Abstract
In the title compound, C14H14ClNO4, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.0142 Å) and ester planes is 18.99 (3)°. The C—O—C—Cm (m = methyl) torsion angle is −172.08 (10)°, indicating a trans conformation. In the crystal, the molecules are linked by C—H⋯O and C—H⋯N interactions, generating layers lying parallel to (101). Aromatic π-π stacking [centroid–centroid distances = 3.557 (2) and 3.703 (2)Å] links the layers into a three-dimensional network.
Keywords: crystal structure, quinoline derivatives, ester, hydrogen bonding, π–π stacking
Related literature
For the synthesis and applications of quinoline derivatives, see: Wang et al. (2011 ▶); Benzerka et al. (2012 ▶); Valdez et al. (2009 ▶). For our previous work, see: Bouraiou et al. (2012 ▶); Hayour et al. (2014 ▶); Benzerka et al. (2012 ▶).
Experimental
Crystal data
C14H14ClNO4
M r = 295.71
Triclinic,
a = 7.512 (4) Å
b = 9.759 (5) Å
c = 9.811 (5) Å
α = 76.071 (10)°
β = 72.021 (10)°
γ = 86.037 (10)°
V = 664.0 (6) Å3
Z = 2
Mo Kα radiation
μ = 0.30 mm−1
T = 150 K
0.25 × 0.14 × 0.12 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002 ▶) T min = 0.690, T max = 0.747
10769 measured reflections
5204 independent reflections
4090 reflections with I > 2σ(I)
R int = 0.024
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.103
S = 1.04
5204 reflections
184 parameters
H-atom parameters constrained
Δρmax = 0.5 e Å−3
Δρmin = −0.24 e Å−3
Data collection: APEX2 (Bruker, 2006 ▶); cell refinement: SAINT (Bruker, 2006 ▶); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶) and DIAMOND (Brandenburg & Berndt, 2001 ▶); software used to prepare material for publication: WinGX (Farrugia, 2012 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017309/hg5402Isup3.cml
. DOI: 10.1107/S1600536814017309/hg5402fig1.tif
(Farrugia, 2012) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
b . DOI: 10.1107/S1600536814017309/hg5402fig2.tif
(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [C—H⋯O in red and C—H⋯N in black] as dashed line.
CCDC reference: 1016211
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C10—H10⋯O3i | 0.93 | 2.56 | 3.482 (2) | 173 |
| C14—H14C⋯N1ii | 0.96 | 2.61 | 3.476 (2) | 150 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
We are grateful to all personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
supplementary crystallographic information
S1. Comment
Quinolines have attracted considerable interest for many years due to their presence in the skeleton of a large number of bioactive compounds and natural products (Wang, et al. 2011), such as antibacterial (Benzerka, et al.2012). in going with our investigation, recently, we have reported the synthesis and structure determination of some new quinoline compounds (Hayour, et al., 2014; Bouraiou, et al. 2012). In this paper, we describe the synthesis and the structure determination of ethyl 2-chloro-5,8-dimethoxyquinoline-3-carboxylate (I) which obtained in one step, by addition of NaCN in presence of manganese dioxide in absolute ethanol to 2-chloro-5,8-dimethoxyquinoline-3-carbaldehyde. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the quinoline ring is four time substituted by two methoxy, one chlore and one ethyl carboxylate. The two rings of quinolyl moiety are fused in an axial fashion and form dihedral angle of 1.75 (3) Å. The crystal packing can be described as double layers parallel to (101) plane, along the b axis (Fig. 2). It is stabilized by intermolecular hydrogen bond (N—H···O and C—H···O) and strong π–π stacking, resulting in the formation of infinite a three-dimensional network linking these layers together and reinforces cohesion of the structure (Fig. 2). Hydrogen-bonding parameters are listed in Table 1.
S2. Experimental
To a cold solution of NaCN (3 mmol) in absolute ethanol (15 mL), a mixture of 2-chloro-5,8-dimethoxy quinolin-3-carbaldehyde (1 mmol) and manganese dioxide (6.7 mmol) was added at 0°C, then the reaction mixture was stirred at 25°C during 3 h. After complexion, the title compound was obtained by simple filtration through a small column packed with 4 cm of celite and 3 cm of silica gel using CH2Cl2 as eluant (Valdez, et al. 2009).
S3. Refinement
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene) and Uiso(H) = 1.5 or 1.2 (carrier atom).
Figures
Fig. 1.
(Farrugia, 2012) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
Fig. 2.

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [C—H···O in red and C—H···N in black] as dashed line.
Crystal data
| C14H14ClNO4 | Z = 2 |
| Mr = 295.71 | F(000) = 308 |
| Triclinic, P1 | Dx = 1.479 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.512 (4) Å | Cell parameters from 4109 reflections |
| b = 9.759 (5) Å | θ = 2.7–34.1° |
| c = 9.811 (5) Å | µ = 0.30 mm−1 |
| α = 76.071 (10)° | T = 150 K |
| β = 72.021 (10)° | Prism, colorless |
| γ = 86.037 (10)° | 0.25 × 0.14 × 0.12 mm |
| V = 664.0 (6) Å3 |
Data collection
| Bruker APEXII diffractometer | 4090 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.024 |
| CCD rotation images, thin slices scans | θmax = 34.7°, θmin = 2.7° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −11→11 |
| Tmin = 0.690, Tmax = 0.747 | k = −15→15 |
| 10769 measured reflections | l = −15→15 |
| 5204 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.103 | H-atom parameters constrained |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.079P] where P = (Fo2 + 2Fc2)/3 |
| 5204 reflections | (Δ/σ)max = 0.001 |
| 184 parameters | Δρmax = 0.5 e Å−3 |
| 0 restraints | Δρmin = −0.24 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 1.27548 (18) | 1.02335 (11) | 0.38370 (13) | 0.0317 (2) | |
| H1B | 1.3474 | 1.0184 | 0.4504 | 0.048* | |
| H1A | 1.1478 | 1.0451 | 0.4304 | 0.048* | |
| H1C | 1.3262 | 1.0958 | 0.2965 | 0.048* | |
| C2 | 1.28321 (17) | 0.88354 (11) | 0.34275 (11) | 0.0266 (2) | |
| H2A | 1.2118 | 0.8873 | 0.2747 | 0.032* | |
| H2B | 1.4116 | 0.8599 | 0.2961 | 0.032* | |
| C3 | 1.21881 (13) | 0.64349 (10) | 0.46758 (10) | 0.01689 (16) | |
| C4 | 1.11813 (13) | 0.54830 (9) | 0.61114 (10) | 0.01547 (15) | |
| C5 | 1.14674 (13) | 0.39997 (10) | 0.64961 (10) | 0.01641 (16) | |
| C6 | 0.92888 (13) | 0.37156 (9) | 0.87752 (10) | 0.01595 (16) | |
| C7 | 0.83649 (14) | 0.28087 (10) | 1.01633 (10) | 0.01932 (17) | |
| C8 | 0.82466 (19) | 0.05352 (12) | 1.17645 (13) | 0.0316 (2) | |
| H8A | 0.8799 | −0.0381 | 1.176 | 0.047* | |
| H8B | 0.6908 | 0.0448 | 1.2073 | 0.047* | |
| H8C | 0.8618 | 0.0943 | 1.2434 | 0.047* | |
| C9 | 0.70785 (14) | 0.33822 (11) | 1.12113 (10) | 0.02025 (18) | |
| H9 | 0.6474 | 0.2795 | 1.2116 | 0.024* | |
| C10 | 0.66446 (13) | 0.48421 (11) | 1.09552 (10) | 0.01941 (17) | |
| H10 | 0.5761 | 0.5196 | 1.1683 | 0.023* | |
| C11 | 0.75286 (13) | 0.57316 (10) | 0.96332 (10) | 0.01729 (16) | |
| C12 | 0.88663 (12) | 0.51757 (9) | 0.85187 (10) | 0.01559 (16) | |
| C13 | 0.98519 (13) | 0.60393 (9) | 0.71557 (10) | 0.01569 (16) | |
| H13 | 0.9603 | 0.7001 | 0.6955 | 0.019* | |
| C14 | 0.61166 (16) | 0.78024 (12) | 1.03759 (11) | 0.0250 (2) | |
| H14A | 0.4863 | 0.7439 | 1.0691 | 0.038* | |
| H14B | 0.6108 | 0.8806 | 0.9999 | 0.038* | |
| H14C | 0.661 | 0.7598 | 1.1196 | 0.038* | |
| N1 | 1.05905 (11) | 0.31542 (8) | 0.77389 (9) | 0.01767 (15) | |
| O1 | 1.20348 (11) | 0.77897 (8) | 0.47853 (8) | 0.02506 (16) | |
| O2 | 0.88630 (12) | 0.14209 (8) | 1.03191 (8) | 0.02716 (17) | |
| O3 | 1.30129 (11) | 0.60788 (8) | 0.35513 (8) | 0.02479 (16) | |
| O4 | 0.72630 (11) | 0.71537 (8) | 0.92457 (8) | 0.02404 (16) | |
| Cl1 | 1.31414 (4) | 0.31664 (3) | 0.52818 (3) | 0.02578 (7) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0359 (6) | 0.0187 (5) | 0.0298 (5) | −0.0004 (4) | 0.0026 (5) | −0.0019 (4) |
| C2 | 0.0336 (6) | 0.0190 (4) | 0.0186 (4) | −0.0029 (4) | 0.0014 (4) | 0.0003 (3) |
| C3 | 0.0171 (4) | 0.0168 (4) | 0.0160 (4) | −0.0001 (3) | −0.0032 (3) | −0.0043 (3) |
| C4 | 0.0161 (4) | 0.0154 (4) | 0.0144 (4) | 0.0003 (3) | −0.0030 (3) | −0.0044 (3) |
| C5 | 0.0173 (4) | 0.0158 (4) | 0.0164 (4) | 0.0020 (3) | −0.0038 (3) | −0.0064 (3) |
| C6 | 0.0172 (4) | 0.0150 (4) | 0.0156 (4) | −0.0006 (3) | −0.0043 (3) | −0.0040 (3) |
| C7 | 0.0221 (4) | 0.0163 (4) | 0.0184 (4) | −0.0029 (3) | −0.0048 (3) | −0.0028 (3) |
| C8 | 0.0421 (7) | 0.0189 (5) | 0.0245 (5) | −0.0025 (4) | −0.0018 (5) | 0.0024 (4) |
| C9 | 0.0207 (4) | 0.0213 (4) | 0.0160 (4) | −0.0050 (3) | −0.0021 (3) | −0.0024 (3) |
| C10 | 0.0176 (4) | 0.0231 (4) | 0.0160 (4) | −0.0005 (3) | −0.0017 (3) | −0.0060 (3) |
| C11 | 0.0174 (4) | 0.0179 (4) | 0.0157 (4) | 0.0019 (3) | −0.0033 (3) | −0.0051 (3) |
| C12 | 0.0153 (4) | 0.0163 (4) | 0.0144 (4) | −0.0002 (3) | −0.0030 (3) | −0.0041 (3) |
| C13 | 0.0170 (4) | 0.0140 (4) | 0.0149 (4) | 0.0006 (3) | −0.0030 (3) | −0.0036 (3) |
| C14 | 0.0278 (5) | 0.0267 (5) | 0.0207 (4) | 0.0105 (4) | −0.0046 (4) | −0.0120 (4) |
| N1 | 0.0199 (4) | 0.0154 (3) | 0.0174 (3) | 0.0006 (3) | −0.0046 (3) | −0.0047 (3) |
| O1 | 0.0331 (4) | 0.0153 (3) | 0.0183 (3) | −0.0012 (3) | 0.0037 (3) | −0.0026 (2) |
| O2 | 0.0384 (4) | 0.0146 (3) | 0.0212 (3) | −0.0004 (3) | −0.0009 (3) | −0.0010 (3) |
| O3 | 0.0300 (4) | 0.0243 (4) | 0.0163 (3) | −0.0032 (3) | 0.0012 (3) | −0.0075 (3) |
| O4 | 0.0294 (4) | 0.0186 (3) | 0.0183 (3) | 0.0073 (3) | 0.0005 (3) | −0.0054 (3) |
| Cl1 | 0.02904 (13) | 0.02190 (12) | 0.02243 (12) | 0.00813 (9) | −0.00059 (9) | −0.00934 (9) |
Geometric parameters (Å, º)
| C1—C2 | 1.5050 (17) | C7—C9 | 1.3760 (14) |
| C1—H1B | 0.96 | C8—O2 | 1.4257 (14) |
| C1—H1A | 0.96 | C8—H8A | 0.96 |
| C1—H1C | 0.96 | C8—H8B | 0.96 |
| C2—O1 | 1.4534 (13) | C8—H8C | 0.96 |
| C2—H2A | 0.97 | C9—C10 | 1.4189 (15) |
| C2—H2B | 0.97 | C9—H9 | 0.93 |
| C3—O3 | 1.2062 (12) | C10—C11 | 1.3722 (14) |
| C3—O1 | 1.3463 (13) | C10—H10 | 0.93 |
| C3—C4 | 1.4928 (13) | C11—O4 | 1.3656 (13) |
| C4—C13 | 1.3796 (13) | C11—C12 | 1.4254 (13) |
| C4—C5 | 1.4241 (14) | C12—C13 | 1.4068 (13) |
| C5—N1 | 1.3025 (13) | C13—H13 | 0.93 |
| C5—Cl1 | 1.7500 (10) | C14—O4 | 1.4301 (12) |
| C6—N1 | 1.3677 (12) | C14—H14A | 0.96 |
| C6—C12 | 1.4173 (14) | C14—H14B | 0.96 |
| C6—C7 | 1.4286 (14) | C14—H14C | 0.96 |
| C7—O2 | 1.3650 (14) | ||
| C2—C1—H1B | 109.5 | H8A—C8—H8B | 109.5 |
| C2—C1—H1A | 109.5 | O2—C8—H8C | 109.5 |
| H1B—C1—H1A | 109.5 | H8A—C8—H8C | 109.5 |
| C2—C1—H1C | 109.5 | H8B—C8—H8C | 109.5 |
| H1B—C1—H1C | 109.5 | C7—C9—C10 | 122.07 (9) |
| H1A—C1—H1C | 109.5 | C7—C9—H9 | 119 |
| O1—C2—C1 | 106.85 (9) | C10—C9—H9 | 119 |
| O1—C2—H2A | 110.4 | C11—C10—C9 | 120.01 (9) |
| C1—C2—H2A | 110.4 | C11—C10—H10 | 120 |
| O1—C2—H2B | 110.4 | C9—C10—H10 | 120 |
| C1—C2—H2B | 110.4 | O4—C11—C10 | 126.18 (8) |
| H2A—C2—H2B | 108.6 | O4—C11—C12 | 114.27 (8) |
| O3—C3—O1 | 123.25 (9) | C10—C11—C12 | 119.55 (9) |
| O3—C3—C4 | 126.28 (9) | C13—C12—C6 | 117.50 (8) |
| O1—C3—C4 | 110.46 (8) | C13—C12—C11 | 122.18 (9) |
| C13—C4—C5 | 116.02 (8) | C6—C12—C11 | 120.29 (8) |
| C13—C4—C3 | 119.42 (9) | C4—C13—C12 | 121.12 (9) |
| C5—C4—C3 | 124.56 (8) | C4—C13—H13 | 119.4 |
| N1—C5—C4 | 125.27 (8) | C12—C13—H13 | 119.4 |
| N1—C5—Cl1 | 114.12 (7) | O4—C14—H14A | 109.5 |
| C4—C5—Cl1 | 120.60 (7) | O4—C14—H14B | 109.5 |
| N1—C6—C12 | 121.71 (8) | H14A—C14—H14B | 109.5 |
| N1—C6—C7 | 118.96 (9) | O4—C14—H14C | 109.5 |
| C12—C6—C7 | 119.31 (8) | H14A—C14—H14C | 109.5 |
| O2—C7—C9 | 125.81 (9) | H14B—C14—H14C | 109.5 |
| O2—C7—C6 | 115.43 (9) | C5—N1—C6 | 118.38 (8) |
| C9—C7—C6 | 118.76 (9) | C3—O1—C2 | 115.86 (8) |
| O2—C8—H8A | 109.5 | C7—O2—C8 | 116.99 (8) |
| O2—C8—H8B | 109.5 | C11—O4—C14 | 116.88 (8) |
| O3—C3—C4—C13 | −160.43 (10) | C7—C6—C12—C11 | −0.20 (13) |
| O1—C3—C4—C13 | 18.58 (12) | O4—C11—C12—C13 | 1.56 (13) |
| O3—C3—C4—C5 | 18.55 (16) | C10—C11—C12—C13 | −178.38 (9) |
| O1—C3—C4—C5 | −162.43 (9) | O4—C11—C12—C6 | 179.62 (8) |
| C13—C4—C5—N1 | −0.45 (14) | C10—C11—C12—C6 | −0.32 (14) |
| C3—C4—C5—N1 | −179.46 (9) | C5—C4—C13—C12 | 0.60 (13) |
| C13—C4—C5—Cl1 | −178.93 (7) | C3—C4—C13—C12 | 179.67 (8) |
| C3—C4—C5—Cl1 | 2.06 (13) | C6—C12—C13—C4 | −0.11 (13) |
| N1—C6—C7—O2 | −1.04 (13) | C11—C12—C13—C4 | 178.00 (9) |
| C12—C6—C7—O2 | −179.64 (8) | C4—C5—N1—C6 | −0.23 (14) |
| N1—C6—C7—C9 | 178.96 (9) | Cl1—C5—N1—C6 | 178.33 (7) |
| C12—C6—C7—C9 | 0.36 (14) | C12—C6—N1—C5 | 0.77 (13) |
| O2—C7—C9—C10 | 179.98 (9) | C7—C6—N1—C5 | −177.79 (9) |
| C6—C7—C9—C10 | −0.02 (15) | O3—C3—O1—C2 | 3.72 (15) |
| C7—C9—C10—C11 | −0.50 (15) | C4—C3—O1—C2 | −175.33 (8) |
| C9—C10—C11—O4 | −179.27 (9) | C1—C2—O1—C3 | −172.08 (10) |
| C9—C10—C11—C12 | 0.66 (14) | C9—C7—O2—C8 | −11.40 (15) |
| N1—C6—C12—C13 | −0.60 (13) | C6—C7—O2—C8 | 168.60 (9) |
| C7—C6—C12—C13 | 177.95 (9) | C10—C11—O4—C14 | 7.48 (15) |
| N1—C6—C12—C11 | −178.76 (9) | C12—C11—O4—C14 | −172.46 (9) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C10—H10···O3i | 0.93 | 2.56 | 3.482 (2) | 173 |
| C14—H14C···N1ii | 0.96 | 2.61 | 3.476 (2) | 150 |
| C13—H13···O1 | 0.93 | 2.34 | 2.6713 (19) | 101 |
| C13—H13···O4 | 0.93 | 2.42 | 2.7366 (19) | 100 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+2, −y+1, −z+2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5402).
References
- Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.
- Bouraiou, A., Bouacida, S., Bertrand, C., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1701–o1702. [DOI] [PMC free article] [PubMed]
- Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
- Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Hayour, H., Bouraiou, A., Bouacida, S., Benzerka, S. & Belfaitah, A. (2014). Acta Cryst. E70, o195–o196. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Valdez, D., Rodrigue-Morales, S., Hermandez-Copos, A., Hernandez-Luis, F., Ypez-Mulian, L., Tapia-Contreras, A. & Castillo, R. (2009). Bioorg. Med. Chem. 17, 1724–1730. [DOI] [PubMed]
- Wang, X. J., Gong, D. L., Wang, J. D., Zhang, J., Liu, C. X. & Xiang, W. S. (2011). Bioorg. Med. Chem. Lett. 21, 2313–2315. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017309/hg5402Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017309/hg5402Isup3.cml
. DOI: 10.1107/S1600536814017309/hg5402fig1.tif
(Farrugia, 2012) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
b . DOI: 10.1107/S1600536814017309/hg5402fig2.tif
(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis and showing hydrogen bond [C—H⋯O in red and C—H⋯N in black] as dashed line.
CCDC reference: 1016211
Additional supporting information: crystallographic information; 3D view; checkCIF report

