Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 16;70(Pt 9):o1009–o1010. doi: 10.1107/S1600536814017528

Crystal structure of 3-[4-(1-methyl­eth­yl)phen­yl]-1-(naphthalen-2-yl)prop-2-en-1-one

Sid Assia a, Messai Amel b,*, Ziani Nouara a, Mokhtari Mahieddine a, Lamara Kaddour a
PMCID: PMC4186083  PMID: 25309196

Abstract

The title compound, C22H20O, was synthesized by reacting 4-iso­propyl­benzaldehyde with 2-acetonaphtone by aldolic condensation under Claisen–Schmidt conditions. The mol­ecule consists of a naphthalene group and a benzene ring with a pendant isopropyl moiety, both rings bound by a propenone linker. The naphthalene ring system is almost planar [maximum deviation from the least-squares plane = 0.026 (10) Å] and subtends a dihedral angle of 52.31 (4)° with the benzene ring. The propenone linker, in turn, deviates slightly more from planarity [maximum deviation = 0.125 (18) Å] and has its least-squares plane oriented midway the former two, at 25.62 (6) and 28.02 (5)° from the naphthalene ring system and the benzene ring, respectively. Finally, the isopropyl group presents its CC2 plane almost perpendicular to the benzene ring, at 85.30 (4)°. No significant hydrogen bonding or π–π stacking inter­actions are found in the crystal structure.

Keywords: crystal structure, chalcones, prop-2-en-1-one, Claisen–Schmidt, aldolic condensation

Related literature  

For chalcones as important starting materials or inter­mediates for the synthesis of naturally occurring flavonoids, see: Geissmann (1962); Mabry et al. (1970); Harborne (1988, 1994); Wong (1970). For compilation and discussion of the syntheses of chalcones and their analogues, see: Dhar (1981); Lévai (1997).graphic file with name e-70-o1009-scheme1.jpg

Experimental  

Crystal data  

  • C22H20O

  • M r = 300.40

  • Monoclinic, Inline graphic

  • a = 5.8326 (2) Å

  • b = 17.8578 (6) Å

  • c = 15.6469 (5) Å

  • β = 91.136 (3)°

  • V = 1629.42 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 150 K

  • 0.60 × 0.17 × 0.17 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.794, T max = 1.000

  • 12851 measured reflections

  • 2871 independent reflections

  • 2659 reflections with I > 2sI)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.04

  • 2871 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017528/bg2534sup1.cif

e-70-o1009-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017528/bg2534Isup2.hkl

e-70-o1009-Isup2.hkl (138.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017528/bg2534Isup3.cml

. DOI: 10.1107/S1600536814017528/bg2534fig1.tif

The title compound with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1017044

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank le Ministére de l’enseignement supérieur et de la Recherche Scientifique–Algérie for financial support.

supplementary crystallographic information

S1. Chemical context

S2. Structural commentary

S3. Supra­molecular features

S4. Database survey

S5. Synthesis and crystallization

S6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

S7. Comment

Chalcones are versatile and convenient intermediates for the synthesis of a wide variety of heterocyclic compounds. The enone moiety of the molecule is a favourable unit for dipolar cycloaddition with numerous reagents providing heterocyclic compounds of different ring sizes with one or several heteroatoms. Their reactions with dinucleophiles usually result in the formation of polycyclic ring systems which may be the skeleton of important heterocyclic compounds.

Among the chalcones and their analogues are especially important starting materials or intermediates for the synthesis of naturally occurring flavonoids (Geissmann, 1962; Mabry et al.,1970; Harborne, 1988,1994; Wong, 1970) and various nitrogen-containing heterocyclic compounds. For this reason, their syntheses have been compiled and discussed in various accounts (Dhar et al., 1981; Lévai, 1997).

We report here the synthesis and the crystal structure determination of 3-[4-(1-methylethyl)phenyl]-1-(2-naphthalenyl)- 2-Propen-1-one (I). The title compound, C22H20O, was synthesized by reacting 4-isopropyl benzaldehyde with 2-acetonaphtone by aldolic condensation using Claisen-Schmidth conditions. The molecule consist basically of a naphthalene group, a benzene ring with a pendant isopropyl moiety, both rings bound by a propenone linker. The naphthalene and benzene rings are planar (maximum deviations from their L·S. planes: 0.026 (10) and 0.0148 (6) Å, respectively) subtending an angle of 52.31 (4)°. The propenone linker, in turn, deviates slightly more from planarityly (max.dev; 0.125 Å) and has its l.s. plane oriented midway the former two, at 25.62 (6) and 28.02 (5)° from each one, respectively. Finally, the isopropyl group presents its CC2 plane almost perpendicular to the benzene ring, at 85.30 (4)°. No significant hydrogen bonding nor π–π stacking interactions are found in the crystal structure.

S8. Experimental

A mixture of 2-acetonaphtone (0.01 mole) and 4-isopropyl benzaldehyde (0.01 mole) was stirred in ethanol (50 ml) and then a solution of 15 ml sodium hydroxide (0.04 mole) was added drop wase. The mixture was kept for four h at room temperature and then it was poured into crushed ice and acidified with dil. HCl. The product precipitates out as solid. Then it was filtered. Single yellow crystals of 3-[4-(1-methylethyl)phenyl]-1-(2-naphthalenyl)- 2-Propen-1-one were obtain after crystallized from ethyl acetate with 76% in yield.

S9. Refinement

H atoms were all located in a difference map, repositioned geometrically and further refined with riding constraints (C—H in the range 0.93–0.98 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom)

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C22H20O F(000) = 640
Mr = 300.40 Dx = 1.225 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 7372 reflections
a = 5.8326 (2) Å θ = 4.9–66.8°
b = 17.8578 (6) Å µ = 0.56 mm1
c = 15.6469 (5) Å T = 150 K
β = 91.136 (3)° Needle, colorless
V = 1629.42 (9) Å3 0.60 × 0.17 × 0.17 mm
Z = 4

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 2871 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2659 reflections with I > 2s˘I)
Mirror monochromator Rint = 0.035
Detector resolution: 10.4678 pixels mm-1 θmax = 67.8°, θmin = 3.8°
ω scans h = −6→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −21→20
Tmin = 0.794, Tmax = 1.000 l = −18→18
12851 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3775P] where P = (Fo2 + 2Fc2)/3
2871 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.18162 (14) 0.47189 (5) 0.89162 (6) 0.0419 (2)
C2 0.97778 (19) 0.48838 (6) 0.89245 (7) 0.0303 (3)
C3 0.79779 (19) 0.43015 (6) 0.89363 (7) 0.0299 (3)
H3A 0.6454 0.4433 0.8835 0.036*
C4 0.85268 (19) 0.35895 (6) 0.90914 (7) 0.0288 (3)
H4 1.0034 0.3498 0.9266 0.035*
C5 0.70261 (18) 0.29353 (6) 0.90177 (7) 0.0269 (2)
C6 0.48502 (19) 0.29638 (6) 0.86111 (7) 0.0286 (2)
H6 0.4267 0.3421 0.8424 0.034*
C7 0.35703 (19) 0.23184 (6) 0.84868 (7) 0.0293 (3)
H7 0.2147 0.2349 0.8211 0.035*
C8 0.43772 (19) 0.16242 (6) 0.87684 (7) 0.0300 (3)
C9 0.3002 (2) 0.09158 (7) 0.85949 (8) 0.0348 (3)
H9 0.1649 0.1054 0.8249 0.042*
C10 0.4352 (3) 0.03475 (8) 0.80940 (9) 0.0503 (4)
H10A 0.4867 0.0572 0.7575 0.075*
H10B 0.3391 −0.0075 0.7959 0.075*
H10C 0.5653 0.0184 0.8430 0.075*
C11 0.2174 (2) 0.05676 (7) 0.94176 (9) 0.0398 (3)
H11A 0.1308 0.0930 0.9729 0.060*
H11B 0.3470 0.0408 0.9759 0.060*
H11C 0.1220 0.0144 0.9285 0.060*
C12 0.6506 (2) 0.16017 (6) 0.92011 (8) 0.0337 (3)
H12 0.7051 0.1148 0.9413 0.040*
C13 0.78131 (19) 0.22435 (6) 0.93182 (7) 0.0312 (3)
H13 0.9229 0.2213 0.9600 0.037*
C14 0.90716 (18) 0.56875 (6) 0.88921 (7) 0.0276 (3)
C15 1.05481 (18) 0.61962 (6) 0.85525 (7) 0.0275 (2)
H15 1.1945 0.6031 0.8347 0.033*
C16 1.00104 (18) 0.69660 (6) 0.85048 (7) 0.0271 (2)
C17 1.1488 (2) 0.74932 (6) 0.81351 (7) 0.0320 (3)
H17 1.2870 0.7334 0.7910 0.038*
C18 1.0921 (2) 0.82339 (7) 0.81026 (8) 0.0371 (3)
H18 1.1918 0.8575 0.7858 0.045*
C19 0.8844 (2) 0.84836 (7) 0.84361 (8) 0.0392 (3)
H19 0.8469 0.8989 0.8411 0.047*
C20 0.7377 (2) 0.79899 (7) 0.87967 (8) 0.0354 (3)
H20 0.6007 0.8162 0.9019 0.042*
C21 0.79051 (19) 0.72157 (6) 0.88392 (7) 0.0289 (3)
C22 0.64154 (19) 0.66816 (7) 0.91904 (7) 0.0312 (3)
H22 0.5034 0.6840 0.9416 0.037*
C23 0.69527 (19) 0.59380 (6) 0.92065 (7) 0.0303 (3)
H23 0.5919 0.5595 0.9426 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0268 (5) 0.0322 (5) 0.0666 (6) 0.0005 (3) 0.0017 (4) 0.0070 (4)
C2 0.0276 (6) 0.0309 (6) 0.0323 (6) −0.0010 (5) −0.0008 (4) 0.0019 (5)
C3 0.0257 (6) 0.0300 (6) 0.0340 (6) −0.0014 (4) −0.0001 (4) 0.0000 (4)
C4 0.0255 (5) 0.0315 (6) 0.0295 (6) −0.0010 (4) 0.0004 (4) −0.0009 (4)
C5 0.0259 (6) 0.0272 (5) 0.0276 (5) −0.0001 (4) 0.0034 (4) −0.0007 (4)
C6 0.0281 (6) 0.0269 (5) 0.0310 (6) 0.0024 (4) 0.0004 (4) 0.0021 (4)
C7 0.0247 (5) 0.0327 (6) 0.0304 (6) −0.0010 (4) −0.0016 (4) 0.0020 (4)
C8 0.0297 (6) 0.0300 (6) 0.0304 (6) −0.0036 (4) 0.0013 (4) 0.0023 (4)
C9 0.0347 (6) 0.0309 (6) 0.0387 (6) −0.0067 (5) −0.0058 (5) 0.0042 (5)
C10 0.0622 (9) 0.0414 (7) 0.0477 (8) −0.0157 (6) 0.0102 (7) −0.0098 (6)
C11 0.0374 (7) 0.0346 (6) 0.0476 (7) −0.0070 (5) 0.0038 (5) 0.0040 (5)
C12 0.0325 (6) 0.0270 (6) 0.0414 (7) 0.0000 (5) −0.0036 (5) 0.0062 (5)
C13 0.0248 (6) 0.0322 (6) 0.0364 (6) 0.0006 (4) −0.0031 (4) 0.0027 (5)
C14 0.0259 (5) 0.0289 (6) 0.0281 (5) −0.0029 (4) −0.0025 (4) −0.0001 (4)
C15 0.0235 (5) 0.0304 (6) 0.0286 (5) 0.0000 (4) −0.0005 (4) −0.0018 (4)
C16 0.0267 (6) 0.0287 (6) 0.0257 (5) −0.0021 (4) −0.0032 (4) −0.0012 (4)
C17 0.0305 (6) 0.0325 (6) 0.0328 (6) −0.0038 (5) −0.0008 (5) 0.0008 (5)
C18 0.0422 (7) 0.0309 (6) 0.0380 (6) −0.0081 (5) −0.0029 (5) 0.0033 (5)
C19 0.0471 (7) 0.0260 (6) 0.0440 (7) 0.0010 (5) −0.0070 (6) −0.0028 (5)
C20 0.0351 (6) 0.0325 (6) 0.0383 (6) 0.0038 (5) −0.0031 (5) −0.0078 (5)
C21 0.0287 (6) 0.0306 (6) 0.0272 (5) −0.0002 (4) −0.0040 (4) −0.0035 (4)
C22 0.0261 (6) 0.0374 (6) 0.0304 (6) 0.0008 (5) 0.0024 (4) −0.0036 (5)
C23 0.0267 (6) 0.0330 (6) 0.0311 (6) −0.0044 (4) 0.0013 (4) 0.0010 (5)

Geometric parameters (Å, º)

O1—C2 1.2252 (14) C11—H11C 0.9600
C2—C3 1.4779 (16) C12—C13 1.3865 (16)
C2—C14 1.4938 (16) C12—H12 0.9300
C3—C4 1.3323 (16) C13—H13 0.9300
C3—H3A 0.9300 C14—C15 1.3666 (16)
C4—C5 1.4630 (15) C14—C23 1.4119 (16)
C4—H4 0.9300 C15—C16 1.4116 (16)
C5—C13 1.3962 (16) C15—H15 0.9300
C5—C6 1.4093 (16) C16—C17 1.4085 (16)
C6—C7 1.3848 (16) C16—C21 1.4163 (16)
C6—H6 0.9300 C17—C18 1.3643 (17)
C7—C8 1.3944 (16) C17—H17 0.9300
C7—H7 0.9300 C18—C19 1.4011 (19)
C8—C12 1.4031 (17) C18—H18 0.9300
C8—C9 1.5192 (15) C19—C20 1.3592 (18)
C9—C10 1.5126 (19) C19—H19 0.9300
C9—C11 1.5173 (17) C20—C21 1.4177 (16)
C9—H9 0.9800 C20—H20 0.9300
C10—H10A 0.9600 C21—C22 1.4091 (16)
C10—H10B 0.9600 C22—C23 1.3645 (17)
C10—H10C 0.9600 C22—H22 0.9300
C11—H11A 0.9600 C23—H23 0.9300
C11—H11B 0.9600
O1—C2—C3 121.38 (10) H11B—C11—H11C 109.5
O1—C2—C14 119.84 (10) C13—C12—C8 121.27 (11)
C3—C2—C14 118.75 (10) C13—C12—H12 119.4
C4—C3—C2 120.37 (10) C8—C12—H12 119.4
C4—C3—H3A 119.8 C12—C13—C5 120.71 (10)
C2—C3—H3A 119.8 C12—C13—H13 119.6
C3—C4—C5 127.34 (11) C5—C13—H13 119.6
C3—C4—H4 116.3 C15—C14—C23 119.18 (10)
C5—C4—H4 116.3 C15—C14—C2 118.46 (10)
C13—C5—C6 118.11 (10) C23—C14—C2 122.36 (10)
C13—C5—C4 119.20 (10) C14—C15—C16 121.79 (10)
C6—C5—C4 122.60 (10) C14—C15—H15 119.1
C7—C6—C5 120.76 (10) C16—C15—H15 119.1
C7—C6—H6 119.6 C17—C16—C15 122.37 (10)
C5—C6—H6 119.6 C17—C16—C21 118.91 (10)
C6—C7—C8 121.20 (10) C15—C16—C21 118.72 (10)
C6—C7—H7 119.4 C18—C17—C16 120.89 (11)
C8—C7—H7 119.4 C18—C17—H17 119.6
C7—C8—C12 117.89 (10) C16—C17—H17 119.6
C7—C8—C9 120.68 (10) C17—C18—C19 120.36 (11)
C12—C8—C9 121.42 (10) C17—C18—H18 119.8
C10—C9—C11 110.02 (11) C19—C18—H18 119.8
C10—C9—C8 111.90 (10) C20—C19—C18 120.29 (11)
C11—C9—C8 111.44 (10) C20—C19—H19 119.9
C10—C9—H9 107.8 C18—C19—H19 119.9
C11—C9—H9 107.8 C19—C20—C21 120.93 (11)
C8—C9—H9 107.8 C19—C20—H20 119.5
C9—C10—H10A 109.5 C21—C20—H20 119.5
C9—C10—H10B 109.5 C22—C21—C16 118.47 (10)
H10A—C10—H10B 109.5 C22—C21—C20 122.91 (11)
C9—C10—H10C 109.5 C16—C21—C20 118.62 (10)
H10A—C10—H10C 109.5 C23—C22—C21 121.52 (10)
H10B—C10—H10C 109.5 C23—C22—H22 119.2
C9—C11—H11A 109.5 C21—C22—H22 119.2
C9—C11—H11B 109.5 C22—C23—C14 120.27 (10)
H11A—C11—H11B 109.5 C22—C23—H23 119.9
C9—C11—H11C 109.5 C14—C23—H23 119.9
H11A—C11—H11C 109.5
O1—C2—C3—C4 12.04 (18) C3—C2—C14—C23 25.99 (16)
C14—C2—C3—C4 −170.07 (10) C23—C14—C15—C16 −0.19 (17)
C2—C3—C4—C5 −171.37 (10) C2—C14—C15—C16 −179.57 (10)
C3—C4—C5—C13 −171.33 (11) C14—C15—C16—C17 −178.21 (10)
C3—C4—C5—C6 12.27 (18) C14—C15—C16—C21 1.62 (16)
C13—C5—C6—C7 −2.28 (16) C15—C16—C17—C18 −179.72 (11)
C4—C5—C6—C7 174.15 (10) C21—C16—C17—C18 0.46 (17)
C5—C6—C7—C8 0.81 (17) C16—C17—C18—C19 −0.18 (18)
C6—C7—C8—C12 1.52 (17) C17—C18—C19—C20 0.11 (19)
C6—C7—C8—C9 −177.39 (10) C18—C19—C20—C21 −0.32 (19)
C7—C8—C9—C10 121.61 (13) C17—C16—C21—C22 178.59 (10)
C12—C8—C9—C10 −57.26 (15) C15—C16—C21—C22 −1.24 (15)
C7—C8—C9—C11 −114.72 (12) C17—C16—C21—C20 −0.65 (16)
C12—C8—C9—C11 66.40 (15) C15—C16—C21—C20 179.52 (10)
C7—C8—C12—C13 −2.40 (18) C19—C20—C21—C22 −178.61 (11)
C9—C8—C12—C13 176.50 (11) C19—C20—C21—C16 0.60 (17)
C8—C12—C13—C5 0.94 (18) C16—C21—C22—C23 −0.55 (17)
C6—C5—C13—C12 1.41 (16) C20—C21—C22—C23 178.65 (11)
C4—C5—C13—C12 −175.14 (10) C21—C22—C23—C14 2.02 (17)
O1—C2—C14—C15 23.27 (16) C15—C14—C23—C22 −1.64 (17)
C3—C2—C14—C15 −154.66 (10) C2—C14—C23—C22 177.71 (10)
O1—C2—C14—C23 −156.08 (11)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2534).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds New York: Wiley-Interscience.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Geissmann, T. A. (1962). The Chemistry of Flavonoid Compounds Oxford: Pergamon Press.
  6. Harborne, J. B. (1988). The Flavonoids: advances in research since 1980 London: Chapman and Hall.
  7. Harborne, J. B. (1994). The Flavonoids: advances in research since 1986 London: Chapman and Hall.
  8. Lévai, A. (1997). Khim. Geterotsikl. Soedin. pp. 747—759.
  9. Mabry, T. J., Markham, K. R. & Thomas, M. B. (1970). In The Systematic Identification of Flavonoids Berlin: Springer Verlag.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wong, E. (1970). Fortschr. Chem. Org. Naturst. 28, 1–73. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017528/bg2534sup1.cif

e-70-o1009-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017528/bg2534Isup2.hkl

e-70-o1009-Isup2.hkl (138.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017528/bg2534Isup3.cml

. DOI: 10.1107/S1600536814017528/bg2534fig1.tif

The title compound with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1017044

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES