Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o964–o965. doi: 10.1107/S1600536814017309

Crystal structure of ethyl 2-chloro-5,8-di­meth­oxy­quinoline-3-carboxyl­ate

Hasna Hayour a, Abdelmalek Bouraiou a, Sofiane Bouacida b,c,*, Saida Benzerka b, Ali Belfaitah a
PMCID: PMC4186085  PMID: 25309282

Abstract

In the title compound, C14H14ClNO4, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.0142 Å) and ester planes is 18.99 (3)°. The C—O—C—Cm (m = meth­yl) torsion angle is −172.08 (10)°, indicating a trans conformation. In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯N inter­actions, generating layers lying parallel to (101). Aromatic π-π stacking [centroid–centroid distances = 3.557 (2) and 3.703 (2)Å] links the layers into a three-dimensional network.

Keywords: crystal structure, quinoline derivatives, ester, hydrogen bonding, π–π stacking

Related literature  

For the synthesis and applications of quinoline derivatives, see: Wang et al. (2011); Benzerka et al. (2012); Valdez et al. (2009). For our previous work, see: Bouraiou et al. (2012); Hayour et al. (2014); Benzerka et al. (2012).graphic file with name e-70-0o964-scheme1.jpg

Experimental  

Crystal data  

  • C14H14ClNO4

  • M r = 295.71

  • Triclinic, Inline graphic

  • a = 7.512 (4) Å

  • b = 9.759 (5) Å

  • c = 9.811 (5) Å

  • α = 76.071 (10)°

  • β = 72.021 (10)°

  • γ = 86.037 (10)°

  • V = 664.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 150 K

  • 0.25 × 0.14 × 0.12 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.690, T max = 0.747

  • 10769 measured reflections

  • 5204 independent reflections

  • 4090 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.103

  • S = 1.04

  • 5204 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.5 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402sup1.cif

e-70-0o964-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402Isup2.hkl

e-70-0o964-Isup2.hkl (249.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017309/hg5402Isup3.cml

. DOI: 10.1107/S1600536814017309/hg5402fig1.tif

(Farrugia, 2012) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

b . DOI: 10.1107/S1600536814017309/hg5402fig2.tif

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [C—H⋯O in red and C—H⋯N in black] as dashed line.

CCDC reference: 1016211

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.93 2.56 3.482 (2) 173
C14—H14C⋯N1ii 0.96 2.61 3.476 (2) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to all personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

supplementary crystallographic information

S1. Comment

Quinolines have attracted considerable interest for many years due to their presence in the skeleton of a large number of bioactive compounds and natural products (Wang, et al. 2011), such as antibacterial (Benzerka, et al.2012). in going with our investigation, recently, we have reported the synthesis and structure determination of some new quinoline compounds (Hayour, et al., 2014; Bouraiou, et al. 2012). In this paper, we describe the synthesis and the structure determination of ethyl 2-chloro-5,8-dimethoxyquinoline-3-carboxylate (I) which obtained in one step, by addition of NaCN in presence of manganese dioxide in absolute ethanol to 2-chloro-5,8-dimethoxyquinoline-3-carbaldehyde. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the quinoline ring is four time substituted by two methoxy, one chlore and one ethyl carboxylate. The two rings of quinolyl moiety are fused in an axial fashion and form dihedral angle of 1.75 (3) Å. The crystal packing can be described as double layers parallel to (101) plane, along the b axis (Fig. 2). It is stabilized by intermolecular hydrogen bond (N—H···O and C—H···O) and strong π–π stacking, resulting in the formation of infinite a three-dimensional network linking these layers together and reinforces cohesion of the structure (Fig. 2). Hydrogen-bonding parameters are listed in Table 1.

S2. Experimental

To a cold solution of NaCN (3 mmol) in absolute ethanol (15 mL), a mixture of 2-chloro-5,8-dimethoxy quinolin-3-carbaldehyde (1 mmol) and manganese dioxide (6.7 mmol) was added at 0°C, then the reaction mixture was stirred at 25°C during 3 h. After complexion, the title compound was obtained by simple filtration through a small column packed with 4 cm of celite and 3 cm of silica gel using CH2Cl2 as eluant (Valdez, et al. 2009).

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene) and Uiso(H) = 1.5 or 1.2 (carrier atom).

Figures

Fig. 1.

Fig. 1.

(Farrugia, 2012) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [C—H···O in red and C—H···N in black] as dashed line.

Crystal data

C14H14ClNO4 Z = 2
Mr = 295.71 F(000) = 308
Triclinic, P1 Dx = 1.479 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.512 (4) Å Cell parameters from 4109 reflections
b = 9.759 (5) Å θ = 2.7–34.1°
c = 9.811 (5) Å µ = 0.30 mm1
α = 76.071 (10)° T = 150 K
β = 72.021 (10)° Prism, colorless
γ = 86.037 (10)° 0.25 × 0.14 × 0.12 mm
V = 664.0 (6) Å3

Data collection

Bruker APEXII diffractometer 4090 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
CCD rotation images, thin slices scans θmax = 34.7°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −11→11
Tmin = 0.690, Tmax = 0.747 k = −15→15
10769 measured reflections l = −15→15
5204 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.079P] where P = (Fo2 + 2Fc2)/3
5204 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.5 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.27548 (18) 1.02335 (11) 0.38370 (13) 0.0317 (2)
H1B 1.3474 1.0184 0.4504 0.048*
H1A 1.1478 1.0451 0.4304 0.048*
H1C 1.3262 1.0958 0.2965 0.048*
C2 1.28321 (17) 0.88354 (11) 0.34275 (11) 0.0266 (2)
H2A 1.2118 0.8873 0.2747 0.032*
H2B 1.4116 0.8599 0.2961 0.032*
C3 1.21881 (13) 0.64349 (10) 0.46758 (10) 0.01689 (16)
C4 1.11813 (13) 0.54830 (9) 0.61114 (10) 0.01547 (15)
C5 1.14674 (13) 0.39997 (10) 0.64961 (10) 0.01641 (16)
C6 0.92888 (13) 0.37156 (9) 0.87752 (10) 0.01595 (16)
C7 0.83649 (14) 0.28087 (10) 1.01633 (10) 0.01932 (17)
C8 0.82466 (19) 0.05352 (12) 1.17645 (13) 0.0316 (2)
H8A 0.8799 −0.0381 1.176 0.047*
H8B 0.6908 0.0448 1.2073 0.047*
H8C 0.8618 0.0943 1.2434 0.047*
C9 0.70785 (14) 0.33822 (11) 1.12113 (10) 0.02025 (18)
H9 0.6474 0.2795 1.2116 0.024*
C10 0.66446 (13) 0.48421 (11) 1.09552 (10) 0.01941 (17)
H10 0.5761 0.5196 1.1683 0.023*
C11 0.75286 (13) 0.57316 (10) 0.96332 (10) 0.01729 (16)
C12 0.88663 (12) 0.51757 (9) 0.85187 (10) 0.01559 (16)
C13 0.98519 (13) 0.60393 (9) 0.71557 (10) 0.01569 (16)
H13 0.9603 0.7001 0.6955 0.019*
C14 0.61166 (16) 0.78024 (12) 1.03759 (11) 0.0250 (2)
H14A 0.4863 0.7439 1.0691 0.038*
H14B 0.6108 0.8806 0.9999 0.038*
H14C 0.661 0.7598 1.1196 0.038*
N1 1.05905 (11) 0.31542 (8) 0.77389 (9) 0.01767 (15)
O1 1.20348 (11) 0.77897 (8) 0.47853 (8) 0.02506 (16)
O2 0.88630 (12) 0.14209 (8) 1.03191 (8) 0.02716 (17)
O3 1.30129 (11) 0.60788 (8) 0.35513 (8) 0.02479 (16)
O4 0.72630 (11) 0.71537 (8) 0.92457 (8) 0.02404 (16)
Cl1 1.31414 (4) 0.31664 (3) 0.52818 (3) 0.02578 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0359 (6) 0.0187 (5) 0.0298 (5) −0.0004 (4) 0.0026 (5) −0.0019 (4)
C2 0.0336 (6) 0.0190 (4) 0.0186 (4) −0.0029 (4) 0.0014 (4) 0.0003 (3)
C3 0.0171 (4) 0.0168 (4) 0.0160 (4) −0.0001 (3) −0.0032 (3) −0.0043 (3)
C4 0.0161 (4) 0.0154 (4) 0.0144 (4) 0.0003 (3) −0.0030 (3) −0.0044 (3)
C5 0.0173 (4) 0.0158 (4) 0.0164 (4) 0.0020 (3) −0.0038 (3) −0.0064 (3)
C6 0.0172 (4) 0.0150 (4) 0.0156 (4) −0.0006 (3) −0.0043 (3) −0.0040 (3)
C7 0.0221 (4) 0.0163 (4) 0.0184 (4) −0.0029 (3) −0.0048 (3) −0.0028 (3)
C8 0.0421 (7) 0.0189 (5) 0.0245 (5) −0.0025 (4) −0.0018 (5) 0.0024 (4)
C9 0.0207 (4) 0.0213 (4) 0.0160 (4) −0.0050 (3) −0.0021 (3) −0.0024 (3)
C10 0.0176 (4) 0.0231 (4) 0.0160 (4) −0.0005 (3) −0.0017 (3) −0.0060 (3)
C11 0.0174 (4) 0.0179 (4) 0.0157 (4) 0.0019 (3) −0.0033 (3) −0.0051 (3)
C12 0.0153 (4) 0.0163 (4) 0.0144 (4) −0.0002 (3) −0.0030 (3) −0.0041 (3)
C13 0.0170 (4) 0.0140 (4) 0.0149 (4) 0.0006 (3) −0.0030 (3) −0.0036 (3)
C14 0.0278 (5) 0.0267 (5) 0.0207 (4) 0.0105 (4) −0.0046 (4) −0.0120 (4)
N1 0.0199 (4) 0.0154 (3) 0.0174 (3) 0.0006 (3) −0.0046 (3) −0.0047 (3)
O1 0.0331 (4) 0.0153 (3) 0.0183 (3) −0.0012 (3) 0.0037 (3) −0.0026 (2)
O2 0.0384 (4) 0.0146 (3) 0.0212 (3) −0.0004 (3) −0.0009 (3) −0.0010 (3)
O3 0.0300 (4) 0.0243 (4) 0.0163 (3) −0.0032 (3) 0.0012 (3) −0.0075 (3)
O4 0.0294 (4) 0.0186 (3) 0.0183 (3) 0.0073 (3) 0.0005 (3) −0.0054 (3)
Cl1 0.02904 (13) 0.02190 (12) 0.02243 (12) 0.00813 (9) −0.00059 (9) −0.00934 (9)

Geometric parameters (Å, º)

C1—C2 1.5050 (17) C7—C9 1.3760 (14)
C1—H1B 0.96 C8—O2 1.4257 (14)
C1—H1A 0.96 C8—H8A 0.96
C1—H1C 0.96 C8—H8B 0.96
C2—O1 1.4534 (13) C8—H8C 0.96
C2—H2A 0.97 C9—C10 1.4189 (15)
C2—H2B 0.97 C9—H9 0.93
C3—O3 1.2062 (12) C10—C11 1.3722 (14)
C3—O1 1.3463 (13) C10—H10 0.93
C3—C4 1.4928 (13) C11—O4 1.3656 (13)
C4—C13 1.3796 (13) C11—C12 1.4254 (13)
C4—C5 1.4241 (14) C12—C13 1.4068 (13)
C5—N1 1.3025 (13) C13—H13 0.93
C5—Cl1 1.7500 (10) C14—O4 1.4301 (12)
C6—N1 1.3677 (12) C14—H14A 0.96
C6—C12 1.4173 (14) C14—H14B 0.96
C6—C7 1.4286 (14) C14—H14C 0.96
C7—O2 1.3650 (14)
C2—C1—H1B 109.5 H8A—C8—H8B 109.5
C2—C1—H1A 109.5 O2—C8—H8C 109.5
H1B—C1—H1A 109.5 H8A—C8—H8C 109.5
C2—C1—H1C 109.5 H8B—C8—H8C 109.5
H1B—C1—H1C 109.5 C7—C9—C10 122.07 (9)
H1A—C1—H1C 109.5 C7—C9—H9 119
O1—C2—C1 106.85 (9) C10—C9—H9 119
O1—C2—H2A 110.4 C11—C10—C9 120.01 (9)
C1—C2—H2A 110.4 C11—C10—H10 120
O1—C2—H2B 110.4 C9—C10—H10 120
C1—C2—H2B 110.4 O4—C11—C10 126.18 (8)
H2A—C2—H2B 108.6 O4—C11—C12 114.27 (8)
O3—C3—O1 123.25 (9) C10—C11—C12 119.55 (9)
O3—C3—C4 126.28 (9) C13—C12—C6 117.50 (8)
O1—C3—C4 110.46 (8) C13—C12—C11 122.18 (9)
C13—C4—C5 116.02 (8) C6—C12—C11 120.29 (8)
C13—C4—C3 119.42 (9) C4—C13—C12 121.12 (9)
C5—C4—C3 124.56 (8) C4—C13—H13 119.4
N1—C5—C4 125.27 (8) C12—C13—H13 119.4
N1—C5—Cl1 114.12 (7) O4—C14—H14A 109.5
C4—C5—Cl1 120.60 (7) O4—C14—H14B 109.5
N1—C6—C12 121.71 (8) H14A—C14—H14B 109.5
N1—C6—C7 118.96 (9) O4—C14—H14C 109.5
C12—C6—C7 119.31 (8) H14A—C14—H14C 109.5
O2—C7—C9 125.81 (9) H14B—C14—H14C 109.5
O2—C7—C6 115.43 (9) C5—N1—C6 118.38 (8)
C9—C7—C6 118.76 (9) C3—O1—C2 115.86 (8)
O2—C8—H8A 109.5 C7—O2—C8 116.99 (8)
O2—C8—H8B 109.5 C11—O4—C14 116.88 (8)
O3—C3—C4—C13 −160.43 (10) C7—C6—C12—C11 −0.20 (13)
O1—C3—C4—C13 18.58 (12) O4—C11—C12—C13 1.56 (13)
O3—C3—C4—C5 18.55 (16) C10—C11—C12—C13 −178.38 (9)
O1—C3—C4—C5 −162.43 (9) O4—C11—C12—C6 179.62 (8)
C13—C4—C5—N1 −0.45 (14) C10—C11—C12—C6 −0.32 (14)
C3—C4—C5—N1 −179.46 (9) C5—C4—C13—C12 0.60 (13)
C13—C4—C5—Cl1 −178.93 (7) C3—C4—C13—C12 179.67 (8)
C3—C4—C5—Cl1 2.06 (13) C6—C12—C13—C4 −0.11 (13)
N1—C6—C7—O2 −1.04 (13) C11—C12—C13—C4 178.00 (9)
C12—C6—C7—O2 −179.64 (8) C4—C5—N1—C6 −0.23 (14)
N1—C6—C7—C9 178.96 (9) Cl1—C5—N1—C6 178.33 (7)
C12—C6—C7—C9 0.36 (14) C12—C6—N1—C5 0.77 (13)
O2—C7—C9—C10 179.98 (9) C7—C6—N1—C5 −177.79 (9)
C6—C7—C9—C10 −0.02 (15) O3—C3—O1—C2 3.72 (15)
C7—C9—C10—C11 −0.50 (15) C4—C3—O1—C2 −175.33 (8)
C9—C10—C11—O4 −179.27 (9) C1—C2—O1—C3 −172.08 (10)
C9—C10—C11—C12 0.66 (14) C9—C7—O2—C8 −11.40 (15)
N1—C6—C12—C13 −0.60 (13) C6—C7—O2—C8 168.60 (9)
C7—C6—C12—C13 177.95 (9) C10—C11—O4—C14 7.48 (15)
N1—C6—C12—C11 −178.76 (9) C12—C11—O4—C14 −172.46 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···O3i 0.93 2.56 3.482 (2) 173
C14—H14C···N1ii 0.96 2.61 3.476 (2) 150
C13—H13···O1 0.93 2.34 2.6713 (19) 101
C13—H13···O4 0.93 2.42 2.7366 (19) 100

Symmetry codes: (i) x−1, y, z+1; (ii) −x+2, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5402).

References

  1. Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.
  2. Bouraiou, A., Bouacida, S., Bertrand, C., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1701–o1702. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  4. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hayour, H., Bouraiou, A., Bouacida, S., Benzerka, S. & Belfaitah, A. (2014). Acta Cryst. E70, o195–o196. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Valdez, D., Rodrigue-Morales, S., Hermandez-Copos, A., Hernandez-Luis, F., Ypez-Mulian, L., Tapia-Contreras, A. & Castillo, R. (2009). Bioorg. Med. Chem. 17, 1724–1730. [DOI] [PubMed]
  11. Wang, X. J., Gong, D. L., Wang, J. D., Zhang, J., Liu, C. X. & Xiang, W. S. (2011). Bioorg. Med. Chem. Lett. 21, 2313–2315. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402sup1.cif

e-70-0o964-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402Isup2.hkl

e-70-0o964-Isup2.hkl (249.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017309/hg5402Isup3.cml

. DOI: 10.1107/S1600536814017309/hg5402fig1.tif

(Farrugia, 2012) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

b . DOI: 10.1107/S1600536814017309/hg5402fig2.tif

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [C—H⋯O in red and C—H⋯N in black] as dashed line.

CCDC reference: 1016211

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES