54 3.447 (5) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.

supplementary crystallographic information

S1. Chemical context

Pyridine derivatives are important compounds (Joule & Mills, 2000) and various substituted derivatives can be synthesized via li­thia­tion and subsequent reaction with electrophiles (Turner, 1983). During research focused on synthesis of novel substituted pyridines (El-Hiti, 2003; Smith et al., 1999) we have synthesized the title compound in high yield. For the X-ray structures for related compounds, see: El-Hiti et al., 2014; Koch et al., 2008; Mazik & Sicking, 2004.

S2. Structural commentary

In the molecule of the title compound, C17H27N3OS2, (Fig. 1), the pyridine group is almost co-planar (1.6 (1)o) to the amide group whereas the angle to the carbamodi­thio­ate is 76.7 (1)o. No strong hydrogen bonding inter­actions occur, with pairs of molecules being linked by pairs of C—H..O contacts (Fig. 2). The molecular pairs are stacked along [010] leading to a structure in which the t-butyl groups form bilayers parallel to the ab plane.

S3. Synthesis and crystallization

4-Pivalamido­pyridin-3-yl diiso­propyl­carbamodi­thio­ate was obtained in 93% yield from double li­thia­tion of 4-(pivaloyl­amino)­pyridin-3-yl with n-butyl­lithium at –78 to 0°C in anhydrous THF under nitro­gen followed by reaction with tetra­iso­propyl­thiuram di­sulfide (Smith et al., 1988, 1994). Crystallization from ethyl acetate gave colorless crystals of the title compound. The spectroscopic data of the title compound, including NMR and low and high resolution mass spectra, were consistent with those reported (Smith et al., 1994).

S4. Refinement details

H atoms were positioned geometrically and refined using a riding model, with Uiso(H) constrained to be 1.2 times Ueq for the bonded atom except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

Figures

Fig. 1.

Fig. 1.

The symmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing in the crystal structure showing C—H···O contacts as dotted lines with hydrogen atoms omitted for clarity.

Crystal data

C17H27N3OS2 Z = 2
Mr = 353.53 F(000) = 380
Triclinic, P1 Dx = 1.203 Mg m3
a = 7.9776 (7) Å Cu Kα radiation, λ = 1.54184 Å
b = 9.5412 (9) Å Cell parameters from 3458 reflections
c = 13.0541 (14) Å θ = 4.7–73.3°
α = 83.099 (8)° µ = 2.52 mm1
β = 83.227 (8)° T = 293 K
γ = 84.608 (7)° Block, colourless
V = 976.33 (17) Å3 0.36 × 0.24 × 0.19 mm

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 3391 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube Rint = 0.021
ω scans θmax = 73.5°, θmin = 4.7°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −9→9
Tmin = 0.662, Tmax = 1.000 k = −11→11
6616 measured reflections l = −11→16
3779 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1014P)2 + 0.897P] where P = (Fo2 + 2Fc2)/3
S = 1.16 (Δ/σ)max < 0.001
3779 reflections Δρmax = 0.39 e Å3
215 parameters Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0193 (4) 0.7422 (4) 0.4668 (2) 0.0459 (7)
C2 0.1318 (4) 0.6291 (3) 0.4352 (2) 0.0452 (7)
C3 0.2680 (5) 0.5875 (4) 0.4929 (3) 0.0537 (8)
H3 0.3449 0.5121 0.4759 0.064*
C4 0.2866 (5) 0.6596 (5) 0.5752 (3) 0.0635 (10)
H4 0.3792 0.6311 0.6120 0.076*
C5 0.0505 (5) 0.8057 (4) 0.5520 (3) 0.0565 (8)
H5 −0.0253 0.8798 0.5727 0.068*
C6 −0.1194 (4) 0.8903 (3) 0.2919 (2) 0.0419 (6)
C7 −0.2165 (5) 1.0250 (5) 0.1370 (3) 0.0658 (10)
H7 −0.0963 1.0426 0.1293 0.079*
C8 −0.3150 (9) 1.1680 (6) 0.1370 (5) 0.0960 (17)
H8A −0.4341 1.1560 0.1441 0.144*
H8B −0.2847 1.2250 0.0729 0.144*
H8C −0.2889 1.2141 0.1939 0.144*
C9 −0.2421 (9) 0.9459 (7) 0.0484 (4) 0.1004 (18)
H9A −0.1624 0.8641 0.0467 0.151*
H9B −0.2250 1.0063 −0.0156 0.151*
H9C −0.3552 0.9165 0.0573 0.151*
C10 −0.4303 (4) 0.9068 (4) 0.2679 (3) 0.0534 (8)
H10 −0.4906 0.9553 0.2108 0.064*
C11 −0.4589 (6) 0.7522 (5) 0.2694 (4) 0.0733 (12)
H11A −0.4032 0.7174 0.2071 0.110*
H11B −0.5781 0.7418 0.2736 0.110*
H11C −0.4135 0.6990 0.3285 0.110*
C12 −0.5115 (5) 0.9746 (5) 0.3641 (3) 0.0704 (11)
H12A −0.4714 0.9220 0.4250 0.106*
H12B −0.6324 0.9739 0.3684 0.106*
H12C −0.4816 1.0705 0.3592 0.106*
C13 0.2026 (5) 0.4709 (4) 0.2956 (3) 0.0554 (8)
C14 0.1560 (6) 0.4522 (4) 0.1882 (3) 0.0613 (9)
C15 −0.0198 (8) 0.5172 (7) 0.1668 (4) 0.0987 (18)
H15A −0.1028 0.4767 0.2183 0.148*
H15B −0.0419 0.4983 0.0992 0.148*
H15C −0.0255 0.6177 0.1693 0.148*
C16 0.2920 (10) 0.5217 (8) 0.1114 (4) 0.113 (2)
H16A 0.2806 0.5005 0.0427 0.169*
H16B 0.4020 0.4859 0.1301 0.169*
H16C 0.2785 0.6225 0.1134 0.169*
C17 0.1623 (8) 0.2942 (5) 0.1788 (4) 0.0875 (15)
H17A 0.0784 0.2520 0.2289 0.131*
H17B 0.2725 0.2507 0.1914 0.131*
H17C 0.1399 0.2803 0.1102 0.131*
N1 0.1823 (5) 0.7673 (4) 0.6064 (3) 0.0678 (9)
N2 0.1026 (4) 0.5683 (3) 0.3481 (2) 0.0523 (7)
H2 0.0079 0.5961 0.3239 0.063*
N3 −0.2495 (3) 0.9371 (3) 0.2384 (2) 0.0467 (6)
O2 0.3244 (5) 0.4055 (4) 0.3306 (3) 0.0946 (12)
S1 −0.17473 (10) 0.79230 (10) 0.41574 (6) 0.0518 (3)
S2 0.08414 (10) 0.91374 (10) 0.25296 (7) 0.0535 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0432 (16) 0.0523 (17) 0.0417 (15) −0.0037 (13) −0.0063 (12) −0.0018 (13)
C2 0.0450 (17) 0.0487 (17) 0.0425 (15) −0.0054 (13) −0.0070 (13) −0.0038 (12)
C3 0.0479 (19) 0.061 (2) 0.0522 (18) 0.0012 (15) −0.0112 (15) −0.0045 (15)
C4 0.055 (2) 0.083 (3) 0.055 (2) −0.0003 (19) −0.0214 (17) −0.0078 (18)
C5 0.058 (2) 0.064 (2) 0.0489 (18) 0.0016 (16) −0.0091 (15) −0.0113 (15)
C6 0.0387 (15) 0.0442 (15) 0.0439 (15) −0.0038 (12) −0.0051 (12) −0.0079 (12)
C7 0.053 (2) 0.087 (3) 0.055 (2) −0.0067 (19) −0.0119 (16) 0.0123 (19)
C8 0.117 (5) 0.075 (3) 0.093 (4) −0.006 (3) −0.029 (3) 0.017 (3)
C9 0.125 (5) 0.124 (5) 0.048 (2) 0.006 (4) −0.005 (3) −0.007 (3)
C10 0.0340 (16) 0.072 (2) 0.0564 (19) −0.0040 (15) −0.0084 (14) −0.0128 (16)
C11 0.054 (2) 0.082 (3) 0.090 (3) −0.021 (2) −0.011 (2) −0.019 (2)
C12 0.046 (2) 0.097 (3) 0.070 (2) 0.007 (2) −0.0047 (17) −0.025 (2)
C13 0.056 (2) 0.0511 (18) 0.061 (2) 0.0001 (15) −0.0111 (16) −0.0131 (15)
C14 0.072 (2) 0.059 (2) 0.055 (2) −0.0088 (18) −0.0056 (18) −0.0155 (16)
C15 0.111 (4) 0.120 (4) 0.076 (3) 0.014 (3) −0.046 (3) −0.040 (3)
C16 0.142 (6) 0.136 (5) 0.066 (3) −0.069 (5) 0.002 (3) −0.005 (3)
C17 0.111 (4) 0.071 (3) 0.087 (3) −0.011 (3) −0.009 (3) −0.033 (2)
N1 0.068 (2) 0.084 (2) 0.0559 (18) −0.0008 (18) −0.0189 (16) −0.0206 (16)
N2 0.0496 (16) 0.0579 (16) 0.0520 (15) 0.0043 (13) −0.0158 (12) −0.0134 (13)
N3 0.0377 (13) 0.0586 (16) 0.0447 (14) −0.0029 (11) −0.0089 (11) −0.0055 (11)
O2 0.090 (2) 0.098 (2) 0.102 (2) 0.042 (2) −0.041 (2) −0.045 (2)
S1 0.0388 (4) 0.0662 (5) 0.0473 (5) −0.0015 (3) −0.0035 (3) 0.0026 (4)
S2 0.0376 (4) 0.0614 (5) 0.0600 (5) −0.0087 (3) −0.0049 (3) 0.0029 (4)

Geometric parameters (Å, º)

C1—C5 1.386 (5) C10—C11 1.511 (6)
C1—C2 1.406 (5) C10—C12 1.530 (5)
C1—S1 1.760 (3) C10—H10 0.9800
C2—N2 1.390 (4) C11—H11A 0.9600
C2—C3 1.395 (5) C11—H11B 0.9600
C3—C4 1.373 (5) C11—H11C 0.9600
C3—H3 0.9300 C12—H12A 0.9600
C4—N1 1.332 (5) C12—H12B 0.9600
C4—H4 0.9300 C12—H12C 0.9600
C5—N1 1.336 (5) C13—O2 1.210 (5)
C5—H5 0.9300 C13—N2 1.361 (5)
C6—N3 1.331 (4) C13—C14 1.527 (5)
C6—S2 1.671 (3) C14—C15 1.522 (7)
C6—S1 1.797 (3) C14—C17 1.523 (6)
C7—N3 1.489 (5) C14—C16 1.530 (7)
C7—C9 1.498 (7) C15—H15A 0.9600
C7—C8 1.509 (7) C15—H15B 0.9600
C7—H7 0.9800 C15—H15C 0.9600
C8—H8A 0.9600 C16—H16A 0.9600
C8—H8B 0.9600 C16—H16B 0.9600
C8—H8C 0.9600 C16—H16C 0.9600
C9—H9A 0.9600 C17—H17A 0.9600
C9—H9B 0.9600 C17—H17B 0.9600
C9—H9C 0.9600 C17—H17C 0.9600
C10—N3 1.494 (4) N2—H2 0.8600
C5—C1—C2 118.5 (3) C10—C11—H11C 109.5
C5—C1—S1 117.4 (3) H11A—C11—H11C 109.5
C2—C1—S1 123.5 (2) H11B—C11—H11C 109.5
N2—C2—C3 124.4 (3) C10—C12—H12A 109.5
N2—C2—C1 118.3 (3) C10—C12—H12B 109.5
C3—C2—C1 117.3 (3) H12A—C12—H12B 109.5
C4—C3—C2 118.8 (3) C10—C12—H12C 109.5
C4—C3—H3 120.6 H12A—C12—H12C 109.5
C2—C3—H3 120.6 H12B—C12—H12C 109.5
N1—C4—C3 125.0 (3) O2—C13—N2 122.1 (4)
N1—C4—H4 117.5 O2—C13—C14 121.6 (4)
C3—C4—H4 117.5 N2—C13—C14 116.2 (3)
N1—C5—C1 124.3 (4) C15—C14—C17 107.8 (4)
N1—C5—H5 117.9 C15—C14—C13 114.1 (3)
C1—C5—H5 117.9 C17—C14—C13 108.3 (4)
N3—C6—S2 125.8 (2) C15—C14—C16 110.6 (5)
N3—C6—S1 115.0 (2) C17—C14—C16 110.7 (4)
S2—C6—S1 119.17 (18) C13—C14—C16 105.3 (4)
N3—C7—C9 111.2 (4) C14—C15—H15A 109.5
N3—C7—C8 111.3 (4) C14—C15—H15B 109.5
C9—C7—C8 114.1 (4) H15A—C15—H15B 109.5
N3—C7—H7 106.6 C14—C15—H15C 109.5
C9—C7—H7 106.6 H15A—C15—H15C 109.5
C8—C7—H7 106.6 H15B—C15—H15C 109.5
C7—C8—H8A 109.5 C14—C16—H16A 109.5
C7—C8—H8B 109.5 C14—C16—H16B 109.5
H8A—C8—H8B 109.5 H16A—C16—H16B 109.5
C7—C8—H8C 109.5 C14—C16—H16C 109.5
H8A—C8—H8C 109.5 H16A—C16—H16C 109.5
H8B—C8—H8C 109.5 H16B—C16—H16C 109.5
C7—C9—H9A 109.5 C14—C17—H17A 109.5
C7—C9—H9B 109.5 C14—C17—H17B 109.5
H9A—C9—H9B 109.5 H17A—C17—H17B 109.5
C7—C9—H9C 109.5 C14—C17—H17C 109.5
H9A—C9—H9C 109.5 H17A—C17—H17C 109.5
H9B—C9—H9C 109.5 H17B—C17—H17C 109.5
N3—C10—C11 113.1 (3) C4—N1—C5 116.0 (3)
N3—C10—C12 113.3 (3) C13—N2—C2 129.2 (3)
C11—C10—C12 114.6 (4) C13—N2—H2 115.4
N3—C10—H10 104.9 C2—N2—H2 115.4
C11—C10—H10 104.9 C6—N3—C7 118.8 (3)
C12—C10—H10 104.9 C6—N3—C10 126.5 (3)
C10—C11—H11A 109.5 C7—N3—C10 114.7 (3)
C10—C11—H11B 109.5 C1—S1—C6 104.98 (15)
H11A—C11—H11B 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.93 2.54 3.447 (5) 164

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5816).

References

  1. Agilent (2014). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.
  3. El-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351–o352. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Joule, J. A. & Mills, K. (2000). Heterocycl. Chem. 4th ed. England: Blackwell Science Publishers.
  6. Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216. [DOI] [PMC free article] [PubMed]
  7. Mazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117–3121.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smith, K., El-Hiti, G. A., Pritchard, G. J. & Hamilton, A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2299–2303.
  10. Smith, K., Lindsay, C. M. & Morris, I. K. (1988). Chem. Ind. (London), pp. 302–303.
  11. Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.
  12. Turner, J. A. (1983). J. Org. Chem. 48, 3401–3408.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814019321/xu5816sup1.cif

e-70-o1069-sup1.cif (238.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019321/xu5816Isup2.hkl

e-70-o1069-Isup2.hkl (207.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019321/xu5816Isup3.cml

. DOI: 10.1107/S1600536814019321/xu5816fig1.tif

The symmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids.

. DOI: 10.1107/S1600536814019321/xu5816fig2.tif

Packing in the crystal structure showing C—H⋯O contacts as dotted lines with hydrogen atoms omitted for clarity.

CCDC reference: 1021242

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES