Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o946. doi: 10.1107/S1600536814016547

Crystal structure of (S)-1-(1,3-benzo­thia­zol-2-yl)-2,2,2-tri­fluoro­ethanol

Svitlana V Shishkina a,*, Olexandr V Kucher b, Anastasiya O Kolodiazhnaya b, Oleg B Smolii b, Andrey A Tolmachev c
PMCID: PMC4186080  PMID: 25309270

Abstract

In the title compound, C9H6F3NOS, the 1,3-benzo­thia­zole ring system is essentially planar, with an r.m.s. deviation of 0.006 Å. In the crystal, mol­ecules are linked via O—H⋯N hydrogen bonds, forming zigzag chains along [010].

Keywords: crystal structure; 1,3-benzo­thia­zole; 2,2,2-tri­fluoro­ethanol; hydrogen bonding

Related literature  

For the synthesis of 1-substituted 2,2,2-tri­fluoro­ethanols from ketones, see: Yamazaki et al. (1993). For the enzymatic kinetic resolution of 1-substituted 2,2,2-tri­fluoro­ethanols, see: Omote et al. (2001); Xu et al. (2009). For the utilization of cinchonidine as a chiral solvating reagent, see: Kolodyazhnyi et al. (2006).graphic file with name e-70-0o946-scheme1.jpg

Experimental  

Crystal data  

  • C9H6F3NOS

  • M r = 233.21

  • Monoclinic, Inline graphic

  • a = 9.2116 (9) Å

  • b = 5.5052 (4) Å

  • c = 10.2279 (8) Å

  • β = 107.411 (9)°

  • V = 494.91 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.20 × 0.05 × 0.05 mm

Data collection  

  • Agilent Xcalibur3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) T min = 0.935, T max = 0.983

  • 4650 measured reflections

  • 2768 independent reflections

  • 2293 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.108

  • S = 1.12

  • 2768 reflections

  • 160 parameters

  • 4 restraints

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1199 Friedel pairs

  • Absolute structure parameter: −0.03 (9)

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814016547/lh5717sup1.cif

e-70-0o946-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016547/lh5717Isup2.hkl

e-70-0o946-Isup2.hkl (135.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016547/lh5717Isup3.cml

. DOI: 10.1107/S1600536814016547/lh5717fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S1600536814016547/lh5717fig2.tif

Part of the crystal structure with hydrogen bonds shown by dashed lines. Only H atoms involved in H-bonds are shown.

CCDC reference: 1014380

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1i 0.84 (4) 1.96 (4) 2.781 (2) 166 (4)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

S1. Comment

2,2,2-Trifluoro-1-substituted ethanols attract attention as building blocks for introducing a chiral CF3-containing motif into biologically active molecules and mimicking carboxylic groups. Among them, 2,2,2-trifluoro-1-heteroaryl ethanols, promising synthetic targets, have been poorly explored because of a lack of suitable procedures for obtaining the enantipure compounds from racemates. We have recently proposed a convenient procedure for enzyme-catalyzed kinetic resolution of racemic 2,2,2-trifluoro-1-heteroaryl ethanols on a series of 14 compounds. Herein, we report the crystal structure of (S)-1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanol (I) (Fig. 1). The non-centrosymmetric space group clearly confirms the presence of one enantiomer in the crystal. The absolute configuration of the chiral center at atom C8 (S-configuration) is determined using the value of the Flack parameter (-0.03 (9)). The substituent on the bicyclic fragment is oriented in such way that the hydroxyl group has a conformation intermediate between sp- and -sc- relative to the N1—C7 endocyclic bond (the N1—C7—C8—O1 torsion angle is -30.8 (3) °). The trifluoromethyl group is oriented in such way that the C9—F2 bond is anti-periplanar to the C7—C8 bond (the N1—C7—C8—C9 and C7—C8—C9—F2 torsion angles are 88.5 (3) ° and 177.3 (2) °, respectively). In the crystal, molecules are linked via O—H···N hydrogen bonds (Fig. 2) forming zigzag chains along [0 1 0].

S2. Experimental

Synthesis ofrac-1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanol: To a solution of 1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanone (115.5 g, 0.5 mol) in methanol (500 ml) sodium borohydride (18.9 g, 0.5 mol) was added in small portions, maintaining the temperature of the reaction mixture below 303K. The mixture was stirred at room temperature until completion of the reaction (monitored by TLC). The solvent was removed under reduced pressure; to the crude was added 200 ml of water and the aqueous solution was extracted with dichloromethane (3 × 150 ml). The organic phase was dried over Na2SO4 and evaporated yield the desired product. Yield: 114.2 g, 98%; white solid; m.p.: 377 K; 1H NMR (400 MHz, CDCl3): δH = 5.19 (qd, 1H, 3JF,H = 7 Hz, 3JH,H = 7 Hz, CH), 6.98–7.08 (m, 2H, PhH), 7.48 (d, 1H, 3JH,H = 7 Hz, OH), 7.56 (d, 1H, 3JH,H = 7.6 Hz, PhH), 7.66 (d, 1H, 3JH,H = 8 Hz, PhH); 13C NMR (125 MHz, APT, CDCl3): δC = 69.4 (q, 2JF,C = 32 Hz, CH), 122.4 (PhH), 123.1 (PhH), 123.7 (q, 1JF,C = 282 Hz, CF3), 125.7 (PhH), 126.4 (PhH), 134.4 (C Ar), 152.7 (C Ar), 167.7 (C Ar); MS (APCI) m/z calculated for C9H7F3NOS 234.0 [M+H]+, found 234.0.

Kinetic resolution ofrac-1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanol with vinyl acetate andBurkholderia cepacia lipase: The racemic alcohol (11.4 g, 0.05 mol) and vinyl acetate (14.3 ml, 0.15 mol) were dissolved in TBME (250 ml) following by addition of Burkholderia cepacia lipase (6 g). The obtained mixture was incubated at 323 K, the progress of the reaction was monitored by the cinchonidine method (Kolodyazhnyi et al., 2006). Then, the enzyme was filtered off, washed with TBME and the combined TBME fractions were evaporated. The unacylated (S)-alcohol was separated from the (R)-ester by column chromatography (SiO2, eluent: AcOEt/hexanes gradually changed from 1:20 to 1:1 (v/v)). The white needle-like crystals of the (S)-alcohol were formed after 1 week upon crystallization from chloroform.

S3. Refinement

The C—F bond lengths were constrained to 1.340 (1)Å. All hydrogen atoms were located in electron density difference maps and were refined with isotropic displacement parameters [C—H = 0.88 (4)–1.04 (3) Å and O—H = 0.84 (4)Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown by dashed lines. Only H atoms involved in H-bonds are shown.

Crystal data

C9H6F3NOS F(000) = 236
Mr = 233.21 Dx = 1.565 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1591 reflections
a = 9.2116 (9) Å θ = 3.5–31.8°
b = 5.5052 (4) Å µ = 0.34 mm1
c = 10.2279 (8) Å T = 293 K
β = 107.411 (9)° Needle, colourless
V = 494.91 (7) Å3 0.20 × 0.05 × 0.05 mm
Z = 2

Data collection

Agilent Xcalibur3 diffractometer 2768 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2293 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 16.1827 pixels mm-1 θmax = 30.0°, θmin = 3.6°
ω scans h = −10→12
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) k = −7→7
Tmin = 0.935, Tmax = 0.983 l = −13→14
4650 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 All H-atom parameters refined
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0494P)2] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2768 reflections Δρmax = 0.21 e Å3
160 parameters Δρmin = −0.20 e Å3
4 restraints Absolute structure: Flack (1983), 1199 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.03 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.84725 (19) 0.5557 (5) 0.85264 (17) 0.0991 (7)
F2 0.89881 (19) 0.5084 (6) 1.06943 (16) 0.1122 (8)
F3 0.7640 (2) 0.2434 (2) 0.9323 (2) 0.0913 (6)
S1 0.51635 (7) 0.81353 (17) 0.68465 (5) 0.05600 (17)
N1 0.4284 (2) 0.4285 (3) 0.78357 (16) 0.0454 (4)
O1 0.5967 (2) 0.5338 (3) 1.05476 (15) 0.0604 (4)
H1O 0.582 (4) 0.637 (7) 1.110 (3) 0.088 (11)*
C1 0.3304 (2) 0.4556 (4) 0.65070 (19) 0.0434 (4)
C2 0.2101 (3) 0.3050 (6) 0.5878 (2) 0.0579 (5)
H2 0.189 (3) 0.176 (5) 0.643 (2) 0.046 (6)*
C3 0.1234 (3) 0.3593 (6) 0.4559 (3) 0.0651 (7)
H3 0.050 (4) 0.253 (7) 0.424 (3) 0.089 (11)*
C4 0.1525 (3) 0.5594 (6) 0.3878 (2) 0.0634 (7)
H4 0.093 (3) 0.582 (6) 0.293 (3) 0.067 (8)*
C5 0.2713 (3) 0.7138 (5) 0.4479 (2) 0.0569 (6)
H5 0.299 (3) 0.864 (7) 0.408 (3) 0.072 (9)*
C6 0.3606 (3) 0.6586 (4) 0.5814 (2) 0.0463 (5)
C7 0.5280 (3) 0.6011 (4) 0.81243 (18) 0.0440 (4)
C8 0.6483 (3) 0.6243 (5) 0.9503 (2) 0.0511 (5)
H8 0.689 (2) 0.799 (5) 0.976 (2) 0.044 (5)*
C9 0.7885 (2) 0.4822 (3) 0.95081 (14) 0.0689 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0638 (10) 0.153 (2) 0.0853 (11) −0.0105 (12) 0.0298 (9) −0.0049 (12)
F2 0.0743 (11) 0.165 (2) 0.0710 (10) 0.0026 (14) −0.0187 (9) −0.0216 (13)
F3 0.0854 (12) 0.0762 (13) 0.1038 (13) 0.0216 (10) 0.0154 (10) −0.0137 (9)
S1 0.0703 (3) 0.0513 (3) 0.0463 (3) −0.0111 (3) 0.0173 (2) 0.0057 (2)
N1 0.0535 (10) 0.0439 (9) 0.0372 (8) −0.0022 (8) 0.0111 (7) 0.0016 (6)
O1 0.0912 (13) 0.0530 (10) 0.0380 (7) −0.0013 (9) 0.0208 (7) −0.0040 (7)
C1 0.0462 (10) 0.0442 (10) 0.0392 (9) 0.0031 (8) 0.0120 (7) 0.0018 (8)
C2 0.0510 (11) 0.0607 (13) 0.0571 (12) −0.0075 (13) 0.0088 (9) 0.0033 (13)
C3 0.0495 (13) 0.078 (2) 0.0591 (13) 0.0007 (13) 0.0028 (10) −0.0055 (13)
C4 0.0573 (13) 0.0851 (19) 0.0413 (11) 0.0148 (13) 0.0047 (9) −0.0017 (11)
C5 0.0678 (15) 0.0633 (14) 0.0416 (11) 0.0140 (12) 0.0195 (10) 0.0101 (10)
C6 0.0545 (12) 0.0476 (11) 0.0392 (9) 0.0058 (9) 0.0177 (8) 0.0028 (8)
C7 0.0532 (11) 0.0427 (10) 0.0363 (9) −0.0023 (9) 0.0137 (8) −0.0020 (7)
C8 0.0655 (14) 0.0476 (12) 0.0369 (10) −0.0071 (10) 0.0102 (9) −0.0073 (8)
C9 0.0584 (15) 0.089 (2) 0.0496 (13) −0.0059 (15) 0.0011 (10) −0.0111 (13)

Geometric parameters (Å, º)

F1—C9 1.3382 (10) C2—C3 1.379 (3)
F2—C9 1.3372 (10) C2—H2 0.96 (3)
F3—C9 1.3376 (10) C3—C4 1.372 (4)
S1—C6 1.731 (2) C3—H3 0.88 (4)
S1—C7 1.733 (2) C4—C5 1.377 (4)
N1—C7 1.292 (3) C4—H4 0.96 (3)
N1—C1 1.396 (2) C5—C6 1.400 (3)
O1—C8 1.385 (3) C5—H5 0.99 (4)
O1—H1O 0.84 (4) C7—C8 1.516 (3)
C1—C2 1.379 (3) C8—C9 1.509 (3)
C1—C6 1.395 (3) C8—H8 1.04 (3)
C6—S1—C7 88.89 (10) C1—C6—C5 121.4 (2)
C7—N1—C1 110.59 (17) C1—C6—S1 109.85 (15)
C8—O1—H1O 116 (3) C5—C6—S1 128.7 (2)
C2—C1—C6 119.94 (19) N1—C7—C8 123.09 (18)
C2—C1—N1 125.8 (2) N1—C7—S1 116.39 (14)
C6—C1—N1 114.27 (18) C8—C7—S1 120.51 (17)
C1—C2—C3 118.3 (3) O1—C8—C9 107.55 (18)
C1—C2—H2 116.4 (13) O1—C8—C7 111.31 (19)
C3—C2—H2 125.0 (14) C9—C8—C7 110.22 (16)
C4—C3—C2 121.8 (3) O1—C8—H8 108.9 (11)
C4—C3—H3 126 (2) C9—C8—H8 103.3 (13)
C2—C3—H3 112 (2) C7—C8—H8 115.0 (12)
C3—C4—C5 121.3 (2) F2—C9—F3 106.5 (2)
C3—C4—H4 118.2 (19) F2—C9—F1 106.24 (18)
C5—C4—H4 120.3 (18) F3—C9—F1 106.3 (2)
C4—C5—C6 117.2 (2) F2—C9—C8 111.38 (19)
C4—C5—H5 127.0 (15) F3—C9—C8 113.65 (17)
C6—C5—H5 115.7 (16) F1—C9—C8 112.25 (18)
C7—N1—C1—C2 −179.2 (2) C1—N1—C7—C8 178.7 (2)
C7—N1—C1—C6 −0.5 (3) C1—N1—C7—S1 −0.2 (2)
C6—C1—C2—C3 0.8 (4) C6—S1—C7—N1 0.62 (18)
N1—C1—C2—C3 179.4 (2) C6—S1—C7—C8 −178.34 (19)
C1—C2—C3—C4 −1.1 (4) N1—C7—C8—O1 −30.8 (3)
C2—C3—C4—C5 0.9 (4) S1—C7—C8—O1 148.13 (17)
C3—C4—C5—C6 −0.3 (4) N1—C7—C8—C9 88.5 (3)
C2—C1—C6—C5 −0.2 (3) S1—C7—C8—C9 −92.6 (2)
N1—C1—C6—C5 −179.1 (2) O1—C8—C9—F2 −61.2 (2)
C2—C1—C6—S1 179.74 (19) C7—C8—C9—F2 177.3 (2)
N1—C1—C6—S1 0.9 (2) O1—C8—C9—F3 59.1 (2)
C4—C5—C6—C1 0.0 (4) C7—C8—C9—F3 −62.4 (2)
C4—C5—C6—S1 −180.0 (2) O1—C8—C9—F1 179.82 (18)
C7—S1—C6—C1 −0.83 (16) C7—C8—C9—F1 58.3 (2)
C7—S1—C6—C5 179.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···N1i 0.84 (4) 1.96 (4) 2.781 (2) 166 (4)

Symmetry code: (i) −x+1, y+1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5717).

References

  1. Agilent (2012). CrysAlis CCD and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Kolodyazhnyi, O. I., Kolodyazhnaya, A. O. & Kukhar, V. P. (2006). Russ. J. Gen. Chem. 76, 1342–1343.
  4. Omote, M., Ando, A., Sato, K. & Kumadaki, I. (2001). Tetrahedron, 57, 8085–8094.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Xu, Q., Zhou, H., Geng, X. & Chen, P. (2009). Tetrahedron, 65, 2232–2238.
  7. Yamazaki, T., Mizutani, K. & Kitazume, T. (1993). J. Org. Chem. 58, 4346–4359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814016547/lh5717sup1.cif

e-70-0o946-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016547/lh5717Isup2.hkl

e-70-0o946-Isup2.hkl (135.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016547/lh5717Isup3.cml

. DOI: 10.1107/S1600536814016547/lh5717fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S1600536814016547/lh5717fig2.tif

Part of the crystal structure with hydrogen bonds shown by dashed lines. Only H atoms involved in H-bonds are shown.

CCDC reference: 1014380

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES