Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o962–o963. doi: 10.1107/S1600536814017243

Crystal structure of 1-methyl-2-[(E)-2-(4-methyl­phen­yl)ethen­yl]-4-nitro-1H-imidazole

Hayette Alliouche a, Abdelmalek Bouraiou a, Sofiane Bouacida b,c,*, Hocine Merazig b, Ali Belfaitah a
PMCID: PMC4186084  PMID: 25309281

Abstract

In the title mol­ecule, C13H13N3O2, the planes of the benzene and imidazole rings form a dihedral angle of 7.72 (5)°. In the crystal, mol­ecules are linked by weak C—H⋯N and C—H⋯O hydrogen bonds, forming layers parallel to (100). A weak C—H⋯π inter­action connects these layers into a three-dimensional network. A π–π stacking inter­action, with a centroid–centroid distance of 3.5373 (9) Å, is also observed.

Keywords: crystal structure, imidazoles, nitro­imidazoles, pharmacophore, hydrogen bonding, π–π stacking inter­actions

Related literature  

For the synthesis and applications of imidazole derivatives, see: Mamedov et al. (2011); De Luca (2006); Teimouri & Chermahini (2011); Achar et al. (2010); Özkay et al. (2010); Shingalapur et al. (2009); Bhatia & Shanbhag (1984); Hoffer & Grunberg (1974). For the biological activity of nitro­imidazole derivatives, see: Trivedi et al. (2011); Leitsch et al. (2011); Luo et al. (2010); Saadeh et al. (2009); Thompson et al. (2009); Carvalho et al. (2006); Alliouche et al. (2014); Hunkeler et al. (1981); Tanigawara et al. (1999).graphic file with name e-70-0o962-scheme1.jpg

Experimental  

Crystal data  

  • C13H13N3O2

  • M r = 243.26

  • Monoclinic, Inline graphic

  • a = 7.1774 (8) Å

  • b = 15.7931 (16) Å

  • c = 10.7901 (11) Å

  • β = 101.798 (6)°

  • V = 1197.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.16 × 0.06 × 0.05 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.891, T max = 1.000

  • 9856 measured reflections

  • 2113 independent reflections

  • 1958 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.094

  • S = 1.05

  • 2113 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017243/lh5721sup1.cif

e-70-0o962-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017243/lh5721Isup2.hkl

e-70-0o962-Isup2.hkl (101.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017243/lh5721Isup3.cml

. DOI: 10.1107/S1600536814017243/lh5721fig1.tif

The mol­ecular structure structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

c . DOI: 10.1107/S1600536814017243/lh5721fig2.tif

The crystal packing of (I) viewed along the c axis showing weak C—H⋯O hydrogen bonds as dashed lines.

a . DOI: 10.1107/S1600536814017243/lh5721fig3.tif

The crystal packing of (I) viewed along the a axis showing weak C—H⋯O and C—H⋯N hydrogen bonds as dashed lines.

CCDC reference: 1016150

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.93 2.49 3.3702 (17) 159
C4—H4C⋯O1B i 0.96 2.54 3.2676 (17) 133
C13—H13B⋯O1A ii 0.96 2.59 3.5347 (19) 168
C4—H4BCg iii 0.96 2.61 3.4336 (16) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to all personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique, Algérie) for financial support.

supplementary crystallographic information

S1. Comment

The imidazole nucleus is an important pharmacophore found in a large number of natural products and synthetic compounds with a wide range of applications which make imidazole derivatives a subject of extensive investigations (Mamedov, et al., 2011; De Luca, 2006; Tanigawara, et al., 1999; Hunkeler, et al., 1981). For example, many synthetic imidazole derivatives are present in a number of bioactive compounds such as fungicides, herbicides, bactericides, anti-inflammators, analgesics and anticancers (Teimouri, et al., 2011; Achar, et al., 2010; Özkay, et al., 2010; Shingalapur, et al., 2009). Nitroimidazoles are a particular class of imidazoles principally composed of bioactive substances where their spectrum of action is closely associated with the position of the nitro group on the imidazole ring. Due to their significant biological activity, 5-nitroimidazoles are widely used in medicine as bactericide and parasiticide agents, some of them possess an original activity spectrum especially towards protozoa and strict anaerobic bacteria (Trivedi, et al., 2011; Bhatia, et al., 1984; Hoffer et al., 1974), and others exhibit cytotoxic and radiosensitization activities in vitro and in vivo (Leitsch, et al., 2011; Luo, et al., 2010). However, only few biological properties of 4-nitroimidazoles have been reported in the literature (Saadeh, et al., 2009; Thompson, et al., 2009; Carvalho, et al., 2006). The transposition of a nitro group in 5-nitroimidazoles is a known reaction and constitutes an efficient synthetic procedure of 4-nitroisomers. However, only few examples of this reaction are described using methyl iodide as catalyst (Alliouche, et al. 2014). We report in this paper, the synthesis and structure determination of (E)-1-methyl-2-[(4-methylphenyl)-1-ethenyl]-5-nitroimidazole (I). The later was easily prepared from its 5-nitro isomer via an intramolecular transposition of the nitro group. The reaction was carried out in nitrobenzene at 433K using catalytic amount of methyl iodide.

The molecular structure of (I) is shown in Fig. 1. The benzene and imidazole ring form a dihedral angle of 7.72 (5)°. The crystal packing can be described as double zig-zag layers parallel to (100) (Fig. 2) which are stabilized by weak C—H···N and C—H···O hydrogen bonds. A weak C—H···π interaction links the layers forming a three-dimensional network (Fig. 2 and Fig. 3). The crystal structure features one π–π stacking interaction: Cg1—Cg2 (-x, -y, 1-z) = 3.5373 (9) Å Where, Cg1 is the centroid of the imidazole ring (C1/C2/N3/C3/N2) and Cg2 is is the centroid of the phenyl ring (C7/C8/C9/C10/C11/C12).

S2. Experimental

The title compound (I) was obtained as yellow solid in 94% yield by heating the corresponding 5-nitroisomer at 433K in nitrobenzene in presence of methyl iodide as catalyst, during 24 h. Suitable crystals were obtained by slow evaporation of a solution of the title compound in water/methanol solution at room temperature.

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were located in difference Fourier maps but were introduced in calculated positions and treated as riding on their parent atom (with C—H = 0.93 and 0.96 Å and Uiso(H) = 1.5 or 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the c axis showing weak C—H···O hydrogen bonds as dashed lines.

Fig. 3.

Fig. 3.

The crystal packing of (I) viewed along the a axis showing weak C—H···O and C—H···N hydrogen bonds as dashed lines.

Crystal data

C13H13N3O2 F(000) = 512
Mr = 243.26 Dx = 1.35 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6402 reflections
a = 7.1774 (8) Å θ = 2.3–25.1°
b = 15.7931 (16) Å µ = 0.09 mm1
c = 10.7901 (11) Å T = 150 K
β = 101.798 (6)° Needle, colorless
V = 1197.3 (2) Å3 0.16 × 0.06 × 0.05 mm
Z = 4

Data collection

Bruker APEXII diffractometer 1958 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
CCD rotation images, thin slices scans θmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −8→8
Tmin = 0.891, Tmax = 1.000 k = −18→18
9856 measured reflections l = −12→12
2113 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.712P] where P = (Fo2 + 2Fc2)/3
2113 reflections (Δ/σ)max = 0.005
165 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.41984 (15) 0.20989 (7) 0.58571 (10) 0.0142 (3)
O1B 0.58852 (16) 0.36479 (6) 0.59448 (9) 0.0234 (3)
O1A 0.62422 (14) 0.36871 (6) 0.79969 (9) 0.0214 (3)
N3 0.37372 (15) 0.13617 (7) 0.75347 (10) 0.0136 (3)
N1 0.56745 (16) 0.33418 (7) 0.69608 (10) 0.0154 (3)
C12 0.16578 (19) −0.08459 (9) 0.37141 (12) 0.0173 (3)
H12 0.1714 −0.0947 0.457 0.021*
C1 0.47447 (18) 0.25439 (8) 0.69479 (12) 0.0138 (3)
C7 0.20697 (18) −0.00361 (8) 0.33138 (12) 0.0148 (3)
C3 0.35902 (18) 0.13706 (8) 0.62364 (12) 0.0136 (3)
C9 0.15285 (19) −0.05791 (9) 0.11606 (13) 0.0177 (3)
H9 0.1512 −0.0485 0.0308 0.021*
C5 0.29083 (19) 0.06490 (8) 0.54450 (12) 0.0157 (3)
H5 0.265 0.0148 0.5831 0.019*
C2 0.44778 (18) 0.21119 (8) 0.79988 (12) 0.0141 (3)
H2 0.4744 0.2293 0.8837 0.017*
C11 0.11685 (19) −0.14954 (9) 0.28511 (13) 0.0187 (3)
H11 0.0879 −0.2025 0.3138 0.022*
C6 0.26340 (18) 0.06724 (8) 0.41831 (12) 0.0157 (3)
H6 0.2821 0.1192 0.3821 0.019*
C10 0.10965 (19) −0.13770 (9) 0.15583 (13) 0.0182 (3)
C4 0.3300 (2) 0.06497 (8) 0.82950 (12) 0.0169 (3)
H4A 0.4249 0.0217 0.8324 0.025*
H4B 0.2073 0.0424 0.7921 0.025*
H4C 0.3293 0.0841 0.9139 0.025*
C13 0.0545 (2) −0.20885 (10) 0.06267 (14) 0.0255 (3)
H13A −0.0782 −0.2215 0.055 0.038*
H13B 0.1287 −0.2582 0.092 0.038*
H13C 0.0779 −0.1923 −0.0184 0.038*
C8 0.19843 (19) 0.00802 (9) 0.20157 (12) 0.0168 (3)
H8 0.224 0.0613 0.1722 0.02*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0171 (6) 0.0135 (6) 0.0119 (5) 0.0024 (4) 0.0024 (4) −0.0006 (4)
O1B 0.0390 (6) 0.0180 (5) 0.0150 (5) −0.0046 (4) 0.0093 (4) 0.0023 (4)
O1A 0.0312 (6) 0.0174 (5) 0.0144 (5) −0.0033 (4) 0.0019 (4) −0.0040 (4)
N3 0.0162 (6) 0.0129 (6) 0.0118 (5) 0.0014 (4) 0.0033 (4) 0.0011 (4)
N1 0.0199 (6) 0.0129 (6) 0.0136 (6) 0.0026 (4) 0.0037 (4) −0.0001 (4)
C12 0.0190 (7) 0.0184 (7) 0.0135 (6) 0.0014 (5) 0.0016 (5) 0.0007 (5)
C1 0.0164 (6) 0.0116 (6) 0.0135 (6) 0.0027 (5) 0.0034 (5) −0.0002 (5)
C7 0.0122 (6) 0.0175 (7) 0.0147 (6) 0.0012 (5) 0.0024 (5) −0.0013 (5)
C3 0.0137 (6) 0.0148 (7) 0.0123 (6) 0.0031 (5) 0.0028 (5) 0.0012 (5)
C9 0.0153 (7) 0.0249 (7) 0.0130 (6) 0.0016 (5) 0.0030 (5) −0.0021 (5)
C5 0.0172 (7) 0.0139 (6) 0.0163 (7) 0.0003 (5) 0.0040 (5) −0.0001 (5)
C2 0.0164 (6) 0.0134 (6) 0.0126 (6) 0.0028 (5) 0.0028 (5) −0.0015 (5)
C11 0.0182 (7) 0.0150 (7) 0.0216 (7) 0.0007 (5) 0.0014 (5) 0.0013 (5)
C6 0.0158 (7) 0.0142 (7) 0.0176 (7) 0.0002 (5) 0.0043 (5) 0.0010 (5)
C10 0.0126 (6) 0.0207 (7) 0.0202 (7) 0.0029 (5) 0.0008 (5) −0.0055 (6)
C4 0.0211 (7) 0.0165 (7) 0.0136 (6) −0.0008 (5) 0.0049 (5) 0.0029 (5)
C13 0.0260 (8) 0.0249 (8) 0.0238 (8) −0.0004 (6) 0.0009 (6) −0.0088 (6)
C8 0.0157 (7) 0.0181 (7) 0.0170 (7) −0.0003 (5) 0.0043 (5) 0.0011 (5)

Geometric parameters (Å, º)

N2—C3 1.3244 (17) C9—C10 1.387 (2)
N2—C1 1.3581 (17) C9—H9 0.93
O1B—N1 1.2354 (15) C5—C6 1.3358 (19)
O1A—N1 1.2357 (15) C5—H5 0.93
N3—C2 1.3522 (17) C2—H2 0.93
N3—C3 1.3832 (16) C11—C10 1.398 (2)
N3—C4 1.4631 (16) C11—H11 0.93
N1—C1 1.4246 (17) C6—H6 0.93
C12—C11 1.3816 (19) C10—C13 1.5057 (19)
C12—C7 1.4006 (19) C4—H4A 0.96
C12—H12 0.93 C4—H4B 0.96
C1—C2 1.3700 (18) C4—H4C 0.96
C7—C8 1.4015 (19) C13—H13A 0.96
C7—C6 1.4632 (18) C13—H13B 0.96
C3—C5 1.4479 (18) C13—H13C 0.96
C9—C8 1.3853 (19) C8—H8 0.93
C3—N2—C1 103.69 (11) N3—C2—H2 128
C2—N3—C3 108.00 (11) C1—C2—H2 128
C2—N3—C4 125.37 (11) C12—C11—C10 121.71 (13)
C3—N3—C4 126.51 (11) C12—C11—H11 119.1
O1B—N1—O1A 123.54 (11) C10—C11—H11 119.1
O1B—N1—C1 118.65 (11) C5—C6—C7 126.59 (13)
O1A—N1—C1 117.80 (11) C5—C6—H6 116.7
C11—C12—C7 120.71 (12) C7—C6—H6 116.7
C11—C12—H12 119.6 C9—C10—C11 117.74 (12)
C7—C12—H12 119.6 C9—C10—C13 121.09 (13)
N2—C1—C2 113.28 (12) C11—C10—C13 121.16 (13)
N2—C1—N1 121.19 (11) N3—C4—H4A 109.5
C2—C1—N1 125.23 (12) N3—C4—H4B 109.5
C12—C7—C8 117.33 (12) H4A—C4—H4B 109.5
C12—C7—C6 123.28 (12) N3—C4—H4C 109.5
C8—C7—C6 119.36 (12) H4A—C4—H4C 109.5
N2—C3—N3 111.11 (11) H4B—C4—H4C 109.5
N2—C3—C5 126.46 (12) C10—C13—H13A 109.5
N3—C3—C5 122.40 (11) C10—C13—H13B 109.5
C8—C9—C10 120.94 (12) H13A—C13—H13B 109.5
C8—C9—H9 119.5 C10—C13—H13C 109.5
C10—C9—H9 119.5 H13A—C13—H13C 109.5
C6—C5—C3 122.75 (12) H13B—C13—H13C 109.5
C6—C5—H5 118.6 C9—C8—C7 121.55 (13)
C3—C5—H5 118.6 C9—C8—H8 119.2
N3—C2—C1 103.93 (11) C7—C8—H8 119.2
C3—N2—C1—C2 −0.46 (15) C3—N3—C2—C1 0.06 (14)
C3—N2—C1—N1 173.57 (11) C4—N3—C2—C1 176.18 (12)
O1B—N1—C1—N2 3.97 (18) N2—C1—C2—N3 0.25 (15)
O1A—N1—C1—N2 −175.44 (11) N1—C1—C2—N3 −173.49 (12)
O1B—N1—C1—C2 177.24 (12) C7—C12—C11—C10 1.1 (2)
O1A—N1—C1—C2 −2.16 (19) C3—C5—C6—C7 175.78 (12)
C11—C12—C7—C8 −0.70 (19) C12—C7—C6—C5 2.8 (2)
C11—C12—C7—C6 −178.70 (12) C8—C7—C6—C5 −175.12 (13)
C1—N2—C3—N3 0.48 (14) C8—C9—C10—C11 −1.05 (19)
C1—N2—C3—C5 −177.57 (12) C8—C9—C10—C13 178.22 (12)
C2—N3—C3—N2 −0.35 (14) C12—C11—C10—C9 −0.2 (2)
C4—N3—C3—N2 −176.42 (11) C12—C11—C10—C13 −179.50 (13)
C2—N3—C3—C5 177.79 (12) C10—C9—C8—C7 1.5 (2)
C4—N3—C3—C5 1.73 (19) C12—C7—C8—C9 −0.57 (19)
N2—C3—C5—C6 −7.0 (2) C6—C7—C8—C9 177.51 (12)
N3—C3—C5—C6 175.11 (12)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
C2—H2···N2i 0.93 2.49 3.3702 (17) 159
C4—H4C···O1Bi 0.96 2.54 3.2676 (17) 133
C13—H13B···O1Aii 0.96 2.59 3.5347 (19) 168
C4—H4B···Cgiii 0.96 2.61 3.4336 (16) 144

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5721).

References

  1. Achar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048–2054. [DOI] [PubMed]
  2. Alliouche, H., Bouraiou, A., Bouacida, S., Bahnous, M., Roisnel, T. & Belfaitah, A. (2014). Lett. Org. Chem. 11, 174–179.
  3. Bhatia, S. C. & Shanbhag, V. D. (1984). J. Chromatogr. 3, 305, 325–334. [DOI] [PubMed]
  4. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  5. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  7. Carvalho, A. S., Gibaldi, D., Pinto, A. C., Bozza, M. & Boechat, N. (2006). Lett. Drug Des. Discov. 3, 98–101.
  8. De Luca, L. (2006). Curr. Med. Chem. 13, 1–23. [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Hoffer, M. & Grunberg, E. (1974). J. Med. Chem. 17, 1019–1020. [DOI] [PubMed]
  11. Hunkeler, W., Mohler, H., Pieri, L., Polc, P., Bonetti, E. P., Cumin, R., Schaffner, R. & Haefely, W. (1981). Nature, 290, 514–516. [DOI] [PubMed]
  12. Leitsch, D., Burgess, A. G., Dunn, L. A., Krauer, K. G., Tan, K., Duchêne, M., Upcroft, P., Eckmann, M. & Upcroft, J. A. (2011). J. Antimicrob. Chemother. 66, 1756–1765. [DOI] [PMC free article] [PubMed]
  13. Luo, Y., Li, H. K., Zhou, Y., Li, Z. L., Yan, T. & Zhu, H. L. (2010). Chem. Med. Chem. 5, 1110–1116. [DOI] [PubMed]
  14. Mamedov, V. A., Zhukova, N. A., Beschastnova, T. N., Gubaidullin, A. T., Rakov, D. V. & Rizvanov, I. Kh. (2011). Tetrahedron Lett. 52, 4280–4284.
  15. Özkay, Y., Iskar, I., Incesu, Z. & Akalin, G. E. (2010). Eur. J. Med. Chem. 45, 1–9. [DOI] [PubMed]
  16. Saadeh, H. A., Mosleh, I. M. & El-Abadelah, M. M. (2009). Molecules, 14, 2758–2767. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248. [DOI] [PubMed]
  20. Tanigawara, Y., Aoyama, N., Kita, T., Shirakawa, K., Komada, F., Kasuga, M. & Okumura, K. (1999). Clin. Pharmacol. Ther. 66, 528–534. [DOI] [PubMed]
  21. Teimouri, A. & Chermahini, A. N. (2011). J. Mol. Catal. A Chem. 346, 39–45.
  22. Thompson, A., Blaser, A., Anderson, R., Shinde, S., Franzblau, S., Ma, Z., Denny, W. & Palmer, B. (2009). J. Med. Chem. 52, 637–645. [DOI] [PubMed]
  23. Trivedi, M. N., Gabhe, S. Y., Vachhani, U. D., Brijesh Patel, R. & Shah, C. P. (2011). J. Chem. Pharm. Res. 3, 313–319.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017243/lh5721sup1.cif

e-70-0o962-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017243/lh5721Isup2.hkl

e-70-0o962-Isup2.hkl (101.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017243/lh5721Isup3.cml

. DOI: 10.1107/S1600536814017243/lh5721fig1.tif

The mol­ecular structure structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

c . DOI: 10.1107/S1600536814017243/lh5721fig2.tif

The crystal packing of (I) viewed along the c axis showing weak C—H⋯O hydrogen bonds as dashed lines.

a . DOI: 10.1107/S1600536814017243/lh5721fig3.tif

The crystal packing of (I) viewed along the a axis showing weak C—H⋯O and C—H⋯N hydrogen bonds as dashed lines.

CCDC reference: 1016150

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES